

UNIT II

Prototyping IoT Objects using Microprocessor/Microcontroller

Working principles of sensors and actuators:

Sensors:
A better term for a sensor is a transducer. A transducer is any physical device that converts one
form of energy into another. So, in the case of a sensor, the transducer converts some physical
phenomenon into an electrical impulse that determines the reading. A microphone is a sensor
that takes vibrational energy (sound waves), and converts it to electrical energy in a useful way
for other components in the system to correlate back to the original sound.
Types of sensors –

1. Electrical sensor :
2. Light sensor:
3. Touch sensor:
4. Range sensing:
5. Mechanical sensor:
6. Pneumatic sensor:
7. Optical sensor:
8. Flow sensor
9. Temperature Sensors
10. Voltage sensors
11. Humidity sensor

Electrical sensor :
Electrical proximity sensors may be contact or non contact. Simple contact sensors operate by
making the sensor and the component complete an electrical circuit. Non- contact electrical
proximity sensors rely on the electrical principles of either induction for detecting metals or
capacitance for detecting non metals as well.
Light sensor:
Light sensor is also known as photo sensors and one of the important sensor. Light dependent
resistor or LDR is a simple light sensor available today.The property of LDR is that its
resistance is inversely proportional to the intensity of the ambient light i.e when the intensity
of light increases, it’s resistance decreases and vise versa.
Touch sensor:
Detection of something like a touch of finger or a stylus is known as touch sensor.It’s name
suggests that detection of something.

C VENKATA SUBBAIAH

HOD, DPET. OF CSE,

AITS-KADAPA

They are classified into two types:
 Resistive type
 Capacitive type

Today almost all modern touch sensors are of capacitive types.Because they are more accurate
and have better signal to noise ratio.
Range sensing:
Range sensing concerns detecting how near or far a component is from the sensing position,
although they can also be used as proximity sensors. Distance or range sensors use non-contact
analog techniques. Short range sensing, between a few millimetres and a few hundred
millimetres is carried out using electrical capacitance, inductance and magnetic technique.
Longer range sensing is carried out using transmitted energy waves of various types eg radio
waves, sound waves and lasers.
Mechanical sensor:
Any suitable mechanical / electrical switch may be adopted but because a certain amount of
force is required to operate a mechanical switch it is common to use micro-switches.
Pneumatic sensor:
These proximity sensors operate by breaking or disturbing an air flow. The pneumatic
proximity sensor is an example of a contact type sensor. These cannot be used where light
components may be blown away.
Optical sensor:
In there simplest form, optical proximity sensors operate by breaking a light beam which falls
onto a light sensitive device such as a photocell. These are examples of non contact sensors.
Care must be exercised with the lighting environment of these sensors for example optical
sensors can be blinded by flashes from arc welding processes, airborne dust and smoke clouds
may impede light transmission etc.
Flow sensor is a component that measures the flow of a fluid such as a gas or liquid. Flow sensors
utilize both mechanical and electrical subsystems to measure changes in the fluid's physical attributes
and calculate its flow. Measuring these physical attributes depends on the fluid's physical attribute.
Temperature Sensors. Temperature sensors measure the amount of heat energy in a source, allowing
them to detect temperature changes and convert these changes to data. Machinery used in manufacturing
often requires environmental and device temperatures to be at specific levels.
Voltage sensors are wireless tools that can be attached to any number of assets, machinery or
equipment. They provide 24/7 monitoring, constantly watching for voltage data that could indicate a
problem. Low voltage may signal a potential issue, while other assets may be in danger when voltage
is too high.
A humidity sensor is an electronic device that measures the humidity in its environment and converts
its findings into a corresponding electrical signal.
The Importance of Accurate Sensors:

Imagine that you are a bar owner and you want to measure the amount of beer coming
out of one of your taps. One way you might do this is to install a sensor in line with the line
that runs from the keg of beer to the tap. This sensor would most likely have a small impeller
inside of it. When the beer ran through the sensor, it would cause the impeller to spin, just like
the propeller on a weather station.

When the impeller spins, it will send a stream of electrical impulses to a computer. The
computer will interpret the impulses to determine how much beer is flowing through. Sounds
simple, right?

This is where sensors get interesting. If you look back at our description, you’ll see that
we never directly measured the amount of beer flowing through the sensor; we interpreted it
from a stream of electrical impulses. That means that we must first figure out how to interpret
it.

Actuators:
Another type of transducer that you will encounter in many IoT systems is an actuator. In
simple terms, an actuator operates in the reverse direction of a sensor. It takes an electrical

input and turns it into physical action. For instance, an electric motor, a hydraulic system, and
a pneumatic system are all different types of actuators.
Types of actuators:
The actuator requires energy. The main types of energy sources are the following:

 electric
 hydraulic
 pneumatic
 thermal/magnetic

Electric actuators, a common option for IoT devices, convert energy into mechanical torque.
Electric energy is less noisy in operation than other actuator types. These actuators don't require
fluid to run. Additionally, electric actuators offer high-control precision positioning due to
programmability. But these actuators can be expensive. They also may not be suitable for
extreme operating environments found in some manufacturing, aerospace and military use
cases.

Hydraulic actuators can exert a large amount of force and move at a high speed. These
characteristics suit use in construction and manufacturing equipment. But they have high
maintenance requirements. For example, they can need noise mitigation, and fluid leaks can
reduce their performance.

Pneumatic actuators, which use compressed air or gas for energy, have lower maintenance
requirements and a longer life span than other types of actuators. They are durable and capable
of working in extreme temperatures. This category can also quickly start and stop motion. But
they still require some maintenance. For example, they demand a constant air supply, and their
efficiency is affected by changes in air and gas pressure.

Thermal or magnetic actuators use energy gained from heating up a shape-memory alloy.
They have a compact form factor, are lightweight and have high power density. It also removes
the need for a temperature sensor when used in a thermal valve that integrates fluid control,
actuation and temperature-sensing functions. Because this actuator uses heat to move, the
actuator's piston can shift positions and cause a lag if the device is heating up or cooling down,
which causes hysteresis. The actuator's metal can also suffer from structural and functional
fatigue.
Controller:
In a typical IoT system, a sensor may collect information and route to a control center. There,
previously defined logic dictates the decision. As a result, a corresponding command controls
an actuator in response to that sensed input. Thus, sensors and actuators in IoT work together
from opposite ends. Later, we will discuss where the control center resides in the greater IoT
system.

Setting up the Board:
Arduino is an open-source platform used for building electronics projects. Arduino consists of

both a physical programmable circuit board (often referred to as a microcontroller) and a piece

of software, or IDE (Integrated Development Environment) that runs on your computer, used

to write and upload computer code to the physical board. Accepts analog and digital signals as

input and gives desired output.

BOARD DETAILS:
 Power Supply:

 USB or power barrel jack
 Voltage

Regulator
 LED Power Indicator

 Tx-Rx LED
Indicator

 Output power,
 Ground

 Analog Input Pins
 Digital I/O Pin

 SET UP:

ARDUIN0 UN0

Feature Value

OperatingVoltage 5V

ClockSpeed 16MHz

Digital I/O 14

AnalogInput 6

PWM 6

UART 1

Interface USB via ATMega16U2

Power (USB / Barrel Jack):
Every Arduino board needs a way to be connected to a power source. The Arduino UNO can

be powered from a USB cable coming from your computer or a wall power supply (like this)

that is terminated in a barrel jack. In the picture above the USB connection is labeled (1) and

the barrel jack is labeled (2). The USB connection is also how you will load code onto your

Arduino board.

NOTE: Do NOT use a power supply greater than 20 Volts as you will overpower (and thereby

destroy) Arduino. The recommended voltage for most Arduino models is between 6 and 12

Volts.

Pins (5V, 3.3V, GND, Analog, Digital, PWM, AREF):

The pins on your Arduino are the places where you connect wires to construct a circuit
(probably in conjunction with a breadboard and some wire. They usually have black plastic
‘headers’ that allow you to just plug a wire right into the board. The Arduino has several
different kinds of pins, each of which is labeled on the board and used for different functions.

GND (3): Short for ‘Ground’. There are several GND pins on the Arduino, any of which can
be used to ground your circuit.

5V (4) & 3.3V (5): As you might guess, the 5V pin supplies 5 volts of power, and the 3.3V pin
supplies 3.3 volts of power. Most of the simple components used with the Arduino run happily
off of 5 or 3.3 volts.

Analog (6): The area of pins under the ‘Analog In’ label (A0 through A5 on the UNO) are
Analog In pins. These pins can read the signal from an analog sensor (like a temperature sensor)
and convert it into a digital value that we can read.

Digital (7): Across from the analog pins are the digital pins (0 through 13 on the UNO). These
pins can be used for both digital input (like telling if a button is pushed) and digital output (like
powering an LED.
PWM (8): You may have noticed the tilde (~) next to some of the digital pins (3, 5, 6, 9, 10,
and 11 on the UNO). These pins act as normal digital pins, but can also be used for something
called Pulse-Width Modulation (PWM). We have a tutorial on PWM, but for now, think of
these pins as being able to simulate analog output (like fading an LED in and out).

AREF (9): Stands for Analog Reference. Most of the time you can leave this pin alone. It is
sometimes used to set an external reference voltage (between 0 and 5 Volts) as the upper limit
for the analog input pins.

Reset Button
Just like the original Nintendo, the Arduino has a reset button (10). Pushing it will temporarily
connect the reset pin to ground and restart any code that is loaded on the Arduino. This can be
very useful if your code doesn’t repeat, but you want to test it multiple times. Unlike the
original Nintendo however, blowing on the Arduino doesn’t usually fix any problems.

Power LED Indicator

Just beneath and to the right of the word “UNO” on your circuit board, there’s a tiny LED next
to the word ‘ON’ (11). This LED should light up whenever you plug your Arduino into a power
source. If this light doesn’t turn on, there’s a good chance something is wrong. Time to re-
check your circuit!

TX RX LEDs
TX is short for transmit, RX is short for receive. These markings appear quite a bit in
electronics to indicate the pins responsible for serial communication. In our case, there are two
places on the Arduino UNO where TX and RX appear – once by digital pins 0 and 1, and a
second time next to the TX and RX indicator LEDs (12). These LEDs will give us some nice
visual indications whenever our Arduino is receiving or transmitting data (like when we’re
loading a new program onto the board).

Main IC
The black thing with all the metal legs is an IC, or Integrated Circuit (13). Think of it as the
brains of our Arduino. The main IC on the Arduino is slightly different from board type to
board type, but is usually from the ATmega line of IC’s from the ATMEL company. This can
be important, as you may need to know the IC type (along with your board type) before loading
up a new program from the Arduino software. This information can usually be found in writing
on the top side of the IC. If you want to know more about the difference between various IC’s,
reading the datasheets is often a good idea.p
Voltage Regulator
The voltage regulator (14) is not actually something you can (or should) interact with on the
Arduino. But it is potentially useful to know that it is there and what it’s for. The voltage
regulator does exactly what it says – it controls the amount of voltage that is let into the Arduino
board. Think of it as a kind of gatekeeper; it will turn away an extra voltage that might harm
the circuit. Of course, it has its limits, so don’t hook up your Arduino to anything greater than
20 volts.
ARDUINO IDE OVERVIEW:
Program coded in Arduino IDE is called a SKETCH

1. To create a new sketchFile -> New To open an existing sketch File -> open -> There
are some basic ready-to-use sketches available in the EXAMPLES section File -> Examples -
> select any program
2. Verify: Checks the code for compilation errors
3. Upload: Uploads the final code to the controller board
4. New: Creates a new blank sketch with basic structure
5. Open: Opens an existing sketch
6. Save: Saves the current sketch

Fig. 2 Compilation and Execution

Serial Monitor: Opens the serial console All the data printed to the console are displayed here.

Fig : Structure of SKETCH

A sketch can be divided into two parts:

• Setup ()

• Loop()

• The function setup() is the point where the code starts, just like the main() function in
C and C++

• I/O Variables, pin modes are initialized in the Setup() function Loop() function,
as the name suggests, iterates the specified task in the program.

Programming for IoT using Aurdino / ESP32:

DATA TYPES:

Void, Long, Int, Char, Boolean, Unsigned char, Byte, Unsigned int, Word, Unsigned long

, Float, Double, Array

Arduino Function libraries:

Input/Output Functions:

The arduino pins can be configured to act as input or output pins using the pinMode() function
Void setup ()

{

pinMode (pin , mode);

}

Pin- pin number on the Arduino board Mode- INPUT/OUTPUT digitalWrite() : Writes a HIGH
or LOW value to a digital pin

analogRead() : Reads from the analog input pin i.e., voltage applied across the pin

Character functions such as

 isdigit(), isalpha(), isalnum(), isxdigit(), islower(), isupper(), isspace() return 1(true) or 0(false)

Delay() function is one of the most common time manipulation function used to provide a delay
of specified time. It accepts integer value (time in miliseconds)

EXAMPLE BLINKING LED:

Requirement:

Arduino controller board, USB connector, Bread board, LED, 1.4Kohm resistor, connecting
wires, Arduino IDE Connect the LED to the Arduino using the Bread board and the connecting
wires Connect the Arduino board to the PC using the USB connector Select the board type and
port Write the sketch in the editor, verify and upload Connect the positive terminal of the
LED to digital pin 12 and the negative terminal to the ground pin (GND) of Arduino Board.

void setup()

{

pinMode(12, OUTPUT); // set the pin mode

} void loop()

{

digitalWrite(12, HIGH); // Turn on the LED delay(1000); digitalWrite(12, LOW); //Turn of
the LED delay(1000);

}

Set the pin mode as output which is connected to the led, pin 12 in this case. Use digitalWrite()
function to set the output as HIGH and LOW Delay() function is used to specify the delay
between HIGH-LOW transition of the output.

Connect he board to the PC Set the port and board type Verify the code and upload,

notice the TX – RX led in the board starts flashing as the code is uploaded.

Programming for IoT using Raspberry Pi:

RASPBERRY PI:

Raspberry Pi is a credit card sized micro processor available in different models with different
processing speed starting from 700 MHz. Whether you have a model B or model B+, or the
very old version, the installation process remains the same. People who have checked out the
official Raspberry Pi website, But using the Pi is very easy and from being a beginner, one will
turn pro in no time. So, it's better to go with the more powerful and more efficient OS, the
Raspbian. The main reason why Raspbian is extremely popular is that it has thousands of pre
built libraries to perform many tasks and optimize the OS. This forms a huge advantage while
building applications.

Raspberry Pi Elements

As for the specifications, the Raspberry Pi is a credit card-sized computer powered by the
Broadcom BCM2835 system-on-a-chip (SoC). This SoC includes a 32-bit ARM1176JZFS
processor, clocked at 700MHz, and a Videocore IV GPU. It also has 256MB of RAM in a POP
package above the SoC. The Raspberry Pi is powered by a 5V micro USB AC charger or at
least 4 AA batteries (with a bit of hacking). While the ARM CPU delivers real-world
performance similar to that of a 300MHz Pentium 2, the Broadcom GPU is a very capable
graphics core capable of hardware decoding several high definition video formats. The
Raspberry Pi model available for purchase at the time of writing — the Model B — features
HDMI and composite video outputs, two USB 2.0 ports, a 10/100 Ethernet port, SD card slot,
GPIO (General Purpose I/O Expansion Board) connector, and analog audio output (3.5mm
headphone jack). The less expensive Model A strips out the Ethernet port and one of the USB
ports but otherwise has the same hardware. Raspberry Pi Basics: installing Raspbian and
getting it up and running.

Downloading Raspbian and Image writer:

You will be needing an image writer to write the downloaded OS into the SD card (micro SD
card in case of Raspberry Pi B+ model). So download the "win32 disk imager" from the
website.

Writing the image

Insert the SD card into the laptop/pc and run the image writer. Once open, browse and select
the downloaded Raspbian image file. Select the correct device, that is the drive representing
the SD card. If the drive (or device) selected is different from the SD card then the other
selected drive will become corrupted. SO be careful.

After that, click on the "Write" button in the bottom. As an example, see the image below,
where the SD card (or micro SD) drive is represented by the letter "G:\"

OS Installation

Once the write is complete, eject the SD card and insert it into the Raspberry Pi and turn it
on. It should start booting up.

Setting up the Pi

Please remember that after booting the Pi, there might be situations when the user credentials
like the "username" and password will be asked. Raspberry Pi comes with a default user name
and password and so always use it whenever it is being asked. The credentials are:

login: pi
password: raspberry

When the Pi has been booted for the first time, a configuration screen called the "Setup
Options" should appear and it will look like the image below.

Raspberry Configuration

If you have missed the "Setup Options" screen, its not a problem, you can always get it by
typing the following command in the terminal.

sudo raspi-config

Once you execute this command the "Setup Options" screen will come up as shown in the
image above.

Now that the Setup Options window is up, we will have to set a few things. After completing
each of the steps below, if it asks to reboot the Pi, please do so. After the reboot, if you don't
get the "Setup Options" screen, then follow the command given above to get the
screen/window.

The first thing to do:

select the first option in the list of the setup options window, that is select the "Expand
Filesystem" option and hit the enter key. We do this to make use of all the space present on the
SD card as a full partition. All this does is, expand the OS to fit the whole space on the SD card
which can then be used as the storage memory for the Pi

The second thing to do

Select the third option in the list of the setup options window, that is select the "Enable Boot
To Desktop/Scratch" option and hit the enter key. It will take you to another window called
the "choose boot option" window that looks like the image below.

7 Boot Options

In the "choose boot option window", select the second option, that is, "Desktop Log in as user
'pi' at the graphical desktop" and hit the enter button. Once done you will be taken back to the
"Setup Options" page, if not select the "OK" button at the bottom of this window and you will
be taken back to the previous window. We do this because we want to boot into the desktop
environment which we are familiar with. If we don't do this step then the Raspberry Pi boots
into a terminal each time with no GUI options. Once, both the steps are done, select the "finish"
button at the bottom of the page and it should reboot automatically. If it doesn't, then use the
following command in the terminal to reboot.

Sudo Reboot

Updating the firmware After the reboot from the previous step, if everything went right, then
you will end up on the desktop which looks like the image below.

Once you are on the desktop, open a terminal and enter the following command to update the
firmware of the Pi.

Raspberry Desktop
Sudo Rpi-Update:

Updating the firmware is necessary because certain models of the Pi might not have all the
required dependencies to run smoothly or it may have some bug. The latest firmware might
have the fix to those bugs, thus its very important to update it in the beginning itself.

Conclusion

So, we have covered the steps to get the Pi up and running. This method works on all the
different models of Raspberry Pi (model A, B, B+ and also RPi 2) as Raspbain was made to be
supported on all models. However, while installing other software or libraries, the procedure
might change a bit while installing depending on the model of the Pi or the version of Raspbian
itself. The concept of Raspberry is to keep trying till you get the result or build that you want.
This might involve a lot of trial and error but spending the time will be worth it. The actual
usage doesn't end here. This is just the beginning. It is up to you to go ahead to build something
amazing out of it.

GPIO:

Act as both digital output and digital input.

Output: turn a GPIO pin high or low.

Input: detect a GPIO pin high or low

Installing GPIO library:
Open terminal

Enter the command “sudoapt-get install python-dev” to install python development Enter the
command “sudoapt-get install python-rpi.gpio” to install GPIO library. Basic python coding:

Open terminal enters the command

sudo nano filename.py

This will open the nano editor where you can write your code Ctrl+O : Writes the code to the
file
Ctrl+X : Exits the editor
Blinking LED:

Code:

import RPi.GPIO as GPIO #GPIO library import time

GPIO.setmode(GPIO.BOARD) # Set the type of board for pin numbering GPIO.setup(11,
GPIO.OUT) # Set GPIO pin 11as output pin

for i in range (0,5): GPIO.output(11,True) # Turn on GPIO pin 11

time.sleep(1)

GPIO.output(11,False)

time.sleep(2)

GPIO.output(11,True)

GPIO.cleanup()

Power Pins

The header provides 5V on Pin 2 and 3.3V on Pin 1. The 3.3V supply is limited to 50mA. The
5V supply draws current directly from your microUSB supply so can use whatever is left over
after the board has taken its share. A 1A power supply could supply up to 300mA once the
Board has drawn 700mA

Basic GPIO

The header provides 17 Pins that can be configured as inputs and outputs. By default they are
all configured as inputs except GPIO 14 & 15.

In order to use these pins you must tell the system whether they are inputs or outputs. This can
be achieved a number of ways and it depends on how you intend to control them. I intend on
using Python.

SDA & SCL: The 'DA' in SDA stands for data, the 'CL' in SCL stands for clock; the S stands
for serial. You can do more reading about the significance of the clock line for various types
of computer bus, You will probably find I2C devices that come with their own userspace
drivers and the linux kernel includes some as well. Most computers have an I2C bus,
presumably for some of the purposes listed by wikipedia, such as interfacing with the RTC
(real time clock) and configuring memory. However, it is not exposed, meaning you can't attach
anything else to it, and there are a lot of interesting things that could be attached -- pretty much

any kind of common sensor (barometers, accelerometers, gyroscopes, luminometers, etc.) as
well as output devices and displays. You can buy a USB to I2C adapter for a normal computer,
but they cost a few hundred dollars. You can attach multiple devices to the exposed bus on the
pi.

UART, TXD & RXD: This is a traditional serial line; for decades most computers have had a
port for this and a port for parallel.1 Some pi oriented OS distros such as Raspbian by default
boot with this serial line active as a console, and you can plug the other end into another
computer and use some appropriate software to communicate with it. Note this interface does
not have a clock line; the two pins may be used for full duplex communication (simultaneous
transmit and receive).

PCM, CLK/DIN/DOUT/FS: PCM is is how uncompressed digital audio is encoded. The data
stream is serial, but interpreting this correctly is best done with a separate clock line (more
lowest level stuff).

SPI, MOSI/MISO/CE0/CE1: SPI is a serial bus protocol serving many of the same purposes
as I2C, but because there are more wires, it can operate in full duplex which makes it faster
and more flexible.

Raspberry Pi Terminal Commands

[sudo apt-get update] - Update Package Lists

[sudo apt-get upgrade] - Download and Install Updated Packages

[sudo raspi-config] - The Raspberry Pi Configuration Tool

[sudo apt-get clean] - Clean Old Package Files

[sudo reboot] - Restart your Raspberry Pi

[sudo halt] - Shut Down your Raspberry Pi

WRITING A PYTHON PROGRAM

To demonstrate creating and executing a Python program, we’ll make a simple “hello world”
program. To begin, open the Nano text editor and create a new file named hello-world.py by
entering this at the command prompt: sudo nano hello-world.py

Enter this code into Nano, then press Ctrl-X and Y to exit and save the file:

All Python program files will need to be saved with a “.py” extension. You can write the
program in any text editor such as Notepad or Notepad++, just be sure to save the file with a
“.py” extension. To run the program without making it executable, navigate to the location
where you saved your file, and enter this at the command prompt: python hello-world.py

CONNECT THE LED TO THE RASPBERRY PI

#!/usr/bin/python

print "Hello, World!";

Components:

• Raspberry Pi
• One LED
• One 330 Ohm resistor
• Jumper wires
• Breadboard

Connect the components as shown in the wiring diagram below.
The 330 Ohm resistor is a current limiting resistor. Current limiting resistors should

always be used when connecting LEDs to the GPIO pins. If an LED is connected to a GPIO
pin without a resistor, the LED will draw too much current, which can damage the Raspberry
Pi or burn out the LED. Here is a nice calculator that will give you the value of a current

Raspberry pi with LED

limiting resistor to use for different LEDs. After connecting the hardware components, the next
step is to create a Python program to switch on and off the LED. This program will make the
LED turn on and off once every second and output the status of the LED to the terminal. The
first step is to create a Python file. To do this, open the Raspberry Pi terminal and type nano
LED.py. Then press Enter. This will create a file named LED.py and open it in the Nano text
editor. Copy and paste the Python code below into Nano and save and close the file.

import RPi.GPIO as GPIO import time GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False)
GPIO.setup(14,GPIO.OUT)

While loop while True:

set GPIO14 pin to HIGH GPIO.output(14,GPIO.HIGH)

show message to Terminal print "LED is ON"

pause for one second time.sleep(1)

set GPIO14 pin to HIGH

GPIO.output(14,GPIO.LOW)

show message to Terminal print "LED is OFF"

pause for one second time.sleep(1)

At the top of the program we import the RPi.GPIO and time libraries. The RPi.GPIO library
will allow us to control the GPIO pins. The time library contains the sleep() function that we
will use to make the LED pause for one second.

Next we initialize the GPIO object with GPIO.setmode(GPIO.BCM). We are using the BCM
pin numbering system in this program. We use .GPIO.setwarnings(False) to disable the
warnings and GPIO.setup(14,GPIO.OUT) is used to set GPIO14 as an output.

Now we need to change the on/off state of GPIO14 once every second. We do this with the
GPIO.output() function. The first parameter of this function is the GPIO pin that will be
switched high or low. We have the LED connected to GPIO14 in this circuit, so the first
argument is 14.

The second parameter of the GPIO.output() function is the voltage state of the GPIO pin. We
can use either GPIO.HIGH or GPIO.LOW as an argument to turn the pin on or off.

Each GPIO.output() function in the code above is followed by a sleep() function that causes
the pin to hold its voltage state for the time (in seconds) defined in the parameter of the function.
In this program we are switching the LED on and off once every second so the argument is 1.
You can change this value to make the LED blink on and off faster or slower. Run the Python
program above by entering the following into the Raspberry Pi’s terminal:

sudo python LED.py

You should see the LED blinking on and off once every second.

You should also see a message in the terminal with “LED is ON“ when the LED is turned on,
and “LED is OFF” when the LED is turned off.

Communication through BLUETOOTH MODULES

Bluetooth Low Energy Modules available at a reasonable cost, most of these modules are not
compatible with existing devices that support the classic Bluetooth. The HC-05 is an expensive
module that is compatible with wide range of devices including smartphone, laptops and
tablets. Adding a Bluetooth to Arduino can take your project to the next level. It opens up lots
of possibilities for user interface (UI) and communication.

There are three main parts to this module. An Android smartphone, a Bluetooth transceiver,
and an Arduino. HC 05/06 works on serial communication. The Android app is designed to
send serial data to the Arduino Bluetooth module when a button is pressed on the app. The
Arduino Bluetooth module at the other end receives the data and sends it to the Arduino through
the TX pin of the Bluetooth module (connected to RX pin of Arduino). The code uploaded to
the Arduino checks the received data and compares it. If the received data is 1, the LED turns
ON. The LED turns OFF when the received data is 0. You can open the serial monitor and
watch the received data while connecting.

char data = 0; //Variable for storing received data void setup()

{

Serial.begin(9600); //Sets the data rate in bits per second (baud) for serial data transmission
pinMode(13, OUTPUT); //Sets digital pin 13 as output pin

}

void loop()

{

if(Serial.available() > 0) // Send data only when you receive data:

{

data = Serial.read(); //Read the incoming data and store it into variable data
Serial.print(data); //Print Value inside data in Serial monitor Serial.print("\n"); //New line

if(data == '1') //Checks whether value of data is equal to 1 digitalWrite(13, HIGH);

else if(data == '0') digitalWrite(13, LOW);

}

}

WiFi MODULES

ESP8266WiFi library

ESP8266 is all about Wi-Fi. If you are eager to connect your new ESP8266 module to a Wi-Fi
network to start sending and receiving data, this is a good place to start. If you are looking for
more in depth details of how to program specific Wi-Fi networking functionality, you are also
in the right place. The Wi-Fi library for ESP8266 has been developed based on ESP8266 SDK,
using the naming conventions and overall functionality philosophy of the Arduino WiFi library.

In order to get our ESP8266 to work properly with our Arduino, we need to do some initial
programming. Specifically, we will be changing the ESP8266 to work as an access point and
a client and changing the baud rate. Since most code samples out there are communicating with
the ESP module with a baud rate of 9600, that’s what we will use. We will also verify that the
ESP8266 module can connect to our router.

With your Arduino Uno connected to your computer, open the serial monitor via the Arduino
IDE (ctrl + shift + m). On the bottom of the serial monitor there are dropdowns for line endings
and baud rate. Set line endings to “Both NL & CR” and change the baud rate to “115200”.
Then send the following commands:

1. Verify that the ESP8266 is connected properly.

Command to send: AT Expected response: OK

2. Change the mode.

Command to send: AT+CWMODE=3 Expected response: OK

3. Connect to your router (Make sure to replace YOUR_SSID and
YOUR_WIFI_PASSWORD).
Command to send: AT+CWJAP=”YOUR_SSID”,”YOUR_WIFI_PASSWORD”
Expected response:
WIFI CONNECTED WIFI GOT IP
OK

4. Set baud rate to 9600.
Command to send: AT+UART=9600,8,1,0,0
Expected response: OK

5. Verify that the ESP8266 is communicating with baud rate of 9600

Command to send: AT Expected response: OK

#include "WiFiEsp.h"

#include <ArduinoJson.h>

#ifndef HAVE_HWSERIAL1

 #include "SoftwareSerial.h"

// set up software serial to allow serial communication to our TX and RX pins
SoftwareSerial Serial1(10, 11);

#endif

// Set baud rate of so we can monitor output from esp.

 #define ESP8266_BAUD 9600

// CHANGE THIS TO MATCH YOUR SETTINGS

char ssid[] = "MY_SSID";

char pass[] = "MY_WIFI_PASSWORD"; int status = WL_IDLE_STATUS;

// Define an esp server that will listen on port 80

WiFiEspServer server(80);

void setup()

{

// Open up communications for arduino serial and esp serial at same rate
Serial.begin(9600);

Serial1.begin(9600);

// Initialize the esp module WiFi.init(&Serial1);

// Start connecting to wifi network and wait for connection to complete

 while (status != WL_CONNECTED)

{

Serial.print("Conecting to wifi network: ");

Serial.println(ssid);

status = WiFi.begin(ssid, pass);

}

// Once we are connected log the IP address of the ESP module

Serial.print("IP Address of ESP8266 Module is: ");

Serial.println(WiFi.localIP());

Serial.println("You're connected to the network");

// Start the server

 server.begin();

}

// Continually check for new clients

 void loop()

{

WiFiEspClient client = server.available();

// If a client has connected...

if (client)

{

String json = "";

Serial.println("A client has connected");

while (client.connected())

{

// Read in json from connected client

 if (client.available())

{

// ignore headers and read to first json bracket
client.readStringUntil('{');

// get json body (everything inside of the main brackets) String
jsonStrWithoutBrackets = client.readStringUntil('}');

// Append brackets to make the string parseable as json String
jsonStr = "{" + jsonStrWithoutBrackets + "}";

// if we managed to properly form jsonStr...

 if (jsonStr.indexOf('{', 0) >= 0)

{

// parse string into json, bufferSize calculated
 by https://arduinojson.org/v5/assistant/

const size_t bufferSize = JSON_OBJECT_SIZE(1) + 20;
DynamicJsonBuffer jsonBuffer(bufferSize);

JsonObject &root = jsonBuffer.parseObject(jsonStr);

// get and print the value of the action key in our json object
const char *value = root["action"];

Serial.println(value);

if (strcmp(value, "on") == 0)

{

// Do something when we receive the on command
Serial.println("Received on command from client");

}

else if (strcmp(value, "off") == 0)

{

// Do something when we receive the off command
Serial.println("Received off command from client");

}

}

 // send response and close connection client.print("HTTP/1.1 200 OK\r\n" "Connection:
close\r\n"

// the connection will be closed after completion of the Response \r\n");

client.stop();

else

{

// we were unable to parse json, send http error status and close connection
client.print("HTTP/1.1 500 ERROR\r\n" "Connection: close\r\n" "\r\n");

Serial.println("Error, bad or missing json"); client.stop();

}

 }

}

delay(100);

client.stop();

Serial.println("Client disconnected");

}

}.

Devices that connect to Wi-Fi networks are called stations (STA). Connection to Wi-Fi is
provided by an access point (AP), that acts as a hub for one or more stations. The access point
on the other end is connected to a wired network. An access point is usually integrated with a
router to provide access from a Wi-Fi network to the internet. Each access point is recognized
by a SSID (Service Set IDentifier), that essentially is the name of network you select when
connecting a device (station) to the Wi-Fi.

ESP8266 modules can operate as a station, so we can connect it to the Wi-Fi network. It can
also operate as a soft access point (soft-AP), to establish its own Wi-Fi network. When the
ESP8266 module is operating as a soft access point, we can connect other stations to the ESP
module. ESP8266 is also able to operate as both a station and a soft access point mode. This
provides the possibility of building e.g. mesh networks.

ESP8266 Module

C VENKATA SUBBAIAH

HOD, DPET. OF CSE,

AITS-KADAPA

UNIT III

IoT Architecture and Protocols

Architecture Reference Model:

Introduction:

The Internet of Things (IoT) has seen an increasing interest in adaptive frameworks and
architectural designs to promote the correlation between IoT devices and IoT systems. This is
because IoT systems are designed to be categorized across diverse application domains and
geographical locations. It, therefore, creates extensive dependencies across domains, platforms
and services. Considering this interdependency between IoT devices and IoT systems, an
intelligent, connection-aware framework has become a necessity, this is where IoT architecture
comes into play.

In essence, an IoT architecture is the system of numerous elements that range from
sensors, protocols, actuators, to cloud services, and layers. Besides, devices and sensors the
Internet of Things (IoT) architecture layers are distinguished to track the consistency of a
system through protocols and gateways. Different architectures have been proposed by
researchers and we can all agree that there is no single consensus on architecture for IoT.

State of the art

IoT architecture varies from solution to solution, based on the type of solution which
we intend to build. IoT as a technology majorly consists of four main components, over which
an architecture is framed.

1) Sensors

2) Devices

3) Gateway

4) Cloud

C VENKATA SUBBAIAH

HOD, DPET. OF CSE,

AITS-KADAPA

Stages of IoT Architecture:

1. Sensors/actuators

Sensors collect data from the environment or object under measurement and turn it into useful
data. Think of the specialized structures in your cell phone that detect the directional pull of
gravity and the phone's relative position to the ―thingۅ we call the earth and convert it into
data that your phone can use to orient the device.

Actuators can also intervene to change the physical conditions that generate the data.
An actuator might, for example, shut off a power supply, adjust an air flow valve, or move a
robotic gripper in an assembly process.

The sensing/actuating stage covers everything from legacy industrial devices to robotic
camera systems, water level detectors, air quality sensors, accelerometers, and heart rate
monitors. And the scope of the IoT is expanding rapidly, thanks in part to low-power wireless
sensor network technologies and Power over Ethernet, which enable devices on a wired LAN
to operate without the need for an A/C power source.

2. The Internet gateways

The data from the sensors starts in analog form. That data needs to be aggregated and converted
into digital streams for further processing downstream. Data acquisition systems (DAS)
perform these data aggregation and conversion functions. The DAS connects to the sensor
network, aggregates outputs, and performs the analog-to-digital conversion. The Internet
gateway receives the aggregated and digitized data and routes it over Wi-Fi, wired LANs, or
the Internet, to Stage 3 systems for further processing. Stage 2 systems often sit in close
proximity to the sensors and actuators.

For example, a pump might contain a half-dozen sensors and actuators that feed data
into a data aggregation device that also digitizes the data. This device might be physically
attached to the pump. An adjacent gateway device or server would then process the data and
forward it to the Stage 3 or Stage 4 systems. Intelligent gateways can build on additional, basic
gateway functionality by adding such capabilities as analytics, malware protection, and data
management services. These systems enable the analysis of data streams in real time.

3. Edge IT

Once IoT data has been digitized and aggregated, it's ready to cross into the realm of IT.
However, the data may require further processing before it enters the data centre. This is where
edge IT systems, which perform more analysis, come into play. Edge IT processing systems
may be located in remote offices or other edge locations, but generally these sit in the facility
or location where the sensors reside closer to the sensors, such as in a wiring closet. Because
IoT data can easily eat up network bandwidth and swamp your data centre resources, it's best
to have systems at the edge capable of performing analytics as a way to lessen the burden on
core IT infrastructure. You'd also face security concerns, storage issues, and delays processing
the data. With a staged approach, you can pre-process the data, generate meaningful results,
and pass only those on. For example, rather than passing on raw vibration data for the pumps,
you could aggregate and convert the data, analyse it, and send only projections as to when each
device will fail or need service.

4.The data centre and cloud

Data that needs more in-depth processing, and where feedback doesn't have to be
immediate, gets forwarded to physical data centre or cloud-based systems, where more
powerful IT systems can analyse, manage, and securely store the data. It takes longer to get
results when you wait until data reaches Stage 4, but you can execute a more in-depth analysis,
as well as combine your sensor data with data from other sources for deeper insights. Stage 4
processing may take place on-premises, in the cloud, or in a hybrid cloud system, but the type
of processing executed in this stage remains the same, regardless of the platform.

Reference Model and architecture:

Reference Architecture that describes essential building blocks as well as design choices to
deal with conflicting requirements regarding functionality, performance, deployment and
security. Interfaces should be standardised, best practices in terms of functionality and
information usage need to be provided.

The central choice of the IoT-A project was to base its work on the current state of the art,
rather than using a clean-slate approach. Due to this choice, common traits are derived to form
the base line of the Architectural Reference Model (ARM). This has the major advantage of
ensuring backward compatibility of the model and also the adoption of established, working
solutions to various aspects of the IoT. With the help of end users, organised into a
stakeholder’s group, new requirements for IoT have been collected and introduced in the main
model building process. This work was conducted according to established architecture
methodology.

A Reference Architecture (RA) can be visualised as the ―Matrix that eventually gives birth
ideally to all concrete architectures. For establishing such a Matrix, based on a strong and
exhaustive analysis of the State of the Art, we need to envisage the superset of all possible
functionalities, mechanisms and protocols that can be used for building such concrete
architecture and to show how interconnections could take place between selected ones (as no
concrete system is likely to use all of the functional possibilities). Giving such a foundation
along with a set of design-choices, based on the characterisation of the targeted system w.r.t.
various dimensions (like distribution, security, real-time, semantics) it becomes possible for a
system architect to select the protocols, functional components, architectural options, needed
to build their IoT systems.

As any metaphoric representation, this tree does not claim to be fully consistent in its depiction;
it should therefore not be interpreted too strictly. On the one hand, the roots of this tree are

spanning across a selected set of communication protocols (6LoWPAN, Zigbee, IPv6,) and
device technologies (sensors, actuators, tags,) while on the other hand the blossoms / leaves of
the tree represent the whole set of IoT applications that can be built from the sap (i.e., data and
information) coming from the roots. The trunk of the tree is of utmost importance here, as it
represents the Architectural Reference Model (ARM). The ARM is the combination of the
Reference Model and the Reference Architecture, the set of models, guidelines, best practices,
views and perspectives that can be used for building fully

interoperable concrete IoT architectures and systems. In this tree, we aim at selecting a minimal
set of interoperable technologies (the roots) and proposing the potentially necessary set of
enablers or building blocks (the trunk) that enable the creation of a maximal set of interoperable
IoT systems (the leaves).

IoT-A architectural reference model building blocks

Starting with existing architectures and solutions, generic baseline requirements can be
extracted and used as an input to the design. The IoT-A ARM consists of four parts:

The vision summarises the rationale for providing an architectural reference model for the IoT.
At the same time, it discusses underlying assumptions, such as motivations. It also discusses
how the architectural reference model can be used, the methodology applied to the architecture
modelling, and the business scenarios and stakeholders addressed.

Business scenarios defined as requirements by stakeholders are the drivers of the architecture
work. With the knowledge of businesses aspirations, a holistic view of IoT architectures can
be derived.

The IoT Reference Model provides the highest abstraction level for the definition of the IoT-
A Architectural Reference Model. It promotes a common understanding of the IoT domain.
The description of the IoT Reference Model includes a general discourse on the IoT domain,
an IoT Domain Model as a top-level description, an IoT Information Model explaining how
IoT information is going to be modelled, and an IoT Communication Model in order to
understand specifics about communication between many heterogeneous IoT devices and the
Internet as a whole.

The IoT Reference Architecture is the reference for building compliant IoT architectures. As
such, it provides views and perspectives on different architectural aspects that are of concern
to stakeholders of the IoT. The terms’ view and perspectives are used according to the general
literature and standards the creation of the IoT Reference Architecture focuses on abstract sets
of mechanisms rather than concrete application architectures. To organisations, an important
aspect is the compliance of their technologies with standards and best practices, so that
interoperability across organisations is ensured.

In an IoT system, data is generated by multiple kinds of devices, processed in different ways,
transmitted to different locations, and acted upon by applications. The proposed IoT reference
model is comprised of seven levels. Each level is defined with terminology that can be
standardized to create a globally accepted frame of reference.

 Simplifies: It helps break down complex systems so that each part is more
understandable. Clarifies: It provides additional information to precisely identify levels
of the IoT and to establish common terminology.

 Identifies: It identifies where specific types of processing is optimized across different
parts of the system.

 Standardizes: It provides a first step in enabling vendors to create IoT products that
work with each other.

 Organizes: It makes the IoT real and approachable, instead of simply conceptual.

IoT reference Model:

1. Physical Devices and Controllers:
The IoT Reference Model starts with Level 1: physical devices and controllers that
might control multiple devices. These are the “things” in the IoT, and they include a
wide range of endpoint devices that send and receive information. Today, the list of
devices is already extensive. It will become almost unlimited as more equipment is
added to the IoT over time. Devices are diverse, and there are no rules about size,
location, form factor, or origin. Some devices will be the size of a silicon chip. Some
will be as large as vehicles. The IoT must support the entire range. Dozens or hundreds
of equipment manufacturers will produce IoT devices. To simplify compatibility and
support manufacturability, the IoT Reference Model generally describes the level of
processing needed from Level 1 devices. Figure 2 describes basic capabilities for a
device

2. Connectivity:
Communications and connectivity are concentrated in one level—Level 2. The most
important function of Level 2 is reliable, timely information transmission. This includes
transmissions:
 Between devices (Level 1) and the network
 Across networks (east-west)
 Between the network (Level 2) and low-level information processing occurring

at Level 3
Traditional data communication networks have multiple functions, as evidenced by the
International Organization for Standardization (ISO) 7-layer reference model.
However, a complete IoT system contains many levels in addition to the
communications network. One objective of the IoT Reference Model is for
communications and processing to be executed by existing networks. The IoT
Reference Model does not require or indicate creation of a different network—it relies
on existing networks. However, some legacy devices aren’t IP-enabled, which will
require introducing communication gateways. Other devices will require proprietary
controllers to serve the communication function. However, over time, standardization
will increase. As Level 1 devices proliferate, the ways in which they interact with Level
2 connectivity equipment may change. Regardless of the details, Level 1 devices
communicate through the IoT system by interacting with Level 2 connectivity
equipment.

 Connectivity includes:
o Communicating with and between the Level devices
o Reliable delivery across the network(s)
o Implementation of various protocols
o Switching and routing
o Translation between protocols
o Security at the network level(Self Learning) Networking Analytics

3. Edge (Fog) Computing
The functions of Level 3 are driven by the need to convert network data flows into
information that is suitable for storage and higher-level processing at Level 4 (data
accumulation). This means that Level 3 activities focus on high-volume data analysis
and transformation. For example, a Level 1 sensor device might generate data samples
multiple times per second, 24 hours a day, 365 days a year. A basic tenet of the IoT
Reference Model is that the most intelligent system initiates information processing as
early and as close to the edge of the network as possible. This is sometimes referred to
as fog computing. Level 3 is where this occurs.
Given that data is usually submitted to the connectivity level (Level 2) networking
equipment by devices in small units, Level 3 processing is performed on a packet-by-
packet basis. This processing is limited, because there is only awareness of data units—

not “sessions” or “transactions.” Level 3 processing can encompass many examples,
such as
Evaluation: Evaluating data for criteria as to whether it should be processed at a higher
level

 Formatting: Reformatting data for consistent higher-level processing
 Expanding/decoding: Handling cryptic data with additional context (such as the

origin)
 Distillation/reduction: Reducing and/or summarizing data to minimize the

impact of data and traffic on the network and higher-level processing systems
 Assessment: Determining whether data represents a threshold or alert; this could

include redirecting data to additional destinations.

Include;

 Data filtering, clean up, aggregation
 Packet content inspection
 Combination of network and data level analytics
 Thresholding
 Event generation

Fig : Level 2 and 3 Connectivity and Data Element Analysis Example

4. Data Accumulation
Networking systems are built to reliably move data. The data is “in motion.” Prior to
Level 4, data is moving through the network at the rate and organization determined by
the devices generating the data. The model is event driven. As defined earlier, Level 1
devices do not include computing capabilities themselves. However, some
computational activities could occur at Level 2, such as protocol translation or
application of network security policy. Additional compute tasks can be performed at
Level 3, such as packet inspection. Driving computational tasks as close to the edge of
the IoT as possible, with heterogeneous systems distributed across multiple
management domains represents an example of fog computing. Fog computing and fog
services will be a distinguishing characteristic of the IoT. Most applications cannot, or
do not need to, process data at network wire speed. Applications typically assume that
data is “at rest”—or unchanging—in memory or on disk. At Level 4, Data
Accumulation, data in motion is converted to data at rest. Level 4 determines:

 If data is of interest to higher levels: If so, Level 4 processing is the first level
that is configured to serve the specific needs of a higher level.

 If data must be persisted: Should data be kept on disk in a non-volatile state or
accumulated in memory for short-term use?

 The type of storage needed: Does persistency require a file system, big data
system, or relational database?

 If data is organized properly: Is the data appropriately organized for the required
storage system?

 If data must be recombined or recomputed: Data might be combined,
recomputed, or aggregated with previously stored information, some of which
may have come from non-IoT sources.

As Level 4 captures data and puts it at rest, it is now usable by applications on a non-real-time
basis. Applications access the data when necessary. In short, Level 4 converts event-based data
to query-based processing. This is a crucial step in bridging the differences between the real-
time networking world and the non-real-time application world. Figure 6 summarizes the
activities that occur at Level 4.

5. Data Abstraction:
IoT systems will need to scale to a corporate—or even global—level and will require
multiple storage systems to accommodate IoT device data and data from traditional
enterprise ERP, HRMS, CRM, and other systems. The data abstraction functions of
Level 5 are focused on rendering data and its storage in ways that enable developing
simpler, performance-enhanced applications. With multiple devices generating data,
there are many reasons why this data may not land in the same data storage:
There might be too much data to put in one place.

 Moving data into a database might consume too much processing power, so that
retrieving it must be separated from the data generation process. This is done
today with online transaction processing (OLTP) databases and data
warehouses.

 Devices might be geographically separated, and processing is optimized locally.
 Levels 3 and 4 might separate “continuous streams of raw data” from “data that

represents an event.” Data storage for streaming data may be a big data system,
such as Hadoop. Storage for event data may be a relational database
management system (RDBMS) with faster query times.

 Different kinds of data processing might be required. For example, in-store
processing will focus on different things than across-all-stores summary
processing

For these reasons, the data abstraction level must process many different things. These
include:

 Reconciling multiple data formats from different sources
 Assuring consistent semantics of data across sources
 Confirming that data is complete to the higher-level application
 Consolidating data into one place (with ETL, ELT, or data replication) or providing

access to multiple data
 stores through data virtualization
 Protecting data with appropriate authentication and authorization
 Normalizing or de-normalizing and indexing data to provide fast application access

6. Application
Level 6 is the application level, where information interpretation occurs. Software at
this level interacts with Level 5 and data at rest, so it does not have to operate at network
speeds. The IoT Reference Model does not strictly define an application. Applications
vary based on vertical markets, the nature of device data, and business needs. For
example, some applications will focus on monitoring device data. Some will focus on
controlling devices. Some will combine device and non-device data. Monitoring and
control applications represent many different application models, programming
patterns, and software stacks, leading to discussions of operating systems, mobility,
application servers, hypervisors, multi-threading, multi-tenancy, etc. These topics are
beyond the scope of the IoT Reference Model discussion. Suffice it to say that
application complexity will vary widely.
Examples include:

 Mission-critical business applications, such as generalized ERP or specialized
industry solutions

 Mobile applications that handle simple interactions
 Business intelligence reports, where the application is the BI server
 Analytic applications that interpret data for business decisions
 System management/control center applications that control the IoT system

itself and don’t act on the data produced by it

If Levels 1-5 are architected properly, the amount of work required by Level 6 will be reduced.
If Level 6 is designed properly, users will be able to do their jobs better. Figure 8 depicts Level6

7. Collaboration and Processes
One of the main distinctions between the Internet of Things (IoT) and IoT is that IoT
includes people and processes. This difference becomes particularly clear at Level 7:
Collaboration and Processes. The IoT system, and the information it creates, is of little
value unless it yields action, which often requires people and processes. Applications
execute business logic to empower people. People use applications and associated data
for their specific needs. Often, multiple people use the same application for a range of
different purposes. So the objective is not the application—it is to empower people to
do their work better. Applications (Level 6) give business people the right data, at the
right time, so they can do the right thing.

But frequently, the action needed requires more than one person. People must be able
to communicate and collaborate, sometimes using the traditional Internet, to make the
IoT useful. Communication and collaboration often require multiple steps. And it
usually transcends multiple applications. This is why Level 7, as shown in Figure 9,
represents a higher level than a single application.

Security in the IoT:
Discussions of security for each level and for the movement of data between levels
could fill a multitude of papers. For the purpose of the IoT Reference Model, security
measures must:

 Secure each device or system
 Provide security for all processes at each level
 Secure movement and communication between each level, whether north- or

south-bound

As shown in Figure 10, security must pervade the entire mode

Protocols:
Internet protocol (IP) is a set of rules that dictates how data gets sent to the internet. IoT
protocols ensure that information from one device or sensor gets read and understood by
another device, a gateway, a service. Protocols they are :

1. 6LowPAN
2. RPL
3. CoAP
4. MQTT

6LoWPAN:(Internet Protocol version 6 (IPv6) over low-power wireless
networks):

While the Internet Protocol is key for a successful Internet of Things, constrained nodes and
constrained networks mandate optimization at various layers and on multiple protocols of the
IP architecture. Some optimizations are already available from the market or under
development by the IETF. Figure below highlights the TCP/IP layers where optimization is
applied.

Figure : Optimizing IP for IoT Using an Adaptation Layer

In the IP architecture, the transport of IP packets over any given Layer 1 (PHY) and Layer 2
(MAC) protocol must be defined and documented. The model for packaging IP into lower-
layer protocols is often referred to as an adaptation layer.

Unless the technology is proprietary, IP adaptation layers are typically defined by an IETF
working group and released as a Request for Comments (RFC). An RFC is a publication from
the IETF that officially documents Internet standards, specifications, protocols, procedures,
and events. For example, RFC 864 describes how an IPv4 packet gets encapsulated over an
Ethernet frame, and RFC 2464 describes how the same function is performed for an IPv6
packet.

IoT-related protocols follow a similar process. The main difference is that an adaptation layer
designed for IoT may include some optimizations to deal with constrained nodes and networks.
The main examples of adaptation layers optimized for constrained nodes or “things” are the
ones under the 6LoWPAN working group and its successor, the 6Lo working group.

The initial focus of the 6LoWPAN working group was to optimize the transmission of IPv6
packets over constrained networks such as IEEE 802.15.4. Figure below shows an example of

an IoT protocol stack using the 6LoWPAN adaptation layer beside the well-known IP protocol
stack for reference.

Fig: Comparison of an IoT Protocol Stack Utilizing 6LoWPAN and an IP Protocol
Stack

The 6LoWPAN working group published several RFCs, but RFC 4994 is foundational because
it defines frame headers for the capabilities of header compression, fragmentation, and mesh
addressing. These headers can be stacked in the adaptation layer to keep these concepts separate
while enforcing a structured method for expressing each capability. Depending on the
implementation, all, none, or any combination of these capabilities and their corresponding
headers can be enabled. Figure below shows some examples of typical 6LoWPAN header
stacks.

Figure :6LoWPAN Header Stack

Header Compression

IPv6 header compression for 6LoWPAN was defined initially in RFC 4944 and subsequently
updated by RFC 6282. This capability shrinks the size of IPv6’s 40-byte headers and User
Datagram Protocol’s (UDP’s) 8-byte headers down as low as 6 bytes combined in some cases.
Note that header compression for 6LoWPAN is only defined for an IPv6 header and not IPv4.

The 6LoWPAN protocol does not support IPv4, and, in fact, there is no standardized IPv4
adaptation layer for IEEE 802.15.4. 6LoWPAN header compression is stateless, and
conceptually it is not too complicated. However, a number of factors affect the amount of
compression, such as implementation of RFC 4944 versus RFC 6922, whether UDP is
included, and various IPv6 addressing scenarios.

At a high level, 6LoWPAN works by taking advantage of shared information known by all
nodes from their participation in the local network. In addition, it omits some standard header

fields by assuming commonly used values. Figure below highlights an example that shows the
amount of reduction that is possible with 6LoWPAN header compression.

Figure : 6LoWPAN Header Compression

At the top of Figure above, you see a 6LoWPAN frame without any header compression
enabled: The full 40- byte IPv6 header and 8-byte UDP header are visible. The 6LoWPAN
header is only a single byte in this case. Notice that uncompressed IPv6 and UDP headers leave
only 53 bytes of data payload out of the 127- byte maximum frame size in the case of IEEE
802.15.4.

The bottom half of Figure above shows a frame where header compression has been enabled
for a best-case scenario. The 6LoWPAN header increases to 2 bytes to accommodate the
compressed IPv6 header, and UDP has been reduced in half, to 4 bytes from 8. Most
importantly, the header compression has allowed the payload to more than double, from 53
bytes to 108 bytes, which is obviously much more efficient. Note that the 2-byte header
compression applies to intra-cell communications, while communications external to the cell
may require some field of the header to not be compressed.

Mesh Addressing

The purpose of the 6LoWPAN mesh addressing function is to forward packets over multiple
hops. Three fields are defined for this header: Hop Limit, Source Address, and Destination
Address. Analogous to the IPv6 hop limit field, the hop limit for mesh addressing also provides
an upper limit on how many times the frame can be forwarded. Each hop decrements this value
by 1 as it is forwarded. Once the value hits 0, it is dropped and no longer forwarded.

The Source Address and Destination Address fields for mesh addressing are IEEE 802.15.4
addresses indicating the endpoints of an IP hop. Figure below details the 6LoWPAN mesh
addressing header fields.

Note that the mesh addressing header is used in a single IP subnet and is a Layer 2 type of
routing known as mesh-under. RFC 4944 only provisions the function in this case as the
definition of Layer 2 mesh routing specifications was outside the scope of the 6LoWPAN
working group, and the IETF doesn’t define “Layer 2 routing.” An implementation performing
Layer 3 IP routing does not need to implement a mesh addressing header unless required by a
given technology profile.

IoT Application Layer Protocols (COAP ANS MQTT)

When considering constrained networks and/or a large-scale deployment of constrained nodes,
verbose web-based and data model protocols, may be too heavy for IoT applications. To
address this problem, the IoT industry is working on new lightweight protocols that are better
suited to large numbers of constrained nodes and networks. Two of the most popular protocols
are CoAP and MQTT. Figure below highlights their position in a common IoT protocol stack.

1. CoAP (Constrained Application Protocol (CoAP)):
Constrained Application Protocol (CoAP) resulted from the IETF Constrained RESTful
Environments (CoRE) working group’s efforts to develop a generic framework for
resource-oriented applications targeting constrained nodes and networks. The CoAP
framework defines simple and flexible ways to manipulate sensors and actuators for
data or device management.

The CoAP messaging model is primarily designed to facilitate the exchange of
messages over UDP between endpoints, including the secure transport protocol
Datagram Transport Layer Security (DTLS).

From a formatting perspective, a CoAP message is composed of a short fixed-
length Header field (4 bytes), a variable-length but mandatory Token field (0–8 bytes),
Options fields if necessary, and the Payload field. Figure below details the CoAP
message format, which delivers low overhead while decreasing parsing complexity.

CoAP Message Format

The CoAP message format is relatively simple and flexible. It allows CoAP to
deliver low overhead, which is critical for constrained networks, while also being easy
to parse and process for constrained devices.

CoAP Message Fields

 Ver: It is a 2 bit unsigned integer indicating the version
 T: it is a 2 bit unsigned integer indicating the message type: 0 confirmable, 1

non-confirmable
 TKL: Token Length is the token 4 bit length
 Code: It is the code response (8 bit length)
 Message ID: It is the message ID expressed with 16 bit
 Token :With a length specified by TKL, correlates request and responses
 Option : specifies the option number, length and option value.
 Payload :carries the COAP application data.

CoAP can run over IPv4 or IPv6. However, it is recommended that the message fit within a
single IP packet and UDP payload to avoid fragmentation. For IPv6, with the default MTU size
being 1280 bytes and allowing for no fragmentation across nodes, the maximum CoAP
message size could be up to 1152 bytes, including 1024 bytes for the payload. In the

case of IPv4, as IP fragmentation may exist across the network, implementations should limit
themselves to more conservative values and set the IPv4 Don’t Fragment (DF) bit.

CoAP communications across an IoT infrastructure can take various paths. Connections can be
between devices located on the same or different constrained networks or between devices and
generic Internet or cloud servers, all operating over IP. Proxy mechanisms are also defined,
and RFC 7252 details a basic HTTP mapping for CoAP. As both HTTP and CoAP are IP-based
protocols, the proxy function can be located practically anywhere in the network, not
necessarily at the border between constrained and non-constrained networks.

Just like HTTP, CoAP is based on the REST architecture, but with a “thing” acting as both the
client and the server. Through the exchange of asynchronous messages, a client requests an
action via a method code on a server resource. A uniform resource identifier (URI) localized
on the server identifies this resource. The server responds with a response code that may include
a resource representation. The CoAP request/response semantics include the methods GET,
POST, PUT, and DELETE.

Message Queuing Telemetry Transport (MQTT):

At the end of the 1990s, engineers from IBM and Arcom (acquired in 2006 by Eurotech) were
looking for a reliable, lightweight, and cost-effective protocol to monitor and control a large
number of sensors and their data from a central server location, as typically used by the oil and
gas industries. Their research resulted in the development and implementation of the Message
Queuing Telemetry Transport (MQTT) protocol that is now standardized by the Organization
for the Advancement of Structured Information Standards (OASIS).

The selection of a client/server and publish/subscribe framework based on the TCP/IP
architecture, as shown in Figure below.

An MQTT client can act as a publisher to send data (or resource information) to an MQTT
server acting as an MQTT message broker. In the example illustrated in Figure 2.22, the MQTT
client on the left side is a temperature (Temp) and relative humidity (RH) sensor that publishes
its Temp/RH data. The MQTT server (or message broker) accepts the network connection
along with application messages, such as Temp/RH data, from the publishers. It also handles
the subscription and un-subscription process and pushes the application data to MQTT clients
acting as subscribers.

The application on the right side of Figure above is an MQTT client that is a subscriber to the
Temp/RH data being generated by the publisher or sensor on the left. This model, where
subscribers express a desire to receive information from publishers, is well known. A great
example is the collaboration and social networking application Twitter.

With MQTT, clients can subscribe to all data (using a wildcard character) or specific data from
the information tree of a publisher. In addition, the presence of a message broker in MQTT
decouples the data transmission between clients acting as publishers and subscribers. In fact,
publishers and subscribers do not even know (or need to know) about each other. A benefit of
having this decoupling is that the MQTT message broker ensures that information can be
buffered and cached in case of network failures. This also means that publishers and subscribers
do not have to be online at the same time. MQTT control packets run over a TCP transport

using port 1883. TCP ensures an ordered, lossless stream of bytes between the MQTT client
and the MQTT server. Optionally, MQTT can be secured using TLS on port 8883, and
WebSocket (defined in RFC 6455) can also be used.

MQTT is a lightweight protocol because each control packet consists of a 2-byte fixed header
with optional variable header fields and optional payload. You should note that a control packet
can contain a payload up to 256 MB. Figure 2.23 provides an overview of the MQTT message
format.

MQTT Message Format

Compared to the CoAP message format, MQTT contains a smaller header of 2 bytes compared
to 4 bytes for CoAP. The first MQTT field in the header is Message Type, which identifies the
kind of MQTT packet within a message. Fourteen different types of control packets are
specified in MQTT version 3.1.1. Each of them has a unique value that is coded into the
Message Type field. Note that values 0 and 15 are reserved. MQTT message types are
summarized in Table 2.5.

The next field in the MQTT header is DUP (Duplication Flag). This flag, when set, allows the
client to notate that the packet has been sent previously, but an acknowledgement was not
received. The QoS header field allows for the selection of three different QoS levels. The next
field is the Retain flag. Only found in a PUBLISH message, the Retain flag notifies the server
to hold onto the message data. This allows new subscribers to instantly receive the last known
value without having to wait for the next update from the publisher.

The last mandatory field in the MQTT message header is Remaining Length. This field
specifies the number of bytes in the MQTT packet following this field.

MQTT sessions between each client and server consist of four phases: session establishment,
authentication, data exchange, and session termination. Each client connecting to a server has
a unique client ID, which allows the identification of the MQTT session between both parties.
When the server is delivering an application message to more than one client, each client is
treated independently.

Subscriptions to resources generate SUBSCRIBE/SUBACK control packets, while un-
subscription is performed through the exchange of UNSUBSCRIBE/UNSUBACK control
packets. Graceful termination of a connection is done through a DISCONNECT control packet,
which also offers the capability for a client to reconnect by re-sending its client ID to resume
the operations.

A message broker uses a topic string or topic name to filter messages for its subscribers. When
subscribing to a resource, the subscriber indicates the one or more topic levels that are used to
structure the topic name. The forward slash (/) in an MQTT topic name is used to separate each
level within the topic tree and provide a hierarchical structure to the topic names.

Comparison of CoAP and MQTT

RPL:(RPL (IPv6 Routing protocol):

RPL stands for Routing Protocol for Low Power and Lossy Networks for heterogeneous traffic
networks. It is a routing protocol for Wireless Networks. This protocol is based on the same
standard as by Zigbee and 6 Lowpan is IEEE 802.15.4 It holds both many-to-one and one-to-
one communication. It is a Distance Vector Routing Protocol that creates a tree-like routing
topology called the Destination Oriented Directed Acyclic Graph (DODAG), rooted towards
one or more nodes called the root node or sink node.

The Directed Acyclic Graphs (DAGs) are created based on user-specified specific Objective
Function (OF). The OF defines the method to find the best-optimized route among the number
of sensor devices.

The IETF chartered the ROLL (Routing Over Low power and Lossy networks) working group
to evaluate all three routing protocols and determine the needs and requirements for developing
a routing solution for IP smart objects. After the study of various use cases and a survey of
existing protocols, the consensus was that a new routing protocol should be developed for IP
smart objects, given the characteristics and requirements of the constrained network. This new
Distance Vector Routing Protocol was named the IPv6 Routing Protocol for Low power and
Lossy networks(RPL). The RPL specification was published as RFC 6550 by the ROLL
working group.

In an RPL Network, each node acts as a router and becomes part of a mesh network. Routing
is performed at the IP Layer. Each node examines every received IPv6 packet and determines
the next-hop destination based on the information contained in the IPv6 header. No information
from the MAC layer header is needed to perform the next determination.

Modes of RPL:

This protocol defines two modes:

Storing mode: All modes contain the entire routing table of the RPL domain. Every node
knows how to reach every other node directly.

Non-Storing mode: Only the border router(s) of the RPL domain contain(s) the full routing
table. All other nodes in the domain maintain their list of parents only and use this as a list of
default routes towards the border router. The abbreviated routing table saves memory space
and CPU. When communicating in non-storing mode, a node always forwards its packet to the
border router, which knows how to ultimately reach the final destination.

RPL is based on the concept of a Directed Acyclic Graph (DAG). A DAG is Directed Graph
where no cycle exists. This means that from any vertex or point in the graph, we cannot follow
an edge or a line back to this same point. All of the edges are arranged in a path oriented toward
and terminating at one or more root nodes.

A basic RPL process involves building a Destination Oriented Directed Acyclic Graph
(DODAG). A DODAG is a DAG rooted in one destination. In RPL this destination occurs at a
border router known as the DODAG root. In a DODAG, three parents maximum are
maintained by each node that provides a path to the root. Typically one of these parents is the
preferred parent, which means it is the preferred next hop for upward roots towards the root.
The routing graph created by the set of DODAG parents across all nodes defines the full set of
upwards roots. RPL protocol information should ensure that routes are loop-free by disallowing
nodes from selected DODAG parents positioned further away from a border router.

Implementation of RPL Protocol:

The RPL protocol is implemented using the Contiki Operating system. This Operating System
majorly focuses on IoT devices, more specifically Low Power Wireless IoT devices. It is an
Open source Model and was first bought into the picture by Adam Dunkel’s.

The RPL protocol mostly occurs in wireless sensors and networks. Other similar Operating
Systems include T-Kernel, EyeOS, LiteOS, etc.

IOT FRAMEWORK-THING SPEAK:

The Internet of Things(IoT) is a system of ‘connected things’. The things generally comprise
of an embedded operating system and an ability to communicate with the internet or with the
neighbouring things. One of the key elements of a generic IoT system that bridges the various
‘things’ is an IoT service. An interesting implication from the ‘things’ comprising the IoT
systems is that the things by themselves cannot do anything. At a bare minimum, they should
have an ability to connect to other ‘things’. But the real power of IoT is harnessed when the
things connect to a ‘service’ either directly or via other ‘things’. In such systems, the service
plays the role of an invisible manager by providing capabilities ranging from simple data
collection and monitoring to complex data analytics. The below diagram illustrates where an
IoT service fits in an IoT ecosystem:

UNIT -IV
Device Discovery and Cloud Service for IoT

Device-management Gateway:

Device Management (DM) means provisioning for the device ID or address which is distinct
from other resources, device activating, configuring (managing device parameters and
settings), registering, deregistering, attaching and detaching. Device management also means
accepting subscription for its resources. Device fault management means course of actions and
guidelines to be followed in case if a fault
develops in the device.
Open Mobile Alliance (OMA)-DM and several standards are used for device management.
OMA-DM model suggests the use of a DM server which interacts with devices through a
gateway in case of IoT/M2M applications. A DM server is a server for assigning the device ID
or address, activating, configuring (managing device parameters and settings), subscribing to
device services or opting out of device services and configuring device modes. A device instead
of a DM server, communicates to a gateway in case of low-power loss environment.
Gateway functions for device management are:

 Does forwarding function when the DM server and device can interact without
reformatting or structuring

 Does protocol conversion when the device and DM server use distinct protocols
 Does proxy function in case an intermediate pre-fetch is required in a lossy environment

or network environment needs.
 Data communication between personal/local area network of devices and a gateway for

communicating via Internet.
 Gateway enables data enrichment and consolidation and device management.
 Data management functions at the gateway are transcoding, data privacy, data security,

data enrichment, data consolidation, transformation and device management.
 Transcoding means adaptations, conversions, changes of protocol or format using

software which renders the web response/messages in formats/representations as
required and acceptable at the IoT device and rendering requests for messages in
formats/representations as required and acceptable at the server.

 Data acquires and transfers to other end at scheduled intervals, on an event, or on
polling.

 Data aggregation, compaction and fusion save energy during data dissemination.
 Data destinations may use the 48-bit MAC address, 32-bit IPv4 address, 48-bit IPv6

address or port number during communication at the data-link or network layers.
 Each device and application has an ID or address of communication source and each

destination has an ID or address. Communication between the end points and between
the layers is secure when using the authentication and authorisation processes.

 Device management functions are the device ID or address, activation, configuring
(managing device parameters and settings), registering, deregistering, attaching,
detaching and fault management.

 Gateway functions for device management are—forwarding function between DM
server and device; protocol conversion when device and DM server use distinct
protocols and proxy function.

 Communication gateway enables protocol conversion between two ends.

Fig: Oracle’s IoT architecture (Device identity management means identifying a device,
registering a device for actions after identifying, de-registering the device, assigning unique
identity to the device. Device access management means enabling, disabling the device access,
authenticating a device for access, authorizing a device for access to a subsystem. Chapter 2
will explain these in greater detail.)
An architecture has the following features:

 The architecture serves as a reference in applications of IoT in services and business
processes.

 A set of sensors which are smart, capture the data, perform necessary data element
analysis and transformation as per device application framework and connect directly
to a communication manager.

 A set of sensor circuits is connected to a gateway possessing separate data capturing,
gathering, computing and communication capabilities. The gateway receives the data
in one form at one end and sends it in another form to the other end.

 The communication-management subsystem consists of protocol handlers, message
routers and message cache.

 This management subsystem has functionalities for device identity database, device
identity management and access management.

 Data routes from the gateway through the Internet and data centre to the application
server or enterprise server which acquires that data.

 Organisation and analysis subsystems enable the services, business processes,
enterprise integration and complex processes

REGISTERING A DEVICE:
Device management functions are assigning each device ID or address, device activation,
configuring (managing device parameters and settings), registering, deregistering, attaching,
detaching, subscription and fault management.
 Go to the Registries page in Google Cloud console.
 At the top of the page, click Create a registry.
 Enter a Registry ID and select a cloud region. For information on registry naming and

size requirements, see Permitted characters and size requirements.
 Select the Protocols that devices in this registry will use to connect to Cloud IoT Core:

MQTT, HTTP, or both.
 Select a Default telemetry topic or create a new one.

The default topic is used for published telemetry events that don't have a subfolder or
if the subfolder used doesn't have a matching Cloud Pub/Sub topic.

 (Optional) If you want to publish separate streams of data from a device, add more
telemetry topics.
Each topic maps to a subfolder specified in either the MQTT topic path or the HTTP
request when the data is published.
To create additional telemetry topics:

a. Click Add more telemetry topics, then click Add topic and subfolder.

b. Select a Pub/Sub topic or create a new one.

c. Enter a descriptive subfolder name.
For information on subfolder naming and size requirements, see Permitted characters
and size requirements.

 (Optional) Select a Device state topic or create a new one. This topic can be the same
as a telemetry topic, or can be used only for state data.
State data is published to Cloud Pub/Sub on a best-effort basis: if publication to the
topic fails, it will not be retried. If no topic is defined, device state updates are still
persisted internally by Cloud IoT Core, but only the last 10 states are retained.
For more information, see Getting device state.

 Click Create to continue.

Getting device details:

1. Go to the Registries page in Google Cloud console.
2. Click the ID of the registry for the device.
3. In the menu on the left, click Devices.
4. Click the ID of the device to go to the Device details page. This page summarizes recent

device activity, including the last time a message was published and the time of the
most recent error. This page also shows the device numeric ID.

5. Click the Configuration & state history tab to see recent configuration versions and
update times for the device.

Deregistering a device:

1. Go to the Registries page in Google Cloud console.
2. Click the ID of the registry for the device.
3. In the menu on the left, click Devices.
4. Select each device you want to delete, then click Delete.
5. Confirm you want to delete the selected devices, then click Delete.

Cloud Storage models and communication APIs:
In truth, cloud computing and IoT are tightly coupled. The growth of IoT and the rapid

development of associated technologies create a widespread connection of ―things. This has
lead to the production of large amounts of data, which needs to be stored, processed and
accessed. Cloud computing as a paradigm for big data storage and analytics. While IoT is
exciting on its own, the real innovation will come from combining it with cloud computing.
The combination of cloud computing and IoT will enable new monitoring services and
powerful processing of sensory data streams. For example, sensory data can be uploaded and
stored with cloud computing, later to be used intelligently for smart monitoring and actuation
with other smart devices. Ultimately, the goal is to be able to transform data to insight and drive
productive, cost-effective action from those insights. The cloud effectively serves as the brain
to improved decision-making and optimized internet-based interactions. However, when IoT
meets cloud, new challenges arise. There is an urgent need for novel network architectures that
seamlessly integrate them. The critical concerns during integration are quality of service (QoS)
and quality of experience (QoE), as well as data security, privacy and reliability. The virtual
infrastructure for practical mobile computing and interfacing includes integrating applications,
storage devices, monitoring devices, visualization platforms, analytics tools and client delivery.
Cloud computing offers a practical utility-based model that will enable businesses and users to
access applications on demand anytime and from anywhere.

Characteristics
First, the cloud computing of IoT is an on-demand self service, meaning it‘s there when you
need it. Cloud computing is a web-based service that can be accessed without any special
assistance or permission from other people; however, you need at minimum some sort of
internet access.

Second, the cloud computing of IoT involves broad network access, meaning it offers several
connectivity options. Cloud computing resources can be accessed through a wide variety of
internet-connected devices such as tablets, mobile devices and laptops. This level of
convenience means users can access those resources in a wide variety of manners, even from
older devices. Again, though, this emphasizes the need for network access points.
Third, cloud computing allows for resource pooling, meaning information can be shared with
those who know where and how (have permission) to access the resource, anytime and
anywhere. This lends to broader collaboration or closer connections with other users. From an
IoT perspective, just as we can easily assign an IP address to every "thing" on theplanet, we
can share the "address" of the cloud-based protected and stored information with others and
pool resources.
Fourth, cloud computing features rapid elasticity, meaning users can readily scale the service
to their needs. You can easily and quickly edit your software setup, add or remove users,
increase storage space, etc. This characteristic will further empower IoT by providing elastic
computing power, storage and networking.
Finally, the cloud computing of IoT is a measured service, meaning you get what you pay for.
Providers can easily measure usage statistics such as storage, processing, bandwidth and active
user accounts inside your cloud instance. This pay per use (PPU) model means your costs scale
with your usage. In IoT terms, it's comparable to the ever-growing network of physical objects
that feature an IP address for internet connectivity, and the communication that occurs between
these objects and other internet-enabled devices and systems; just like your cloud service, the
service rates for that IoT infrastructure may also scale with use.
Service and Deployment
Service models
Service delivery in cloud computing comprises three different service models:

a. Software as a service (SaaS),
b. Platform as a service (PaaS),
c. Infrastructure as a service (IaaS).

Software as a service (SaaS) provides applications to the cloud‘s end user that are mainly
accessed via a web portal or service-oriented architecture-based web service technology. These
services can be seen as ASP (application service provider) on the application layer. Usually, a
specific company that uses the service would run, maintain and give support so that it can be
reliably used over a long period of time.
Platform as a service (PaaS) consists of the actual environment for developing and
provisioning cloud applications. The main users of this layer are developers that want to
develop and run a cloud application for a particular purpose. A proprietary language was
supported and provided by the platform (a set of important basic services) to ease
communication, monitoring, billing and other aspects such as startup as well as to ensure an
application‘s scalability and flexibility. Limitations regarding the programming languages
supported, the programming model, the ability to access resources, and the long-term
persistence are possibledisadvantages.
Infrastructure as a service (IaaS) provides the necessary hardware and software upon which
a customer can build a customized computing environment. Computing resources, data storage
resources and the communications channel are linked together with these essential IT resources
to ensure the stability of applications being used on the cloud. Those stack models can be
referred to as the medium for IoT, being used and conveyed by the users in different methods
for the greatest chance of interoperability. This includes connecting cars, wearables, TVs,
smartphones, fitness equipment, robots, ATMs, and vending machines as well as the vertical
applications, security and professional services, and analytics platforms that come withthem.
Deployment

Deployment models
Deployment in cloud computing comprises four deployment models: private cloud, public
cloud, community cloud and hybrid cloud.
A private cloud has infrastructure that‘s provisioned for exclusive use by a single organization
comprising multiple consumers such as business units. It may be owned, managed and operated
by the organization, a third party or some combination of them, and it may exist on or off
premises.
A public cloud is created for open use by the general public. Public cloud sells services to
anyone on the internet. (Amazon Web Services is an example of a large public cloud provider.)
This model is suitable for business requirements that require management of load spikes and
the applications used by the business, activities that would otherwise require greater investment
in infrastructure for the business. As such, public cloud also helps reduce capital expenditure
and bring down operational ITcosts.
A community cloud is managed and used by a particular group or organizations that have
shared interests, such as specific security requirements or a common mission.
Finally, a hybrid cloud combines two or more distinct private, community or public cloud
infrastructures such that they remain unique entities but are bound together by standardized or
proprietary technology that enables data and application portability. Normally, information
that‘s not critical is outsourced to the public cloud, while business-critical services and data are
kept within the control of the organization.
CLOUD STORAGE API:

A cloud storage API is an application program interface that connects a locally-based
application to a cloud-based storage system, so that a user can send data to it and access and
work with data stored in it. To the application, the cloud storage system is just another target
device, like tape or disk-based storage. An application program interface (API) is code that
allows two software programs to communicate with each other. The API defines the correct
way for a developer to write a program that requests services from an operating system (OS)
or other application. APIs are implemented by function calls composed of verbs and nouns.
The required syntax is described in the documentation of the application being called.
How APIs work
APIs are made up of two related elements. The first is a specification that describes how
information is exchanged between programs, done in the form of a request for processing and
a return of the necessary data. The second is a software interface written to that specification
and published in some way for use.The software that wants to access the features and
capabilities of the API is said to call it, and the software that creates the API is said to publish
it.
Why APIs are important for business
The web, software designed exchange information via the internet and cloud computing have
all combined to increase the interest in APIs in general and services in particular. Software that
was once custom-developed for a specific purpose is now often written referencing APIs that
provide broadly useful features, reducing development time and cost and mitigating the risk of
errors.APIs have steadily improved software quality over the last decade, and the growing
number of web services exposed through APIs by cloud providers is also encouraging the
creation of cloud-specific applications, internet of things (IoT) efforts and apps to support
mobile devices and users.
Three basic types of APIs
APIs take three basic forms: local, web-like and program-like:

1. Local APIs are the original form, from which the name came. They offer OS or
middleware services to application programs. Microsoft's .NET APIs, the TAPI

(Telephony API) for voice applications, and database access APIs are examples of the
local API form.

2. Web APIs are designed to represent widely used resources like HTML pages and are
accessed using a simple HTTP protocol. Any web URL activates a web API. Web APIs
are often called REST (representational state transfer) or RESTful because the publisher
of REST interfaces doesn't save any data internally between requests. As such, requests
from many users can be intermingled as they would be on the internet.

3. Program APIs are based on remote procedure call (RPC) technology that makes a
remote program component appear to be local to the rest of the software. Service
oriented architecture (SOA) APIs, such as Microsoft's WS-series of APIs, are program
APIs.

Web server for IoT:
Any computer that can implement http or https is able to play the role of a web server. Http is
a protocol, a way of communication which supplies web pages. It is pretty widely used and
easy to implement. Through http you can transfer html and create simple user interfaces, it can
implement Java Script and make more complicated web pages and it is available in most of the
browsers. One of the great qualities of this protocol is that it replaced complicated and heavy
displays with user friendly web pages.

How does it work? The browser sends a request to the server who searches the demanded page
and returns it to the browser for the user. The request will consist of information about the kind
of browser that is used, about the computer or about the document requested. It will have a
method, a URL, a query string and the upload body in case you want data to be sent to the
server.

The response will include the status, which tells the browser if the page was found or not (the
errors among the 400s are about a not found page, 300 are redirections and 200s are
confirmations of the page being found).

Https has two important security roles:

 It encrypts the data. The request and the response will be both encrypted on sending
and decrypted when read.

 The server is always asked for a certificate of authenticity before it is asked for a
page. This prevents against stolen data through false web pages.

What does a query consist of? It will always look like this: http://address: [port]URL? Query
string. The port can be absent, in which case it will be 80 for http and 443 for https. It has to be
specified if it is not one the two. Concerning the URL, when it is not written, the default will
be. The available methods in http are: get, post, put and delete. The main ones being the first
two.

 Get method needs no upload body. It will only ask for data from the server and send
only the headers, the address, the URL.

 Post sends important data to the server, which will be uploaded. Post has the role of
modifying data on the server. The response of both these methods is the page and any
additional information that was requested.

 Put is similar to post, only that in the semantic way, this method only creates an object
on the server.

 Delete also plays a semantic part. It needs no upload body and it deletes objects on the
server. The same action can be performed however using get.

On one server there can be more than one website, which means that, if the host is not specified
in the request, the response may not be the one the browser expects.
Also, the response may have more than text. Any additional feature: images, JavaScript objects
and so on will need a new request, so the process will be slowed down.

Webservers on gadgets using Wyliodrin:
The boards are non-powerful computers. With wyliodrin there is no need to install any software
or make any configuration on the boards to run a webserver on them.

To create a webserver in wyliodrin you will need a web node. The simplest way to use a web
page in this particular way is to send static files. In the project files, create a new folder static.
Everything inside it will be sent back to the browser by the server, regardless of the fact that
they are html, Java Script or CSS files. Images can be added as well, but they will definitely
make the process slower. There are other ways of adding an image. For example, by using a
storage system and including the images from there. This method will solve speed and memory
issues.

The web node: The route option is actually the URL. The webserver will be active when it
stumbles upon the specified route. After words you choose the method, and write the port to
setup the server. This port will only be used once, in the beginning.

The payload goes either in the query string for the get method or in the upload data for post.
The message is built on this payload, on two mandatory variables: res which stands for the

response and req which is the request. Without the last two, the server won't be able to provide
a response.

The web response node: The message received by this node comes from one web node. For a
web response the simple way is to make a redirection. Which means, in the redirect field, you
can write the path to one of the static files and the browser will be sent to this page. On top of
these, you will need the board's IP address which might not be public unless it is in the same
network with the web server.

As a solution, IOT servers have a public adrdress. The port for these servers can be either 80
for http or 443 for https. The user accesses the public page, through the IOT server which is
connected to Wyliodrin as well as the board. Now the problem with the board and the web
being in the same network is solved as both can communicate with Wyliodrin.

Web templates: Just as for the static files, you will need a templates folder. This time, when
you use the node, you don't need the whole path. You can only write the name of the file in the
templates folder. What does the node do? It processes the response, meaning it loads the values
plus the payload in it and sends it back to the browser. The values need to be in between two
sets of curly brackets {{}}. Note that the values won't update unless the page is reloaded.

Web services:

A long time ago, the web services were more complicated. Now the application only requests
the web server for the data, and it is the browser's job to rearrange it so that it is in the right
format for the application.

How to implement it into a Wyliodrin application? Using a simple web response and web server
node, you send a static page to the user and each time you make a query, instead of a template,
you use a web response node and send the payload to the browser, which can be a number, an
object or anything else.

JQuery:

There is a library called JQuery, based on JavScript, thus available in any browser, which can
make function calls to the server.

Case study : You have the following situation: you change the payload into a variable which
stores values from a sensor. You want this variable to be shown in your web page. Practically,
when an API gets called, what you will do, will be to make a get request to the server using the
web address that you want with the URL /sensor . The web page will send values that you will
store in a variable in your html file.

Web sockets:

A web socket is based on the http or https protocol. It builds a connection between the browser
and the server, so that either one can send data. When the browser makes a request, the server
recognises the socket and doesn't close the connection. The two parties send the packages they
need to send. If the server does not know how to work with sockets, the socket io will go back
to querying.
AngularJS:
AngularJS is a library through which you can build browser applications. In the next example,
every web node will create a new socket and serve a static web page. If you include in the
response a variable, and this variable changes, wyliodrin controller will be notified every time

this kind of novelty appears and AngularJS will replace the old value of the variable with the
new one, creating a dynamic web page.

UNIT -V

UAV IoT
Introduction To Unmanned Aerial Vehicles/Drones:

An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft

without any human pilot, crew, or passengers on board. UAVs were originally developed

through the twentieth century for military missions too "dull, dirty or dangerous for humans,

and by the twenty-first, they had become essential assets to most militaries. As control

technologies improved and costs fell, their use expanded to many non-military applications.

These include aerial photography, precision agriculture, forest fire monitoring, river

monitoring, environmental monitoring, policing and surveillance, infrastructure inspections,

smuggling, product deliveries, entertainment, and drone racing.

 Any aircraft or flying machine operated without a human pilot such machines is called an

unmanned aerial vehicle (UAV). It can be guided autonomously or remotely by a human

operator using onboard computers and robots.

 During surveillance or military operation, UAVs can be a part of an unmanned aircraft

system (UAS), Drones are separately for air and water.

 Drones have become increasingly popular in recent years. They are used for a variety of

purposes, including photography, videography, surveying, inspection, and even delivery.

But have you ever wondered how drones work? In this blog post, we‟ll take a look at the

working principle of drones

 The basic components of a drone are the frame, motors, propellers, battery, flight

controller, and sensors. Let‟s take a closer look at each of these components.

 Frame

 Battery

 Flight controllers

 Sensors

 Motors and Propellers

Subjects for Drone or UAV:

Understanding and development of drones depend on many subjects. The design of drone for

a particular application comprises many factors like the aerodynamic shape of propellors,

strength and weight of drone parts, electric motor, electric speed controller, radio transmitter

or receiver, and software interface on mobile or computer for monitoring and data analysis.

Fluid Dynamics or Aerodynamics:

 Fluid dynamics plays an important role to decide the forces acting on the body of a

drone

 The shape, size, and speed of the propeller and drone depending on the

aerodynamics of propellers or blades

 Computational Fluid Dynamics (CFD) modelling helps for flow dynamics of

airflow over drones

 CFD modelling of turbo-machinery) is essential to decide the amount of thrust

generated by propellors

 Wind tunnel testing of the aerofoil blade of the drone is still important for testing

CFD results

Mechanical Design

 Rigid body dynamics to study the motion and forces acting on drones

 Strength of materials

 Low weight and rigid materials are selected for drone

Electronics and Electrical Components:

 Electric motor with and without brush is required to drive the propellors

 Electronic Speed Controller

 Flight controller unit and computer processors

Radio Communication: transmitter and receiver for radio signals

Battery: Low weight and high-power wattage battery is important

Software-based interface: data collection and analysis using mobile or computer

Drone Types:
A drone is an unmanned aerial vehicle (UAV) or unmanned aircraft system. It is essentially a

flying robot this is controlled remotely or can fly autonomously with software-controlled

flight plans embedded in its system that work in conjunction with sensors and a global

positioning system (GPS). Drones are of different types and sizes and are used for a variety

of purposes.

Types of Drones

Here‟s a rundown of the four main types of drones, their uses, their strengths and

weaknesses:

1. Multi-Rotor Drones

2. Fixed-Wing Drones

3. Single-Rotor Drones

4. Fixed-Wing Hybrid VTOL

Multi-Rotor Drones

Multi-rotor drones are the easiest and cheapest option for getting an „eye in the sky.‟ They

also offer greater control over position and framing, and hence they are perfect for aerial

photography and surveillance. They are called multi-rotor because they have more than one

motor, more commonly troopers (3 rotors), quadcopters (4 rotors), hex copters (6 rotors) and

octocopters (8 rotors), among others. By far, quadcopters are the most popular multi-rotor

drones.

Advantages:

 It provides better control of the aircraft during the flight.

 Due to its increased manoeuvrability, it can move up and down on the same vertical

line, back to front, side to side and rotate in its own axis.

 It has the ability to fly much more closely to structures and buildings.

 The ability to take multiple payloads per flight increases its operational efficiency

and reduces the time taken for inspections.

Disadvantages:

 Multi-rotor drones have limited endurance and speed, making them unsuitable for

large scale aerial mapping, long-endurance monitoring and long-distance inspection

such as pipelines, roads and power lines.

 They are fundamentally very inefficient and require a lot of energy just to fight

gravity and keep them in the air.

 With the current battery technology, they are limited to around 20-30 minutes when

carrying a lightweight camera payload. However, heavy-lift multi-rotors are

capable of carrying more weight, but in exchange for much shorter flight times.

 Due to the need for fast and high-precision throttle changes to keep them stabilised,

it isn‟t practical to use a gas engine to power multi-rotors, so they are restricted to

electric motors. So until a new power source comes along, we can only expect very

small gains in flight time.

Technical Uses:

 Visual inspections

 Thermal reports

 Photography & Videography

 3D scans

Fixed-Wing Drones:

A fixed-wing drone has one rigid wing that is designed to look and work like an aeroplane,

providing the lift rather than vertical lift rotors. Hence, this drone type only needs the energy

to move forward and not to hold itself in the air. This makes them energy-efficient.

Advantages:

 Fixed-wing drones cover longer distances, map much larger areas, and loiter for long

times monitoring their point of interest. The average flight time is a couple of hours.

But with a greater energy density of fuel (gas engine powered), many fixed-wing

UAVs can stay aloft for 16 hours or more.

 This drone type can fly at a high altitude, carry more weight and are more forgiving in

the air than other drone types.

Disadvantages:

 Fixed-wing drones can be expensive.

 Training is usually required to fly fixed-wing drones. The first time you launch a

fixed-wing drone, you need to be confident in your abilities to control through the

flight and back to a soft landing. A fixed-wing drone is always moving forward, and

they move a lot quicker than a multi-rotor, and hence you might not get a chance to

put it into a hover. In most cases, a launcher is needed to get a fixed-wing drone into

the air.

 With fixed-wing, the flight is just the beginning. The hundreds and thousands of

captured images have to be processed and stitched together into one big tiled image.

There is a lot more to be done after this, including performing data analysis, such as

the stockpile volume calculations, tree counts, overlaying other data onto the maps,

and so on.

Technical Uses:

 Aerial Mapping

 Drone Surveying – Forestry/Environmental Drone Surveys, Pipeline UAV Surveys,

UAV Coastal Surveys

 Agriculture

 Inspection

 Construction

 Security

Single-Rotor Drones:

Single-rotor drone types are strong and durable. They look similar to actual helicopters in

structure and design. A single-rotor has just one rotor, which is like one big spinning wing,

plus a tail rotor to control direction and stability.

Advantages:

 A single-rotor helicopter has the benefit of much greater efficiency over a multi-rotor,

which increases if the drone is gas-powered for even longer endurance.

 A single-rotor helicopter allows for very long blades, which are more like a spinning

wing than a propeller, giving great efficiency.

 If you need to hover with a heavy payload (e.g. an aerial LIDAR laser scanner) or

have a mixture of hovering with long endurance or fast forward flight, then a single-

rotor helicopter is really your best bet.

 They are built to be strong and durable.

Disadvantages:

 Single-rotor drone types are complex and expensive.

 They vibrate and aren‟t as stable or forgiving in the event of a bad landing.

 They also require a lot of maintenance and care due to their mechanical complexity.

 The long, heavy spinning blades of a single rotor can be dangerous.

Technical Uses:

 Aerial LIDAR laser scan

 Drone surveying

 Carrying heavy payloads

Fixed-Wing Hybrid VTOL

Hybrid VTOL drone types merge the benefits of fixed-wing and rotor-based designs. This

drone type has rotors attached to the fixed wings, allowing it to hover and take off and land

vertically. This new category of hybrids are only a few on the market, but as technology

advances, this option can be much more popular in the coming years. One example of fixed-

wing hybrid VTOL is Amazon‟s Prime Air delivery drone.

Advantages:

 The autopilot can do all the hard work of keeping the drone stable, leaving the human

pilot the easier task of guiding it around the sky.

 Hybrid VTOL drones offer you the best of both worlds – fixed-wing & rotor-based

designs.

 They are perfect at either hovering or forward flight.

Disadvantages:

 Only a handful of fixed-wing hybrid VTOLs are currently on the market

 The technology used in these drone types is still in the nascent stage.

Technical Uses:

 Drone Delivery

Other Significant Drone Types

Some of the popular drone types other than the ones mentioned above include:

1. Small-Drones
These drone types are used for recreational purposes; they cannot perform commercial
functions that other drone models carry out. Small drones are too light and lack the stability
required for accurately capturing images.

2. Micro-Drones
These are small drones, but they can still provide valuable intelligence because of their
micro cameras. The British military commonly uses this drone, and it’s called the Black
Hornet. Black Hornets can fly up to 25 minutes (single charge) and have a range of up to one
mile.

3. Tactical-Drones
These drones are large without being bulky. Equipped with GPS technology and infrared
cameras, they measure 4.5 feet and weigh 4.2 lbs. They are often used for surveillance work.

4. Reconnaissance Drones
These drones measure approximately 16 feet in length, over 2200 pounds, and hover for 52
hours at 35,000 feet. They can be launched from the ground and are known as High Altitude
Long Endurance drones (HALE) and Medium Altitude Long Endurance drones (MALE).

5. Large-Combat-Drones
These drone types are approximately 36 feet long and are usually used to fire laser-guided
bombs or air-to-surface missiles on targets. They have a range of over 1000 miles and can be
used for up to 14 hours at a stretch.

6. Non-Combat-Large-Drones
Although large, these drones are not for combat. They are more complex than Black Hornet
and are used for larger-scaler recon missions.

7. Target-and-Decoy-Drones
These types of drones are used for monitoring and striking targets. The look of the decoy
drone usually depends on the mission.

8. GPS-Drones
This drone type links to satellites via a GPS hook-up to map out the rest of their flight,
collecting data that can be extracted to make informed decisions.

9. Photography-Drones
Photography drones are outfitted with professional-grade cameras. 4K camera drones can
take high-resolution pictures. These drone types make use of automated flight mode and
precision stability to take pictures covering vast spaces.

Drones are a transformative technology. They have been and can be used in various areas

such as.

Applications Of Drone Technology

 Land mapping: The drone technology in the SVAMITVA scheme has helped about half a
million village residents to get their property cards by mapping out the areas.

 Emergency response: Drones are significant for the agencies such as the fire and emergency
services wherever human intervention is not safe. It can perfectly save human efforts during
disaster management.

 Distant and remote delivery purposes: Recently, the Ministry of Civil Aviation has approved
a project with the Telangana government for using drone technology to deliver vaccines in
remote areas.

 Agriculture: In the agriculture sector, micronutrients, and hazardous pesticides can be
spread with the help of drones. It can also be used for performing surveys for identifying the
challenges faced by the farmers.

 E- Commerce: Drones offer a perfect and cost-effective solution for delivery of products by
e-com facilitators.

 Monitoring: The railways are using drones for track monitoring. Telecom companies are
using drones for monitoring the tower.

 Security and defence: Drone system can be used as a symmetric weapon against terrorist
attacks. They can be integrated into the national airspace system.

UAV elements:

Frame:

 It should have sufficient strength to hold the propeller momentum and additional

weight for motors and cameras

 Sturdy and less aerodynamic resistance

Propellers:

 The speed and load lifting ability of a drone depends on shape, size, and number of

propellors

 The long propellors create huge thrust to carry heavy loads at a low speed (RPM)

and less sensitive to change the speed of rotation

 Short propellors carry fewer loads. They change rotation speeds quickly and require

a high speed for more thrust.

Motor:

 Both motors brushless and brushed type can be used for drones

 A brushed motor is less expensive and useful for small-sized drone

 Brushless type motors are powerful and energy very efficient. But they need

Electronic Speed Controller (ESC) to control their speed. These brushless motors

arewidely used for racing freestyle drones, traffic surveys and aerial photography

drones.

ESC (Electronic Speed Controller):

 ESC is used to connect the battery to the electric motor for the power supply

 It converts the signal from the flight controller to the revolution per minted (RPM)

of motor

 ESC is provided to each y motor of the drone

Flight Controller (FC)

 It is the computer processor which manages balance and telecommunication

controls using different transmitter

 Sensors are located in this unit for the accelerometer, barometer, magnetometer,

gyrometer and GPS

 The distance measurement can be carried out by an ultrasound sensor

Radio Transmitter sends the radio signal to ESC to pilot to control motor speed.

Radio Receiver: Received the signal from the pilot. This device is attached to the quadcopter

Battery: High-power capacity, Lithium Polymer (LiPo) is used for most drones. The battery

can have 3S (3 cells) or 4S (4 cells).

 When the pilot or autonomous system gives the drone a command, the flight

controller sends signals to the motors to spin the propellers

 The speed and direction of the motors and propellors are adjusted to achieve the

desired movement. The sensors provide data to the flight controller, which uses it to

stabilize the drone in the air and adjust its movement

 Drones can be controlled manually using a remote controller or programmed to fly

autonomously. Autonomous drones use sensors and pre-programmed instructions to

fly to a specific location, perform a task like taking photos or delivering a package,

and return to their starting point.

Sensors -arms:

Accelerometers

Accelerometers are used to determine position and orientation of the drone in flight.

Like your Nintendo Wii controller or your iPhone screen position, these small silicon-based

sensors play a key role in maintaining flight control. MEMS accelerometers sense movement

in several ways. One type of technology senses the micro movement of very small structures

embedded in a small integrated circuit. The movement of these small 'diving boards' changes

the amount of electrical current moving through the structure, indicating a change of position

relative to gravity.

Another technology used in accelerometers is thermal sensing, which offers several

distinct advantages. It does not have moving parts, but instead senses changes in the

movement of gas molecules passing over a small integrated circuit. Because of the sensitivity

of these sensors, they play a role in stabilizing on-board cameras that are vital for applications

like filmmaking.

By controlling up and down movement, as well as removing jitter and vibration,

filmmakers are able to capture extremely smooth looking video. Additionally, because these

sensors are more immune to vibrations than other technologies, thermal MEMS sensors are

perfect in drone applications to minimize problems from the increased vibration generated by

the movement of rotating propulsion fans and propellers.

Fig: Because they have no moving parts, accelerometers based on thermal sensing

technology offer much better stability and accuracy than mechanical based sensors.

Inertial Measurement Units

Inertial measurement units combined with GPS are critical for maintaining direction

and flight paths. As drones become more autonomous, these are essential to maintain

adherence to flight rules and air traffic control.

Inertial measurement units utilize multi-axis magnetometers that are in essence small,

accurate compasses. These sense changes in direction and feed data into a central processor,

which ultimately indicates direction, orientation, and speed.

Fig: The INS380SA module pictured here is a complete inertial navigation system

with a built-in 48-channel GPS receiver.

Tilt Sensors

Tilt sensors, combined with gyros and accelerometers, provide input to the flight-

control system in order to maintain level flight. This is extremely important for applications

where stability is paramount, from surveillance to delivery of fragile goods.

These types of sensors combine accelerometers with gyroscopes, allowing the

detection of small variations of movement. It is the gyroscope compensation that allows these

tilt sensors to be used in moving applications like motor vehicles or drones.

Fig :Incorporating both an accelerometer and a gyroscope, Tilt sensors help drones

maintain level flight.

Current Sensors

In drones, power consumption and use are important. Current sensors can be used to

monitor and optimize power drain, safe charging of internal batteries, and detect fault

conditions with motors or other areas of the system.

Current sensors work by measuring electrical current (bi-directional) and ideally

provide electrical isolation to reduce power loss and eliminate the opportunity for electrical

shock or damage to the user or systems. Sensors with fast response time and high accuracy

optimize battery life and performance of drones.

Magnetic Sensors

In drones, electronic compasses provide critical directional information to inertial

navigation and guidance systems. Anisotropic magneto resistive (AMR) permalloy

technology sensors, which have superior accuracy and response time characteristics while

consuming significantly less power than alternative technologies, are well-suited to drone

applications. Turnkey solutions provide drone manufacturers with quality data sensing in a

very rugged and compact package.

Engine Intake Flow Sensors

Flow sensors can be used to effectively monitor air flow into small gas engines used

to power some drone varieties. These help the engine CPU determine the proper fuel-to-air

ratio at a specified engine speed, which results in improved power and efficiency, and

reduced emissions.

Many gas engine mass-flow sensors employ a calorimetric principal utilizing a heated

element and at least one temperature sensor to quantify mass flow. MEMS thermal mass air

flow sensors also utilize the calorimetric principal, but in a micro scale, making it highly

suitable for applications where reduced weight is critical.

Motors and Electric Speed Controllers:
There are two types motors:

1. Brushed motor

2. Brushless motor

Brushed vs. brushless motor drones: What are the differences:

In the event that you have invested some effort and time looking for UAVs, you have,

without a doubt, run over the expressions “brushless” or “brushed” engines. What is the

distinction between the drones with these motors? Is it accurate to say that one is in a way

that is better than the other?

Brushed motor drones:

The flying robots with brushed motors are often considered conventional and classic. These

motors showed up in the market a very long while ago and have become the establishment of

standard engine innovation.

Similar to other motors, a brushless one boasts of two significant components: a stator

and a rotor. As the names infer, the stator is the fixed remaining part; meanwhile, the rotor is

the turning part of an engine.

When it comes to brushed motors, a stator fixed with a couple of opposing polarity

magnets encircles a rotor that is positioned centrally. The rotor‟s rotational motions are

actuated by the physical touching of its commutator‟s brushes with a power supply. The

power flow into the motor‟s rotor generates a magnetic field responding with the stator‟s

magnets.

It is worth noting that such a magnetic interaction, combined with the power flow

actuated by the brush contact with the power supply, brings about an eternal turn of the

motor‟s rotor. Expanding the power supply to the rotor has to do with how strong the

magnetic field becomes, thus accelerating the rotor‟s turn.

The way that the commutator‟s brushes have to contact the power supply is probably

the greatest drawback of UAVs with brushed engine innovation. As you can envision, the

commutator‟s fast turning creates a great deal of friction between its brushes and the power

supply. Such friction‟s aftermath is twice as numerous: in addition to the fact that it produces

a great deal of heat, it quickens the damage of the parts of a brushed engine in the course of

use.

You may not like that the friction brought about by steady contact implies the life

expectancy of your drone‟s brushed engines is restricted. Brushed ones will ask for a ton of

upkeep and should be taken the place of significantly earlier when compared to the brushless

ones. The brushes‟ steady contact with the power supply additionally makes the motors a lot

louder in comparison with the brushless option.

That is not all; another downside that numerous users neglect when they put brushless

and brushed motor drones in comparison is the brushed engine‟s inefficiency. In case you do

not know, the heat created in the motor because of constant contact implies that a ton of the

power given by the UAV battery is used for no purpose. As opposed to being transferred to

rotational motions in the drone‟s propellers, the energy rather gets dispersed as heat.

Notwith standing the numerous drawbacks of these engines, they are intensely utilized

owing to one significant explanation: the brushed motors are a lot less expensive. They are

still generally significant, particularly for low-cost undertakings.

In case you miss it, in the UAV world, brushed engines tend to be found in

inexpensive toy product units. All things considered; these flying robots are not intended to

stay in the air for more than a couple of minutes all at once. Thanks to brushed engines, UAV

producers have the choice to make the costs of their toy UAVs remain reasonable.

Brushless motor drones:

Brushless engines were first evolved about 60 years ago as a more proficient option in

contrast to brushed engines. The construction changes made for these motors were pretty

noteworthy. Rather than a rotor positioned centrally, brushless ones come with a centrally

located stator encircled by a rotor fixed with permanent magnets.

The brushless engine‟s stator is equipped for producing its own magnetic field since it

is constructed out of a few sets of power coils. By providing a power flow to such coils, the

stator creates a magnetic field with the interaction with the encompassing rotor‟s magnets and

leads to its turn. Through directing the power flow that the power coils of the stator get, the

pace of the pivot of your drone‟s brushless engine can be controlled.

A crucial attribute of brushless choices is the way that there is not any contact

between pivoting and fixed parts. Because there is no friction, there will not be any energy

lost in the form of heat, which hence makes the entire cycle significantly more effective. For

your information, brushed engines are able to do just about eighty percent of efficiency in the

best case scenario; meanwhile, brushless motors can hit up to ninety percent of efficiency.

With no heat production, your drone‟s brushless engines will be able to work for a

long while with no threat of overheating. That is especially significant for professional-level

UAVs which are intended to remain in the air ceaselessly for more than half an hour.

The absence of contact between the brushless motor‟s moving parts additionally

implies that damage in the course of úe is significantly decreased. Truth be told, the brushless

engines of a flying robot can be utilized for quite a long while with no maintenance.

Brushless options are additionally less noisy when compared to brushed UAVs, which thus

absolutely wipes out the trademark shrieking sound generated by the continuous contact

between the brushes of the commutator and the current supply.

These days, just about any prosumer UAVs and UAVs designed for open-air flight are

intended to utilize brushless engines. They are not just more dependable and effective but

more lightweight and less sizable.

Their efficiency additionally implies that your flying robots can stay in the air for an

extended time with a similar battery limit. For models with a premium in weight and size,

brushless engines have been a significant bit of innovation.

Electric Speed Controllers:

The electric speed controllers (ESCs) take in thecommands from the flight controller and

adjust thespeed of the individual motors accordingly. The ESCscontrol how fast the motors

spin as well as increaseand decrease the speed of specific motors to turn andbank in flight.

For our project, the flight navigationwill be automated instead of using a physicalcontroller.

The motor with 6 coils is activated usingtwo mosfets to create a rotating magnetic field

thatturns the brushless motors. The motor speed can beincreased by cycling through these

intervals at ahigher frequency.The ESC has to know when to activate the next phasebased on

the position of the motor. The position canbe found using a Hall effect sensor to sense

themagnetic field in the motor. By carefully controllingthe speed that the rotor turns, the 4

propellers arerotated allowing the drone to lift off, fly forward, turn,and land. In our project,

the AR 2.0 drone willcomplete 28,000 revolutions per minute whilehovering and require 14.5

Watts with a speed of 11meters/second.

.

GPS (Global Positioning System):
 GPS/GNSS used in Unmanned Aerial Vehicles (UAV) are increasingly being used for a

wide range of applications including reconnaissance, surveillance, surveying and mapping,

spatial information acquisition and geophysics exploration, among others. Often, in these

situations, GPS is the key to operating the UAV safely.

Whether the vehicles are guided autonomously, or guided by ground-based pilots, GPS in

UAV plays an important role. As long as sufficient satellite signals can be accessed during

the entire UAV mission, GPS navigation techniques can offer consistent accuracy. Often,

GPS is used in conjunction with Inertial Navigation Systems (INS), to offer more

comprehensive UAV navigation solutions.

The most common use of GPS in UAV is navigation. A central component of most

navigation systems on a UAV, GPS is used to determine the position of the vehicle. The

relative positioning and speed of the vehicle are also usually determined by the UAV GPS.

The position provided by the receiver can be used to track the UAV, or, in combination with

an automated guidance system, steer the UAV.

Autonomous UAV usually rely on a GPS position signal which, combined with

inertial measurement unit (IMU) data, provides highly precise information that can be

implemented for control purposes. In order to avoid accidents in an area heavily populated by

other UAV or manned vehicles, it is necessary to know exactly where the UAV is located at

all times. Equipped with GPS, a UAV can not only provide location and altitude information,

but necessary vertical and horizontal protection levels.

As stated above, UAV are often used for earth observation measurements, making use

of cameras and radars installed for this very purpose. In order to accurately geographically

reference collected data, it is important to know the

exact position of the vehicle when a measurement

or photo was taken. A UAV GPS receiver can

pinpoint the exact position of the UAV, often down

to the centimetre. The same concept applies to the

exact time at which the photo or measurement was

taken. The precise time stamps provided by UAV

GPS are invaluable in collecting this information

 GPS MODULE

IMU (Inertial Measurement Unit):
An Inertial Measurement Unit (IMU) is an electronic device that uses accelerometers

and gyroscopes to measure acceleration and rotation, which can be used to provide position

data.IMUs are essential components in unmanned aerial systems (UAVs, UAS and drones) –

common applications include control and stabilization, guidance and correction,

measurement and testing, and mobile mapping.

The raw measurements output by an IMU (angular rates, linear accelerations and

magnetic field strengths) or AHRS (roll, pitch and yaw) can be fed into devices such as

Inertial Navigation Systems (INS), which calculate relative position, orientation and velocity

to aid navigation and control of UAVs.

IMUs are manufactured with a wide range of features, parameters, and specifications,

so the most suitable choice will depend on the requirements for a particular UAV application.

This article outlines some of the key options and considerations, such as the underlying

technology, performance, and ruggedness, in selecting an IMU for drone-based applications.

It also highlights some of the leading IMU manufacturers for UAS (jumps to this section).

Inertial Measurement Unit Technologies:

There are many types of IMU, some of which incorporate magnetometers to measure

magnetic field strength, but the four main technological categories for UAV applications are:

Silicon MEMS (Micro-Electro-Mechanical Systems), Quartz MEMS, FOG (Fibber Optic

Gyro), and RLG (Ring Laser Gyro).

Silicon MEMS IMUs are based around miniaturized sensors that measure either the

deflection of a mass due to movement, or the force required to hold a mass in place. They

typically perform with higher noise, vibration sensitivity and instability parameters than FOG

IMUs, but MEMS-based IMUs are becoming more precise as the technology continues to be

developed.

Advanced Navigation’s Motus MEMS IMU

MEMS IMUs are ideal for smaller UAV platforms and high-volume production units,

as they can generally be manufactured with much smaller size and weight, and at lower cost.

FOG IMUs use a solid-state technology based on beams of light propagating through

a coiled optical fibre. They are less sensitive to shock and vibration, and offer excellent

thermal stability, but are susceptible to magnetic interference. They also provide high

performance in important parameters such as angle random walk, bias offset error, and bias

instability, making them ideal for mission-critical UAV applications such as extremely

precise navigation.

EMCORE’s EN-150 FOG IMU

Higher bandwidth also makes FOG IMUs suitable for high-speed platform

stabilization. Typically, larger and more costly than MEMS-based IMUs, they are often used

in larger UAV platforms.

RLG IMUs utilise a similar technological principle to FOG IMUs but with a sealed

ring cavity in place of an optical fiber. They are generally considered to be the most accurate

option, but are also the most expensive of the IMU technologies and typically much larger

than the alternative technologies.

Quartz MEMS IMUs use a one-piece inertial sensing element, micro-machined from

quartz, that is driven by an oscillator to vibrate at a precise amplitude. The vibrating quartz

can then be used to sense angular rate, producing a signal that can be amplified and converted

into a DC signal proportional to the rate. Quartz MEMS technology features high reliability

and stability over temperature, and tactical-grade quartz MEMS IMUs rival FOG and RLG

technologies for SWaP-C (size, weight, power and cost) metrics. These factors make it ideal

for inertial systems designed for the space- and power-constrained environments of UAVs.

The Systron Donner Inertial (an Emcore brand) SDI500 Quartz MEMS IMU

IMU Performance and Accuracy:

The performance and accuracy of an IMU are influenced by a combination of factors,

including the sensor technology, the thermal properties of the packaging, and the software

used. The following parameters can be used when comparing the performance and accuracy

of specific IMUs, to help determine suitability for a given UAV application:

 Bias – what does the IMU output read when the input is zero?

 Bias repeatability – how similar is the IMU bias when conditions have changed

between measurements (e.g. for each powerup of the IMU)?

 Bias stability – how much does the bias change over time?

 Random Walk – how much random noise is present?

 Vibration Sensitivity – how much does the output of the angular rate change per unit

of vibration present in the environment?

These factors are dependent on the technologies used in the IMU and the physical properties

of the accelerometers, gyroscopes and magnetometers. If an IMU is manufactured with

temperature compensation, this will improve the stability of the measurements.

For high-accuracy applications such as UAV surveying and mapping, a high data output rate

is also important as this will reduce errors due to interpolation between readings.

Ultrasonic Sensor:
An ultrasonic sensor is an electronic device that measures the distance of a target object by

emitting ultrasonic sound waves, and converts the reflected sound into an electrical signal.

Ultrasonic waves travel faster than the speed of audible sound (i.e. the sound that humans can

hear). Ultrasonic sensors have two main components: the transmitter (which emits the sound

using piezoelectric crystals) and the receiver (which encounters the sound after it has

travelled to and from the target).

In order to calculate the distance between the sensor and the object, the sensor measures the

time it takes between the emission of the sound by the transmitter to its contact with the

receiver. The formula for this calculation is D = ½ T x C (where D is the distance, T is the

time, and C is the speed of sound ~ 343 meters/second). For example, if a scientist set up an

ultrasonic sensor aimed at a box and it took 0.025 seconds for the sound to bounce back, the

distance between the ultrasonic sensor and the box would be:

D = 0.5 x 0.025 x 343

Ultrasonic sensors are used primarily as proximity sensors. They can be found in automobile

self-parking technology and anti-collision safety systems. Ultrasonic sensors are also used in

robotic obstacle detection systems, as well as manufacturing technology. In comparison to

infrared (IR) sensors in proximity sensing applications, ultrasonic sensors are not as

susceptible to interference of smoke, gas, and other airborne particles (though the physical

components are still affected by variables such as heat).

Ultrasonic sensors are also used as level sensors to detect, monitor, and regulate liquid levels

in closed containers (such as vats in chemical factories). Most notably, ultrasonic technology

has enabled the medical industry to produce images of internal organs, identify tumours‟, and

ensure the health of babies in the womb.

UAV Software -Arudpilot:
UAV Navigation develops software in accordance with a strict validation process to ensure

the final product delivered to the customer is as reliable as possible. The company's mission-

critical software products fall into the following categories:

 User Interface (UI) software e.g.Visionair.

 Embedded autopilot software (RTOS, device drivers, and low-level software).

 Flight Control software.

Steps:

1. Specification: The final software product (or modification to an existing product) is

clearly specified. Requirements are analyzed and agreed upon between client and

UAV Navigation work teams in order to ensure the final product reaches its

expectations.

2. Development*: UAV Navigation ensures to provide the specific forms that the

development engineers will need during its work. Only when this specific and strict

training time has been completed before the engineer starts developing products. This

way, we ensure the high quality of our products. Software is developed by the

appropriate department as below:

 UI software: Software Department.

 Embedded software: Software Department (in consultation with Hardware

Department).

 Flight Control software: Flight Control Department.

Software is developed in accordance with a proprietary coding standard based on

industry standards, such as MISRA, JPL (NASA), Embedded C Coding Standard

(Barr Group), and Google C++ Style. Part of this development process includes peer-

checking.

3. Testing & Simulation*: All software undergoes an intensive period of testing in the

office, including at least 12 hours of simulated flight missions. All flight modes are

tested as well as interaction with payloads and emergency handling (comms failure,

etc). If necessary, the development team will return to Step 2 to modify features.

4. Acceptance Test Procedure (ATP): Phase 1 - Bench Testing*: Once Step 3 is

completed and there is no need to iterate through Step 2 again, a formal ATP is

carried out on the test bench, mainly based on the use of HIL tools. Every component

and control solution (FW, RW, Target, AHRS, etc..) has its own written ATP

documents for regression testing and new feature quality control, which are under

constant improvement as part of the quality process.

5. ATP: Phase 2 - Flight Testing: Once the software has successfully passed the

company's formal ATP on the simulation bench, the software can proceed to actual

flights on the company's appropriate test platform(s), fully testing all flight modes and

features. The platforms used currently include:

 Fixed-wing:

 Electric, 2.5kg MTOW.

 Single piston engined, 9kg MTOW.

 Rotary wing:

 Single piston engined, 8kg MTOW.

6. Software Release: The software developed is uploaded to the UAV Navigation

Download Center, a restricted area where the official versions of UAV Navigation

software are made available to all clients. Additionally, at UAV Navigation, we

provide the client with a Confidential space dedicated to each particular client. No

other clients have access to this area. It is used to supply specific software and

documentation.

7. Confirmatory Testing on Customer Platform: The final step is for the software to

be validated on the actual customer‟s platform. UAV Navigation is available to

participate in this vital stage by deploying an engineering team on-site and an

engineer to the test location if necessary. UAV Navigation agrees with the customer a

FAT (Flight Acceptance Test) document describing all the flight tests required to

accept the completion of the work.

Mission Planning:

UAV mission planning software for geophysical surveys. With completely customizable

survey parameters, you can plan your magnetic UAV survey at the elevation and line spacing

that you want. UgCS supports terrain following and more, create and store multiple missions

and routes, and choose the heading of the sensor.

Take the guesswork out of UAV operations for geophysical surveys with UgCS(Licenses)

Mission Planning Software.

 Automated Drone Mission Planning: Plan your UAV flight missions the way you

want! UgCS is the most advanced UAV flight software available.

 Custom Flight Lines: For geophysical surveys, flight and tie lines can be customized

to your survey needs and to ensure maximum sensor platfom stability.

 Photogrammetry Tools: Increase the data capture productivity at least 2 times with

the inbuilt automatic photogrammetry planning tool

 Geotagging Tools: Tag landmarks and other features of interest in the software.

 Digital Elevation Model (DEM) and KML file import: Use pre-installed or import

more precise DEM data to increase accuracy and safety for missions with terrain

following

 Map Customization: Adjust the allowed flight range and No-Fly Zones to fly

according to regulatory requirements

 Battery Changes: Take into account your battery hotswaps while planning your

survey.

 Offline Map Caching: Plan and fly missions without an internet connection.

Internet Of Drones (IOD):

The internet of drones (IoD) combines drones and the internet to empower users in multiple

ways. Basically, it means IoT sensors are starting to populate low-altitude airspace. In that

sense, IoD is simply IoT in the sky. Drones make it possible for sensor omnipresence to

blanket the planet's atmosphere, creating a highly interconnected global village.

Applications of Drones in Various Industries:

Commercial drones are now used by retailers to deliver products faster to consumers. At the

start of the 2020s, the fastest drones were able to exceed 160 miles per hour but the legal

limit set by the Federal Aviation Administration (FAA) is 100 mph. The average drone can

travel at 45 mph. Here are ways drones can improve different industries:

 Smart agriculture - Smart drones are perfect tools for farmers to get aerial views of

their crops to monitor growth. Using GPS, they can detect specific areas that need

more attention. They can take measurements important to agriculture, such as

temperature, humidity, sunlight and wind. Farmers are concerned about conserving

and maximizing natural resources, but with drones, they will be able to identify and

reduce waste. Drones can also be used for agricultural land mapping and spraying

agricultural chemicals on crops.

 Mining - One of the best ways drones can help the mining industry is by improving

the safety of mining operations. Mining is a dangerous job due to the explosives

involved. Drone cameras can help map out safety zones for crew members. Since

mines typically take up vast amounts of land, drones can help monitor site conditions

to avoid manual inspections that require labor, additional costs, and much more time.

 Construction - A contractor can use a drone to get aerial photos of construction

projects to help make the site safer and more efficient. Drones can help crew members

detect installation vulnerabilities and complications involved with building layout and

roofing. As with mining and other dangerous works, the construction industry can

improve with drones facilitating group coordination. Drones can also help locate and

limit construction waste.

 Emergency and Delivery Services - The odds of saving lives in emergency

situations increase with drones. They can help find a lost or missing child and victims

in remote locations. In order for drones to perform this function, they require high-

quality communication capabilities and enhanced sky connectivity. Drones can

transport disaster relief in the form of food and medicine to victims. It's actually

possible for drones to help rescue victims underwater. They certainly have many more

public safety uses following an earthquake, hurricane or tornado.

 Films and TV - Drones are taking cinematography to new heights. They make

shooting films and videos from the sky much easier and safer than using a helicopter

or a crane. For film producers trying to cut labor costs, smart drones provide precision

positioning and moving the camera to get desired elements within the picture frame.

Drones have already been used for TV news programs, especially in live pursuits of

police chasing suspects. Ultimately, drones allow for automated filmmaking

integrated with machine learning software to get the best camera angles and

trajectories.

Mechanical Design Requirements

 Drone parts - The drone's body connects with one, two, three or four propellers for

lifting and vertical motion. Drones are typically powered by a motor that draws

energy from an intelligent lithium-polymer (LiPo) battery. Drones can also be

powered by solar cells, hydro fuel cells and laser beams. The legs of a drone are

typically used for antennas, the compass, GPS, and other sensors are embedded in the

body, while the camera is typically mounted on a camera platform attached to the

body.

 Remote controller - Users control the drone with a remote controller that includes

joysticks for direction, similar to a video game. The remote controller may operate

from a centralized base station.

 Flight controller - This tiny robot serves as an automated pilot that helps the drone

achieve stability in difficult situations. The flight controller gets various signals from

sensors.

 MEMS sensors - Micro-electro-mechanical (MEMS) sensors improve flight

performance and allow the drone to be controlled accurately by users. The Inertial

Measurement Unit (IMU) is the main sensor, as it measures acceleration and rotation

of the drone. A drone sensor is typically the size of an ant and can be used to measure

barometric pressure and other metrics.

 Accessories - Drones can be equipped with cameras for aerial views, integrated with

AI and automation technology. A GPS module allows for satellite communication and

determining geolocations.

IoD Infrastructure Requirements

In order for IoD to be effective on a mass scale for businesses and personal use, its

infrastructure must be omnipresent, secure and flexible. At the core of the system should be

smart technology, in which real-time data can be made available on demand. Ideally, the

infrastructure allows for easy integration with new technology.

Cybersecurity should be a top priority for drone owners, as special authentication and key

exchange protocols must generate a symmetric security key. Yes, drones can be hacked,

much like any form of electronic communication. Remote hijacking with malware is even

worse, so developing strong cybersecurity layers cannot be understated or overlooked.

Another IoD requirement is seamless coverage across suburban, urban and rural areas. At the

moment, a good percentage of the earth is still not connected to the internet. But any area

with at least 4G+ connectivity is sufficient for drone-to-base data sharing. As far as vertical

coverage, drones get as high as 30,000 feet, but typically fly between 200 and 400 feet above

the ground.

Internet of drones

