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Chapter 

1 

INTRODUCTION 
What is software engineering? 

A popular definition of software engineering is: “A systematic collection of 
good program development practices and techniques”. Good program 

development techniques have resulted from research innovations as well as 

from the lessons learnt by programmers through years of programming 
experiences.  

An alternative definition of software engineering is: “An engineering approach to 

develop software”.  

EXAMPLE:- 

 Suppose you have asked a petty contractor to build a small house for you. 
Petty contractors are not really experts in house building.They normally carry out 
minor repair works and at most undertake very small building works such as the 
construction of boundary walls. Now faced with the task of building a complete 
house, your petty contractor would draw upon all his knowledge regarding house 
building. Yet, he may often be clueless regarding what to do. For example, he 
might not know the optimal proportion in which cement and sand should be 
mixed to realise sufficient strength for supporting the roof. In such situations, he 
would have to fall back upon his intuitions. He would normally succeed in his 
work, if the house you asked him to construct is sufficiently small. Of course, the 
house constructed by him may not look as good as one constructed by a 
professional, may lack proper planning, and display several defects and 
imperfections. It may even cost more and take longer to build. 

 
 
 
 
 
 
 

 



 

 

 

 

 

1.1 EVOLUTION—FROM AN ART FORM TO AN  ENGINEERING 

DISCIPLINE 

In this section, we review how starting from an esoteric art form, the 
software engineering discipline has evolved over the years. 

1.1.1 Evolution of an Art into an Engineering Discipline 

Software engineering principles have evolved over the last sixty years 
with contributions from numerous researchers and software 
professionals. Over the years, it has emerged from a pure art to a craft, 
and finally to an engineering discipline. 

The early programmers used an ad hoc programming style. This style of 

program development is now variously being referred to as exploratory, build 

and fix, and code and fix styles. 

In a build and fix style, a program is quickly developed without making any 
specification, plan, or design. The different imperfections that are 
subsequently noticed are fixed. 

The exploratory programming style is an informal style in the sense that 
there are no set rules or recommendations that a programmer has to adhere 
to—every programmer himself evolves his own software development 
techniques solely guided by his own intuition, experience, whims, and fancies. 
The exploratory style comes naturally to all first time programmers. the 
exploratory style usually yields poor quality and unmaintainable code and also 
makes program development very expensive as well as time-consuming. 

As we have already pointed out, the build and fix style was widely adopted 
by the programmers in the early years of computing history. We can consider 
the exploratory program development style as an art—since this style, as is 
the case with any art, is mostly guided by intuition. There are many stories 
about programmers in the past who were like proficient artists and could 
write good programs using an essentially build and fix model and some 
esoteric knowledge. The bad programmers were left to wonder how could 
some programmers effortlessly write elegant and correct programs each time. 
In contrast, the programmers working in modern software industry rarely 
make use of any esoteric knowledge and develop software by applying some 
well-understood principles. 

 

 



 

 

 

 

1.1.2 Evolution Pattern for Engineering Disciplines 

If we analyse the evolution of the software development styles over the last 
sixty years, we can easily notice that it has evolved from an esoteric art form 
to a craft form, and then has slowly emerged as an engineering discipline. 

Irrespective of whether it is iron making, paper making, software 
development, or building construction; evolution of technology has followed 
strikingly similar patterns. This pattern of technology development has 
schematically been shown in Figure 1.1. It can be seen from Figure 1.1 that 
every technology in the initial years starts as a form of art.  

Over time, it graduates to a craft and finally emerges as an engineering 
discipline. Let us illustrate this fact using an example. Consider the evolution 
of the iron making technology. In ancient times, only a few people knew how 
to make iron. Those who knew iron making, kept it a closely-guarded secret. 
This esoteric knowledge got transferred from generation to generation as a 
family secret. Slowly, over time technology graduated from an art to a craft 
form where tradesmen shared their knowledge with their apprentices and the 
knowledge pool continued to grow. Much later, through a systematic 
organisation and documentation of knowledge, and incorporation of scientific 
basis, modern steel making technology emerged. The story of the evolution 
of the software engineering discipline is not much different.  

The good programmers knew certain principles (or tricks) that helped them 
write good programs, which they seldom shared with the bad programmers. 
Program writing in later years was akin to a craft. Over the next several years, 
all good principles (or tricks) that were organised into a body of knowledge 
that forms the discipline of software engineering. 
 



 

 

 

 

 

Figure 1.1: Evolution of technology with time. 

Software engineering principles are now being widely used in industry, and 
new principles are still continuing to emerge at a very rapid rate—making this 
discipline highly dynamic. Software engineering practices have proven to be 
indispensable to the development of large software products—though 
exploratory styles are often used successfully to develop small programs such 
as those written by students as classroom assignments. 

1.1.3 A Solution to the Software Crisis 

At present, software engineering appears to be among the few options 
that are available to tackle the present software crisis. But, what 
exactly is the present software crisis? What are its symptoms, causes, 
and possible solutions? To understand the present software crisis, 
consider the following facts. The expenses that organisations all over 
the world are incurring on software purchases as compared to the 
expenses incurred on hardware purchases have been showing an 
worrying trend over the years (see Figure 1.2). As can be seen in the 



 

 

 

 

figure, organisations are spending increasingly larger portions of their 
budget on software as compared to that on hardware. Among all the 
symptoms of the present software crisis, the trend of increasing 
software costs is probably the most vexing. 

 

Figure 1.2: Relative changes of hardware and software costs over time. 
 

At present, many organisations are actually spending much more on 
software than on hardware. If this trend continues, we might soon have a 
rather amusing scenario. Not long ago, when you bought any hardware 
product, the essential software that ran on it came free with it. But, unless 
some sort of revolution happens, in not very distant future, hardware prices 
would become insignificant compared to software prices—when you buy any 
software product the hardware on which the software runs would come free 
with the software!!! 

With this brief discussion on the evolution and impact of the discipline of 
software engineering, we now examine some basic concepts pertaining to the 
different types of software development projects that are undertaken by 
software companies. 

1.2 SOFTWARE DEVELOPMENT PROJECTS 

Before discussing about the various types of development projects that 
are being undertaken by software development companies, let us first 



 

 

 

 

understand the important ways in which professional software differs 
from toy software such as those written by a student in his first 
programming assignment. 

Programs versus Products 

Many toy software are being developed by individuals such as students 
for their classroom assignments and hobbyists for their personal use. 
These are usually small in size and support limited functionalities. 
Further, the author of a program is usually the sole user of the software 
and himself maintains the code. These toy software therefore usually 
lack good user-interface and proper documentation. Besides these may 
have poor maintainability, efficiency, and reliability. Since these toy 
software do not have any supporting documents such as users’ manual, 
maintenance manual, design document, test documents, etc., we call 
these toy software as programs. 

In contrast, professional software usually have multiple users and, 
therefore, have good user-interface, proper users’ manuals, and good 
documentation support. Since, a software product has a large number of 
users, it is systematically designed, carefully implemented, and thoroughly 
tested. In addition, a professionally written software usually consists not only 
of the program code but also of all associated documents such as 
requirements specification document, design document, test document, users’ 
manuals, etc. A further difference is that professional software are often too 
large and complex to be developed by any single individual. It is usually 
developed by a group of developers working in a team. 

A professional software is developed by a group of software developers 
working together in a team. It is therefore necessary for them to use some 
systematic development methodology. Otherwise, they would find it very 
difficult to interface and understand each other’s work, and produce a 
coherent set of documents. 

1.2.1 Types of Software Development Projects 

A software development company is typically structured into a large 
number of teams that handle various types of software development 
projects. These software development projects concern the 
development of either software product or some software service. In 
the following subsections, we distinguish between these two types of 
software development projects. 



 

 

 

 

Software products 

We all know of a variety of software such as Microsoft’s Windows and the 
Office suite, Oracle DBMS, software accompanying a camcorder or a 
laser printer, etc. These software are available off-the-shelf for 
purchase and are used by a diverse range of customers. These are 
called generic software products since many users essentially use the 

same software. These can be purchased off-the-shelf by the customers. 
When a software development company wishes to develop a generic 
product, it first determines the features or functionalities that would be 
useful to a large cross section of users. Based on these, the 
development team draws up the product specification on its own.  

      Many  companies  find it advantageous to develop product lines that 

target slightly different market segments based on variations of 
essentially the same software. For example, Microsoft targets desktops 
and laptops through its Windows 8 operating system, while it targets 
high-end mobile handsets through its Windows mobile operating system, 
and targets servers through its Windows server operating system. 

Software services 

A software service usually involves either development of a customised 

software or development of some specific part of a software in an 

outsourced mode. A customised software is developed according to the 

specification drawn up by one or at most a few customers. These need 
to be developed in a short time frame (typically a couple of months), 
and at the same time the development cost must be low. Usually, a 
developing company develops customised software by tailoring some of 

its existing software. 

 For example, when an academic institution wishes to have a software 
that would automate its important activities such as student registration, 
grading, and fee collection; companies would normally develop such a 
software as a customised product.  

        Another type of software service is outsourced software. Sometimes, it 
can make good commercial sense for a company developing a large project to 
outsource some parts of its development work to other companies. The reasons 

behind such a decision may be many. For example, a company might consider the 
outsourcing option, if it feels that it does not have sufficient expertise to develop 

some specific parts of the software; or if it determines that some parts can be 



 

 

 

 

developed cost-effectively by another company. Since an outsourced project is a 
small part of some larger project, outsourced projects are usually small in size and 

need to be completed within a few months or a few weeks of time. 

The types of development projects that are being undertaken by a 
company can have an impact on its profitability.  

1.2.2 Software Projects Being Undertaken by Indian Companies 

Indian software companies have excelled in executing software services 
projects and have made a name for themselves all over the world. Of 
late, the Indian companies have slowly started to focus on product 
development as well.  

    Let us try to hypothesise the reason for this situation. Generic product 
development entails certain amount of business risk. A company needs 
to invest upfront and there is substantial risks concerning whether the 
investments would turn profitable. Possibly, the Indian companies were 
risk averse. 

Till recently, the world-wide sales revenue of software products and 
services were evenly matched. But, of late the services segment has been 
growing at a faster pace due to the advent of application service provisioning 
and cloud computing.  

1.3 EXPLORATORY STYLE OF SOFTWARE DEVELOPMENT 

We have already discussed that the exploratory program development style 

refers to an informal development style where the programmer makes 

use of his own intuition to develop a program rather than making use of 

the systematic body of knowledge categorized under the software 
engineering discipline. The exploratory development style gives 
complete freedom to the programmer to choose the activities using 
which to develop software. Though the exploratory style imposes no 
rules a typical development starts after an initial briefing from the 
customer. Based on this briefing, the developers start coding to develop 
a working program. The software is tested and the bugs found are 
fixed. This cycle of testing and bug fixing continues till the software 
works satisfactorily for the customer. A schematic of this work sequence 
in a build and fix style has been shown graphically in Figure 1.3. 



 

 

 

 

Figure 1.3: Exploratory program development. 

 

 Observe that coding starts after an initial customer briefing about what 
is required. After the program development is complete, a test and fix 
cycle continues till the program becomes acceptable to the customer. 

An exploratory development style can be successful when used for 
developing very small programs, and not for professional software. We had 
examined this issue with the help of the petty contractor analogy. Now let us 
examine this issue more carefully. 

What is wrong with the exploratory style of software development? 

Though the exploratory software development style is intuitively obvious, no 
software team can remain competitive if it uses this style of software 
development. Let us investigate the reasons behind this. 

 In an exploratory development scenario, let us examine how do the effort 
and time required to develop a professional software increases with the 
increase in program size.  

Let us first consider that exploratory style is being used to develop a 
professional software. The increase in development effort and time with 
problem size has been indicated in Figure 1.4. Observe the thick line plot that 
represents the case in which the exploratory style is used to develop a 
program. It can be seen that as the program size increases, the required 
effort and time increases almost exponentially.  

For large problems, it would take too long and cost too much to be 
practically meaningful to develop the program using the exploratory style of 
development. The exploratory development approach is said to break down 
after the size of the program to be developed increases beyond certain value. 
In this case, it becomes possible to solve a problem with effort and time that 
is almost linear in program size. On the other hand, if programs could be 
written automatically by machines, then the increase in effort and time with 
size would be even closer to a linear (dotted line plot) increase with size. 



 

 

 

 

 

Figure 1.4: Increase in development time and effort with problem size. 

Now let us try to understand why does the effort required to develop a 
program grow exponentially with program size when the exploratory style is 
used and then this approach to develop a program completely breaks down 
when the program size becomes large? To get an insight into the answer to 
this question, we need to have some knowledge of the human cognitive 
limitations (see the discussion on human psychology in subsection 1.3.1). As 
we shall see, the perceived (or psychological) complexity of a problem grows 
exponentially with its size.  

Please note that the perceived complexity of a problem is not related to the 
time or space complexity issues with which you are likely to be familiar with 
from a basic course on algorithms. 
 

Even if the exploratory style causes the perceived difficulty of a problem to 
grow exponentially due to human cognitive limitations, how do the software 
engineering principles help to contain this exponential rise in complexity with 
problem size and hold it down to almost a linear increase?  

You may still wonder that when software engineering principles are used, 
why does the curve not become completely linear? The answer is that it is 
very difficult to apply the decomposition and abstraction principles to 
completely overcome the problem complexity. 

Summary of the shortcomings of the exploratory style of software 

development: 

We briefly summarise the important shortcomings of using the 
exploratory development style to develop a professional software: 



 

 

 

 

 The foremost difficulty is the exponential growth of development time 
and effort with problem size and large-sized software becomes almost 
impossible using this style of development. 

 The exploratory style usually results in unmaintainable code. The 
reason for this is that any code developed without proper design would 
result in highly unstructured and poor quality code. 

 It becomes very difficult to use the exploratory style in a team 
development environment. In the exploratory style, the development 
work is undertaken without any proper design and documentation. 

 

               Therefore it becomes very difficult to meaningfully partition the 
work among a set of developers who can work concurrently. On the 
other hand, team development is indispensable for developing modern 
software—most software mandate huge development efforts, 
necessitating team effort for developing these. Besides poor quality 
code, lack of proper documentation makes any later maintenance of 
the code very difficult. 

1.3.1  Perceived Problem Complexity: An Interpretation Based on 

Human Cognition Mechanism 

 The rapid increase of the perceived complexity of a problem with 
increase in problem size can be explained from an interpretation of the 
human cognition mechanism. It can also explain why it becomes 
practically infeasible to solve problems larger than a certain size while 
using an exploratory style; whereas using software engineering 
principles, the required effort grows almost linearly with size. 

Psychologists say that the human memory can be thought to consist of two 
distinct parts[Miller 56]: short-term and long-term memories. A schematic 
representation of these two types of memories and their roles in human 
cognition mechanism has been shown in Figure 1.5. In Figure 1.5, the block 
labelled sensory organs represents the five human senses sight, hearing, 
touch, smell, and taste. The block labelled actuator represents neuromotor 
organs such as hand, finger, feet, etc. We now elaborate this human 
cognition model in the following subsection. 



 

 

 

 

 

Figure 1.5: Human cognition mechanism model. 

Short-term memory: The short-term memory, as the name itself suggests, can 

store information for a short while—usually up to a few seconds, and at most 

for a few minutes. The short-term memory is also sometimes referred to as 

the working memory. The information stored in the short-term memory is 

immediately accessible for processing by the brain. The short-term memory 

of an average person can store up to seven items; but in extreme cases it can 
vary anywhere from five to nine items ( 7 ± 2). As shown in Figure 1.5, the 

short-term memory participates in all interactions of the human mind with its 

environment. 
It should be clear that the short-term memory plays a very crucial part in 

the human cognition mechanism. All information collected through the 
sensory organs are first stored in the short-term memory. The short-term 
memory is also used by the brain to drive the neuromotor organs. The mental 
manipulation unit also gets its inputs from the short-term memory and stores 
back any output it produces. Further, information retrieved from the long- 
term memory first gets stored in the short-term memory. As you can notice, 
this model is very similar to the organisation of a computer in terms of 
cache, main memory, and processor. 

Long-term memory: The size of the long- term memory can vary from several 
million items to several billion items, largely depending on how actively a 
person exercises his mental faculty. An item once stored in the long-term 
memory, is usually retained for several years. But, how do items get stored in 



 

 

 

 

the long-term memory? Items present in the short-term memory can get 
stored in the long-term memory either through large number of refreshments 
(repetitions) or by forming links with already existing items in the long-term 
memory. 

 For example, you possibly remember your own telephone number because 
you might have repeated(refreshed) it for a large number of times in your 
short-term memory. Let us now take an example of a situation where you 
may form links to existing items in the long- term memory to remember 
certain information. Suppose y o u want to remember the 10 digit mobile 
number 9433795369. To remember it by rote may be intimidating. But, 
suppose you consider the number as split into 9433 7953 69 and notice that 
94 is the code for BSNL, 33 is the code for Kolkata, suppose 79 is your year of 
birth, and 53 is your roll number, and the rest of the two numbers are e a ch 
one less than the corresponding digits of the previous number. 

 

A small program having just a few variables is within the easy grasp of an 
individual. As the number of independent variables in the program increases, 
it quickly exceeds the grasping power of an individual and would require an 
unduly large effort to master the problem. This outlines a possible reason 
behind the exponential nature of the effort-size plot (thick line) shown in 
Figure 1.4. Please note that the situation depicted in Figure 1.4 arises mostly 
due to the human cognitive limitations. Instead of a human, if a machine 
could be writing (generating) a program, the slope of the curve would be 
linear, a s the cache size (short-term memory) of a computer is quite large. 
But, why does the effort-size curve become almost linear when software 
engineering principles are deployed? This is because software engineering 
principles extensively use the techniques that are designed specifically to 
overcome the human cognitive limitations. We discuss this issue in the next 
subsection. 

1.3.2 Principles Deployed by Software Engineering to Overcome 

Human Cognitive Limitations 

We shall see throughout this book that a central theme of most of software 
engineering principles is the use of techniques to effectively tackle the 
problems that arise due to human cognitive limitations. 

When the number of details (or variables) that one has to track to solve a problem 
increases beyond seven, it exceeds the capacity of the short-term memory and it 
becomes exceedingly more difficult for a human mind to grasp the problem. 



 

 

 

 

 

In the following subsections, with the help of Figure 1.6(a) and (b), we 
explain the essence of these two important principles and how they help to 
overcome the human cognitive limitations. In the rest of this book, we shall 
time and again encounter the use of these two fundamental principles in 
various forms and flavours in the different software development activities. A 
thorough understanding of these two principles is therefore needed. 
 

 

 

Figure 1.6: Schematic representation. 

Abstraction 

Abstraction refers to construction of a simpler version of a problem by 
ignoring the details. The principle of constructing an abstraction is popularly 
known as modelling (or model construction ). 

 

When using the principle of abstraction to understand a complex problem, 
we focus our attention on only one or two specific aspects of the problem and 
ignore the rest. Whenever we omit some details of a problem to construct an 
abstraction, we construct a model of the problem. In every day life, we use 

the principle of abstraction frequently to understand a problem or to assess a 
situation. Consider the following two examples. 

Two important principles that are deployed by software engineering to overcome the 
problems arising due to human cognitive limitations are—abstraction and 
decomposition. 

Abstraction is the simplification of a problem by focusing on only one aspect of the 
problem while omitting all other aspects. 



 

 

 

 

 

 Consider the following situation. Suppose you are asked to develop an 
understanding of all the living beings inhabiting the earth. If you use 
the naive approach, you would start taking up one living being after 
another who inhabit the earth and start understanding them. Even 
after putting in tremendous effort, you would make little progress and 
left confused since there are billions of living things on earth and the 
information would be just too much for any one to handle. Instead, 
what can be done is to build and understand an abstraction hierarchy 
of all living beings as shown in Figure 1.7. At the top level, we 
understand that there are essentially three fundamentally different 
types of living beings—plants, animals, and fungi. Slowly more details 
are added about each type at each successive level, until we reach the 
level of the different species at the leaf level of the abstraction tree. 

 

Figure 1.7: An abstraction hierarchy classifying living organisms. 
 

A single level of abstraction can be sufficient for rather simple problems. 
However, more complex problems would need to be modelled as a hierarchy 
of abstractions. A schematic representation of an abstraction hierarchy has 
been shown in Figure 1.6(a). The most abstract representation would have 
only a few items and would be the easiest to understand. After one 
understands the simplest representation, one would try to understand the 
next level of abstraction where at most five or seven new information are 
added and so on until the lowest level is understood. By the time, one 
reaches the lowest level, he would have mastered the entire problem. 

 



 

 

 

 

Decomposition 

Decomposition is another important principle that is available in the 
repertoire of a software engineer to handle problem complexity. This principle 
is profusely made use by several software engineering techniques to contain 
the exponential growth of the perceived problem complexity. The 
decomposition principle is popularly known as the divide and conquer principle. 

 

A popular way to demonstrate the decomposition principle is by trying to 
break a large bunch of sticks tied together and then breaking them 
individually. Figure 1.6(b) shows the decomposition o f a large problem into 
many small parts.  

As an example o f a use of the principle of decomposition, consider the 
following. You would understand a book better when the contents are 
decomposed (organised) into more or less independent chapters. That is, 

each chapter focuses on a separate topic, rather than when the book mixes 
up all topics together throughout all the pages. Similarly, each chapter should 
be decomposed into sections such that each section discusses a different 
issue. Each section should be decomposed into subsections and so on. If 
various subsections are nearly independent of each other, the subsections 
can be understood one by one rather than keeping on cross referencing to 
various subsections across the book to understand one. 

Why study software engineering? 

Let us examine the skills that you could acquire from a study of the 
software engineering principles. The following two are possibly the 
most important skill you could be acquiring after completing a study of 
software engineering: 

 The skill to participate in development of large software. You can 
meaningfully participate in a team effort to develop a large software 
only after learning the systematic techniques that are being used in the 
industry. 

 You would learn how to effectively handle complexity in a software 
development problem. In particular, you would learn how to apply the 

The decomposition principle advocates decomposing the problem into many small 
independent parts. The small parts are then taken up one by one and solved 
separately. The idea is that each small part would be easy to grasp and understand 
and can be easily solved. The full problem is solved when all the parts are solved. 



 

 

 

 

principles of abstraction and decomposition to handle complexity 
during various stages in software development such as specification, 
design, construction, and testing. 

1.4 EMERGENCE OF SOFTWARE ENGINEERING 

We have already pointed out that software engineering techniques have 
evolved over many years in the past. This evolution is the result of a 
series  of innovations and accumulation of experience about writing 

good quality programs. Since these innovations and programming 
experiences are too numerous, let us briefly examine only a few of 
these innovations and programming experiences which have 
contributed to the development of the software engineering discipline. 

1.4.1 Early Computer Programming 

Early commercial computers were very slow and too elementary as 
compared to today’s standards. Even simple processing tasks took 
considerable computation time on those computers. No wonder that 
programs at that time were very small in size and lacked sophistication. 
Those programs were usually written in assembly languages. Program 
lengths were typically limited to about a few hundreds of lines of 
monolithic assembly code. Every programmer developed his own 
individualistic style of writing programs according to his intuition and 
used this style ad hoc while writing different programs.  

 In simple words, programmers wrote programs without formulating any 
proper solution strategy, plan, or design a jump to the terminal and start 
coding immediately on hearing out the problem. They then went on 
fixing any problems that they observed until they had a program that 
worked reasonably well. We have already designated this style of 
programming as the build and fix (or the exploratory programming ) style. 

1.4.2 High-level Language Programming 

Computers became faster with the introduction of the semiconductor 
technology in the early 1960s. Faster semiconductor transistors 
replaced the prevalent vacuum tube-based circuits in a computer. With 
the availability of more powerful computers, it became possible to solve 
larger and more complex problems. At this time, high-level languages 
such as FORTRAN, ALGOL, and COBOL were introduced. This 



 

 

 

 

considerably reduced the effort required to develop software and helped 
programmers to write larger programs (why?). Writing each high-level 
programming construct in effect enables the programmer to write 
several machine instructions. Also, the machine details (registers, flags, 
etc.) are abstracted from the programmer. However, programmers 
were still using the exploratory style of software development. Typical 
programs were limited t o sizes of around a few thousands of lines of 
source code. 

1.4.3 Control Flow-based Design 

As the size and complexity of programs kept on increasing, the 
exploratory programming style proved to be insufficient. Programmers 
found it increasingly difficult not only to write cost-effective and correct 
programs, but also to understand and maintain programs written by 
others. To cope up with this problem, experienced programmers 
advised other programmers to pay particular attention to the design of 
a program’s control flow structure. 

A program’s control flow structure indicates the sequence in which the 
program’s instructions are executed. 

In order to help develop programs having good control flow structures, the 
flow charting technique was developed. E v e n today, t h e flow charting 

technique is being used to represent and design algorithms; though the 
popularity of flow charting represent and design programs has want to a 
great extent due to the emergence of more advanced techniques. 

 

1.4.4 Data Structure-oriented Design 

Computers became even more powerful with the advent o f integrated 

circuits (ICs) in the early seventies. These could now be used to solve 

more complex problems. Software developers were tasked to develop 
larger and more complicated software. which often required writing in 

excess of several tens of thousands of lines of source code. The control 

flow-based program development techniques could not be used 

satisfactorily any more to write those programs, and more effective 
program development techniques were needed. 

It was soon discovered that while developing a program, it is much more 
important to pay attention to the design of the important data structures of 
the program than to the design of its control structure. Design techniques 
based on this principle are called data structure- oriented design techniques. 



 

 

 

 

 

1.4.5 Data Flow-oriented Design 

As computers became still faster and more powerful with the introduction of 
very large scale integrated (VLSI) Circuits and some new architectural concepts, 

more complex and sophisticated software were needed to solve further 
challenging problems. Therefore, software developers looked out for more 
effective techniques for designing software and soon d a t a flow-oriented 

techniques were proposed. 
 

The functions (also called as processes ) and the data items that are 

exchanged between the different functions are represented in a diagram 

known as a data flow diagram (DFD). The program structure can be designed 

from the DFD representation of the problem. 

DFDs: A crucial program representation for procedural program design 

For example, Figure 1.11 shows the data-flow representation of an automated 
car assembly plant. If you have never visited an automated car assembly 
plant, a brief description of an automated car assembly plant would be 
necessary. In an automated car assembly plant, there are several processing 
stations (also called workstations) which are located along side of a conveyor 
belt (also called an assembly line).  

Each workstation is specialised to do jobs such a s fitting of wheels, fitting the 
engine, spray painting the car, etc. As the partially assembled program moves 
along the assembly line, different workstations perform their respective jobs 
on the partially assembled software. Each circle in the DFDmodel of Figure 
1.11 represents a workstation (called a process o r bubble ). Each workstation 
consumes certain input items and produces certain output items. As a car 
under assembly arrives at a workstation, it fetches the necessary items to be 
fitted from the corresponding stores (represented by two parallel horizontal 
lines), and as soon as the fitting work is complete passes on to the next 
workstation. It is easy to understand the DFD model of the car assembly plant 
shown in Figure 1.11 even without knowing anything regarding DFDs. In this 
regard, we can say that a major advantage of the DFDs is their simplicity.  



 

 

 

 

 

Figure 1.11: Data flow model of a car assembly plant. 

1.4.6 Object-oriented Design 

Data flow-oriented techniques evolved into object-oriented design (OOD) 
techniques in the late seventies. Object-oriented design technique is an 
intuitively appealing approach, where the natural objects (such as 
employees, pay-roll-register, etc.) relevant to a problem a r e first 
identified and then the relationships among the objects such as 
composition, reference, and inheritance are determined. Each object 
essentially acts as a data hiding (also known as data abstraction ) entity. 

Object-oriented techniques have gained wide spread acceptance 
because of their simplicity, the scope for code and design reuse, 
promise of lower development time, lower development cost, more 
robust code, and easier maintenance.  

1.4.7 What Next? 

In this section, we have so far discussed how software design techniques 
have evolved since the early days of programming. However, we have 
already seen that in the past, the design techniques have evolved each 
time to meet the challenges faced in developing contemporary 
software. Therefore, the next development would most probably occur 
to help meet the challenges being faced by the modern software 
designers. To get an indication of the techniques that are likely to 
emerge, let us first examine what are the current challenges in 
designing software. First, program sizes are further increasing as 
compared to what was being developed a decade back. Second, many 
of the present day software are required to work in a client-server 
environment through a web browser-based access (called web-based 

software ). At the same time, embedded devices are experiencing an 
unprecedented growth and rapid customer acceptance in the last 



 

 

 

 

decade. It is there for necessary for developing applications for small 
hand held devices and embedded processors. We examine later in this 
text how aspect-oriented programming, client- server based design, and 
embedded software design techniques have emerged rapidly. In the 
current decade, service- orientation has emerged as a recent direction of 
software engineering due to the popularity of web-based applications 
and public clouds. 

 

 

Figure 1.12: Evolution of software design techniques. 

1.4.8 Other Developments 

It can be seen that remarkable improvements to the prevalent software 
design technique occurred almost every passing decade. The 
improvements to the software design methodologies over the last five 
decades have indeed been remarkable. In addition to the 
advancements made to the software design techniques, several other 
new concepts and techniques for effective software development were 
also introduced. These new techniques include life cycle models, 



 

 

 

 

specification techniques, project management techniques, testing 
techniques, debugging techniques, quality assurance techniques, 
software measurement techniques, computer aided software engineering 

(CASE) tools, etc. The development of these techniques accelerated the 
growth of software engineering as a discipline. We shall discuss these 
techniques in the later chapters. 

1.5 NOTABLE CHANGES IN SOFTWARE DEVELOPMENT PRACTICES 

Before we discuss the details of various software engineering principles, it 
is worthwhile to examine the glaring differences that you would notice when 
you observe an exploratory style of software development and another 
development effort based on modern software engineering practices. The 
following noteworthy differences between these two software development 
approaches would be immediately observable. 

 An important difference is that the exploratory software development 
style is based on error correction (build and f i x) while the software 

engineering techniques are based on the principles of error prevention. 

Inherent in the software engineering principles is the realisation that it 
is much more cost-effective to prevent errors from occurring than to 
correct them as and when they are detected. Even when mistakes are 
committed during development, software engineering principles 
emphasize detection of errors as detected only during the final product 
testing. In contrast, the modern practice of software development is to 
develop the software through several well-defined stages such as 
requirements specification, design, coding, testing, etc., and attempts 
are made to detect and fix as many errors as possible in the same 
phase in which they are made. 

 I n t h e exploratory style, coding wa s considered synonymous with 
software development. For instance, this naive wa y of developing a 
software believed in developing a working system as quickly as 
possible and then successively modifying it until i t performed 
satisfactorily. Exploratory programmers literally dive at the computer to 
get started with their programs even before they fully learn about the 
problem!!! It was recognised that exploratory programming not only 
turns out to be prohibitively costly for non-trivial problems, but also 
produces hard-to-maintain programs. Even minor modifications to such 
programs later can become nightmarish. In the modern software 
development style, coding is regarded as only a small part of the 



 

 

 

 

overall software development a ct i vi t i es. There are several 
development activities such as design and testing which may demand 
much more effort than coding. 

 A lot of attention is now being paid to requirements specification. 
Significant effort is being devoted to develop a clear and correct 
specification of the problem before any development activity starts. 
Unless the requirements specification is able to correctly capture the 
exact customer requirements, large number of rework would be 
necessary at a later stage. Such rework would result in higher cost of 
development and customer dissatisfaction. 

 Now there is a distinct design phase where standard design techniques 
are employed to yield coherent and complete design models. 

 Periodic reviews are being carried out during all stages of the 
development process. The main objective of carrying out reviews is 
phase containment of errors, i.e. detect and correct errors as soon as 

possible. Phase containment of errors is an important software 
engineering principle. We will discuss this technique in Chapter 2. 

 Today, software testing h a s become very systematic and standard 
testing techniques are available. Testing activity has also become all 
encompassing, as test cases are being developed right from the 
requirements specification stage. 

 There is better visibility of the software through various developmental 
activities. 

 In the past, very little attention was being paid to producing good 
quality and consistent documents. In the exploratory style, the design 
and test activities, even if carried out (in whatever way), were not 
documented satisfactorily. Today, consciously good quality documents 
are being developed during software development. This has made fault 
diagnosis and maintenance far more smoother. We will see in Chapter 

3 that i n addition to facilitating product maintenance, increased 
visibility makes management of a software project easier. 

 Now, projects are being thoroughly planned. The primary objective of 
project planning is to ensure that the various development activities 
take place at the correct time and no activity is halted due to the want 
of some resource. Project planning normally includes preparation of 
various types of estimates, resource scheduling, and development of 
project tracking plans. Several techniques and automation tools for  



 

 

 

 

tasks such as configuration management, cost estimation, scheduling, 

etc., are being used for effective software project management. 

 Several metrics (quantitative measurements) of the products and the 
product development activities are being collected to help in software 
project management and software quality assurance. 

 

1.6 COMPUTER SYSTEMS ENGINEERING 

In all the discussions so far, we assumed that the software being 
developed would run on some general-purpose hardware platform such 
as a desktop computer or a server. But, in several situations it may be 
necessary to develop special hardware on which the software would 
run. Examples of such systems are numerous, and include a robot, a 
factory automation system, and a cell phone. In a cell phone, there is a 
special processor and other specialised devices such as a speaker and a 
microphone. I t can run only the programs written specifically for it. 
Development of such systems entails development of both software and 
specific hardware that would run the software. Computer systems 
engineering addresses development of such systems requiring 
development of both software and specific hardware to run the 
software. Thus, systems engineering encompasses software 
engineering. 

The general model of systems engineering is shown schematically in Figure 

1.12. One of the important stages in systems engineering i s the stage in 
which decision is made regarding the parts of the problems that are to be 
implemented in hardware and the ones that would be implemented in 
software. This has been represented by the box captioned hardware-software 
partitioning in Figure 1.13. While partitioning the functions between hardware 
and software, several trade-offs such as flexibility, cost, speed of operation, 
etc., need to be considered. The functionality implemented in hardware run 
faster. On the other had, functionalities implemented in software is easier to 
extend. Further, it is difficult to implement complex functions in hardware. 
Also, functions implemented in hardware incur extra space, weight, 
manufacturing cost, and power overhead. 

After the hardware-software partitioning stage, development of hardware 
and software are carried out concurrently (shown as concurrent branches in 
Figure 1.13). In system engineering, testing the software during development 
becomes a tricky issue, the hardware on which the software would run and 



 

 

 

 

tested would still be under development—remember that the hardware and 
the software are being developed at the same time. To test the software 

during development, it usually becomes necessary to develop simulators that 
mimic the features of the hardware being developed. The software is tested 
using these simulators. Once both hardware and software development are 
complete, these are integrated and tested. The project management activity 
is required through out the duration of system development as shown in 
Figure 1.13. In this text, we have confined our attention to software 
engineering only. 

 

Figure 1.13: Computer systems engineering. 

 



 

 

 

 

Chapter 

2 

SOFTWARE LIFE CYCLE MODELS 
 

2.1 WATERFALL MODEL AND ITS EXTENSIONS 

The waterfall model and its derivatives were extremely popular in the 
1970s and still are heavily being used across many development 
projects. The waterfall model is possibly the most obvious and intuitive 
way in which software can be developed through team effort. We can 
think of the waterfall model as a generic model that has been extended 
in many ways for catering to certain specific software development 
situations to realise all other software life cycle models. For this reason, 
after discussing the classical and iterative waterfall models, we discuss 
its various extensions. 

2.1.1 Classical Waterfall Model 

Classical waterfall model is intuitively the most obvious way to develop 
software. It is simple but idealistic. In fact, it is hard to put this model 
into use in any non-trivial software development project. One might 
wonder if this model is hard to use in practical development projects, 
then why study it at all? The reason is that all other life cycle models 
can be thought of as being extensions of the classical waterfall model. 

Therefore, it makes sense to first understand the classical waterfall 
model, in order to be able to develop a proper understanding of other 
life cycle models. Besides, we shall see later in this text that this model 
though not used for software development; is implicitly used while 
documenting software. 

The classical waterfall model divides the life cycle into a set of phases as 
shown in Figure 2.1. It can be easily observed from this figure that the 
diagrammatic representation of the classical waterfall model resembles a 
multi-level waterfall. This resemblance justifies the name of the model. 



 

 

 

 

 

Figure 2.1: Classical waterfa l model. 

Phases of the classical waterfall model 

The different phases of the classical waterfall model have been shown in 
Figure 2.1. As shown in Figure 2.1, the different phases are—feasibility 
study, requirements analysis and specification, design, coding and unit 
testing, integration and system testing, and maintenance. The phases 
starting from the feasibility study to the integration and system testing 
phase are known as the development phases.  

A software is developed during the development phases, and at the 
completion of the development phases, the software is delivered to the 

customer. After the delivery of software, customers start to use the 
software signalling the commencement of the operation phase. As the 
customers start to use the software, changes to it become necessary on 
account of bug fixes and feature extensions, causing maintenance works 
to be undertaken. Therefore, the last phase is also known as the 
maintenance phase of the life cycle.  

In the waterfall model, different life cycle phases typically require relatively 
different amounts of efforts to be put in by the development team. The 
relative amounts of effort spent on different phases for a typical software has 
been shown in Figure 2.2. Observe from Figure 2.2 that among all the life 
cycle phases, the maintenance phase normally requires the maximum effort. 
On the average, about 60 per cent of the total effort put in by the 
development team in the entire life cycle is spent on the maintenance 
activities alone. 



 

 

 

 

 

Figure 2.2: Relative effort distribution among different phases of a typical product. 

However, among the development phases, the integration and system 
testing phase requires the maximum effort in a typical development project. 
In the following subsection, we briefly describe the activities that are carried 
out in the different phases of the classical waterfall model. 

Feasibility study 

The main focus of the feasibility study stage is to determine whether it 
would be financially and technically feasible to develop the software. The 

feasibility study involves carrying out several activities such as 
collection of basic information relating to the software such as the 
different data items that would be input to the system, the processing 
required to be carried out on these data, the output data required to be 
produced by the system, as well as various constraints on the 
development. These collected data are analysed to perform at the 
following: 

Development of an overall understanding of the problem: It is 
necessary to first develop an overall understanding of what the customer 
requires to be developed. For this, only the the important requirements of the 
customer need to be understood and the details of various requirements such 
as the screen layouts required in the graphical user interface (GUI), specific 

formulas or algorithms required for producing the required results, and the 
databases schema to be used are ignored. 



 

 

 

 

Formulation of the various possible strategies for solving the 
problem: In this activity, various possible high-level solution schemes to the 
problem are determined. For example, solution in a client-server framework 
and a standalone application framework may be explored. 

Evaluation of the different solution strategies: The different identified 
solution schemes are analysed to evaluate their benefits and shortcomings. 
Such evaluation often requires making approximate estimates of the 
resources required, cost of development, and development time required. 
The different solutions are compared based on the estimations that have 
been worked out. Once the best solution is identified, all activities in the later 
phases are carried out as per this solution. At this stage, it may also be 
determined that none of the solutions is feasible due to high cost, resource 
constraints, or some technical reasons. This scenario would, of course, 
require the project to be abandoned. 

We can summarise the outcome of the feasibility study phase by noting 
that other than deciding whether to take up a project or not, at this stage 
very high-level decisions regarding the solution strategy is defined. Therefore, 
feasibility study is a very crucial stage in software development. The 
following is a case study of the feasibility study undertaken by an 
organisation. It is intended to give a feel of the activities and issues involved 
in the feasibility study phase of a typical software project. 
 

Requirements analysis and specification 

The aim of the requirements analysis and specification phase is to 
understand the exact requirements of the customer and to document 

them properly. This phase consists of two distinct activities, namely 
requirements gathering and analysis, and requirements specification. In 
the following subsections, we give an overview of these two activities: 

 Requirements gathering and analysis: The goal of the 
requirements gathering activity is to collect all relevant information 
regarding the software to be developed from the customer with a view 
to clearly understand the requirements. For this, first requirements are 
gathered from the customer and then the gathered requirements are 
analysed. The goal of the requirements analysis activity is to weed out 

the incompleteness and inconsistencies in these gathered 
requirements. Note that a n inconsistent requirement is one in which 



 

 

 

 

some part of the requirement contradicts with some other part. On the 
other hand, a n incomplete requirement is one in which some parts of 

the actual requirements have been omitted. 
 Requirements specification: After the requirement gathering and 
analysis activities are complete, the identified requirements are 
documented. This is called a software requirements specification (SRS) 

document. The SRS document is written using end-user terminology. 
This makes the SRS document understandable to the customer. 
Therefore, understandability of the SRS document is an important 
issue. The SRS document normally serves as a contract between the 
development team and the customer. Any future dispute between the 
customer and the developers can be settled by examining the SRS 
document. The SRS document is therefore an important document 
which must be thoroughly understood by the development team, and 
reviewed jointly with the customer. The SRS document not only forms 
the basis for carrying out all the development activities, but several 
documents such as users’ manuals, system test plan, etc. are prepared 
directly based on it. In Chapter 4, we examine the requirements 
analysis activity and various issues involved in developing a good SRS 
document in more detail. 

Design 

The goal of the design phase is to transform the requirements specified 
in the SRS document into a structure that is suitable for implementation 
in some programming language. In technical terms, during the design 
phase the software architecture is derived from the SRS document. Two 

distinctly different design approaches are popularly being used at 
present—the procedural and object-oriented design approaches.  

 Procedural design approach: The traditional design approach is in 

use in many software development projects at the present time. This 

traditional design technique is based on the data flow-oriented design 
approach. It consists of two important activities; first structured analysis 

of the requirements specification is carried out where the detailed 
structure of the problem is examined. This is followed by a structured 

design step where the results of structured analysis are transformed 

into the software design. 



 

 

 

 

During structured analysis, the functional requirements specified in the 
SRS document are decomposed into subfunctions and the data-flow among 
these subfunctions is analysed and represented diagrammatically in the 
form of DFDs. The DFD technique is discussed in Chapter 6. Structured 
design is undertaken once the structured analysis activity is complete. 
Structured design consists of two main activities—architectural design (also 
called high-level design ) and detailed design (also called Low-level design ). 

High-level design involves decomposing the system i nt o modules, and 
representing the interfaces and the invocation relationships among the 
modules.. 

 Object-oriented design approach: In this technique, various 
objects that occur in the problem domain and the solution domain are 
first identified and the different relationships that exist among these 
objects are identified. The object structure is further refined to obtain 
the detailed design. The OOD approach is credited to have several 
benefits such as lower development time and effort, and better 
maintainability of the software.  

Coding and unit testing 

The purpose of the coding and unit testing phase is to translate a 
software design into source code and to ensure that individually each 
function is working correctly. The coding phase is also sometimes called 
t h e implementation phase, since the design is implemented into a 

workable solution in this phase. Each component of the design is 
implemented as a program module. The end-product of this phase is a 
set of program modules that have been individually unit tested. The 
main objective of unit testing is to determine the correct working of the 
individual modules. The specific activities carried out during unit testing 
include designing test cases, testing, debugging to fix problems, and 
management of test cases.  

Integration and system testing 

Integration of different modules is undertaken soon after they have been 
coded and unit tested. During the integration and system testing phase, the 
different modules are integrated in a planned manner. Various modules 
making up a software are almost never integrated in one shot (can you guess 
the reason for this?). Integration of various modules are normally carried out 



 

 

 

 

incrementally over a number of steps. During each integration step, 
previously planned modules are added to the partially integrated system and 
the resultant system is tested. Finally, after all the modules have been 
successfully integrated and tested, the full working system is obtained. 
System testing is carried out on this fully working system. 

 

Maintenance 

The total effort spent on maintenance of a typical software during its 
operation phase is much more than that required for developing the 
software itself. Many studies carried out in the past confirm this and 
indicate that the ratio of relative effort of developing a typical software 
product and the total effort spent on its maintenance is roughly 40:60. 
Maintenance is required in the following three types of situations: 

 Corrective maintenance: This type of maintenance is carried out to 
correct errors that were not discovered during the product 
development phase. 

 Perfective maintenance: This type of maintenance is carried out to 
improve the performance of the system, or to enhance the 
functionalities of the system based on customer’s requests. 

 Adaptive maintenance: Adaptive maintenance is usually required for 
porting the software to work in a new environment. For example, 
porting may be required to get the software to work on a new 
computer platform or with a new operating system. 

Shortcomings of the classical waterfall model 

The classical waterfall model is a very simple and intuitive model. 
However, it suffers from several shortcomings. Let us identify some of 
the important shortcomings of the classical waterfall model: 

No feedback paths: In classical waterfall model, the evolution of a software 
from one phase to the next is analogous to a waterfall. Just as water in a 
waterfall after having flowed down cannot flow back, once a phase is 
complete, the activities carried out in it and any artifacts produced in this 
phase are considered to be final and are closed for any rework. This requires 
that all activities during a phase are flawlessly carried out. 

Difficult to accommodate change requests: This model assumes that all 
customer requirements can be completely and correctly defined at the 
beginning of the project. There is much emphasis on creating an 



 

 

 

 

unambiguous and complete set of requirements. But, it is hard to achieve this 
even in ideal project scenarios. The customers’ requirements usually keep on 
changing with time. But, in this model it becomes difficult to accommodate 
any requirement change requests made by the customer after the 
requirements specification phase is complete, and this often becomes a 
source of customer discontent. 

Inefficient error corrections: This model defers integration of code and 
testing tasks until it is very late when the problems are harder to resolve. 

No overlapping of phases: This model recommends that the phases be 
carried out sequentially—new phase can start only after the previous one 
completes. However, it is rarely possible to adhere to this recommendation 
and it leads to a large number of team members to idle for extended periods.  

Is the classical waterfall model useful at all? 
 

The rationale behind preparation of documents based on the classical 
waterfall model can be explained using Hoare’s metaphor of mathematical 
theorem [1994] proving—A mathematician presents a proof as a single chain 
of deductions, even though the proof might have come from a convoluted set 
of partial attempts, blind alleys and backtracks. Imagine how difficult it would 
be to understand, if a mathematician presents a proof by retaining all the 
backtracking, mistake corrections, and solution refinements he made while 
working out the proof. 

2.1.2 Iterative Waterfall Model 

We had pointed out in the previous section that in a practical software 
development project, the classical waterfall model is hard to use. We had 
branded the classical waterfall model as an idealistic model. In this context, 
the iterative waterfall model can be thought of as incorporating the necessary 
changes to the classical waterfall model to make it usable in practical 
software development projects. 

 

The feedback paths introduced by the iterative waterfall model are shown 
in Figure 2.3. The feedback paths allow for correcting errors committed by a 
programmer during some phase, as and when these are detected in a later 

The main change brought about by the iterative waterfall model to the classical 
waterfall model is in the form of providing feedback paths from every phase to its 
preceding phases. 



 

 

 

 

phase. For example, if during the testing phase a design error is identified, 
then the feedback path allows the design to be reworked and the changes to 
b e reflected in the design documents and all other subsequent documents. 
Please notice that in Figure 2.3 there is no feedback path to the feasibility 
stage. This is because once a team having accepted to take up a project, 
does not give up the project easily due to legal and moral reasons. 

 

Figure 2.3: Iterative waterfa l model. 

Almost every life cycle model that we discuss are iterative in nature, except 
the classical waterfall model and the V-model—which are sequential in 
nature. In a sequential model, once a phase is complete, no work product of 
that phase are changed later. 

Phase containment of errors 

No matter how careful a programmer may be, he might end up committing 
some mistake or other while carrying out a life cycle activity. These mistakes 
result in errors (also called faults o r bugs ) in the work product. It is 

advantageous to detect these errors in the same phase in which they take 
place, since early detection of bugs reduces the effort and time required for 
correcting those. For example, if a design problem i s detected in the design 
phase itself, then the problem can be taken care of much more easily than if 
the error is identified, say, at the end of the testing phase. In the later case, 
it would be necessary not only to rework the design, but also to appropriately 
redo the relevant coding as well as the testing activities, thereby incurring 
higher cost. It may not always be possible to detect all the errors in the same 



 

 

 

 

phase in which they are made. Nevertheless, the errors should be detected as 
early as possible. 

 

For achieving phase containment of errors, how can the developers detect 
almost all error that they commit in the same phase? After all, the end 
product of many phases are text or graphical documents, e.g. SRS document, 
design document, test plan document, etc. A popular technique is to 
rigorously review the documents produced at the end of a phase. 

Phase overlap 

Even though the strict waterfall model envisages sharp transitions to 
occur from one phase to the next (see Figure 2.3), in practice the 
activities of different phases overlap (as shown in Figure 2.4) due to 
two main reasons: 

 In spite of the best effort to detect errors in the same phase in which 
they are committed, some errors escape detection and are detected in 
a later phase. These subsequently detected errors cause the activities 
of some already completed phases to be reworked. If we consider such 
rework after a phase is complete, we can say that the activities 
pertaining to a phase do not end at the completion of the phase, but 
overlap with other phases as shown in Figure 2.4. 

 An important reason for phase overlap is that usually the work required 
to be carried out in a phase is divided among the team members. 
Some members may complete their part of the work earlier than other 
members. If strict phase transitions are maintained, then the team 
members who complete their work early would idle waiting for the 
phase to be complete, and are said to be in a blocking state. Thus the 

developers who complete early would idle while waiting for their team 
mates to complete their assigned work. Clearly this is a cause for 
wastage of resources and a source of cost escalation and inefficiency. 
As a result, in real projects, the phases are allowed to overlap. That is, 
once a developer completes his work assignment for a phase, proceeds 
to start the work for the next phase, without waiting for all his team 
members to complete their respective work allocations. 

Considering these situations, the effort distribution for different phases with 



 

 

 

 

time would be as shown in Figure 2.4. 

 

Figure 2.4: Distribution of effort for various phases in the iterative waterfa l model. 

Shortcomings of the iterative waterfall model 

Some of the glaring shortcomings of the waterfall model when used in 
the present-day software development projects are as following: 

Difficult to accommodate change requests: A major problem with the 
waterfall model is that the requirements need to be frozen before the 
development starts. Based on the frozen requirements, detailed plans are 
made for the activities to be carried out during the design, coding, and 
testing phases. Since activities are planned for the entire duration, 
substantial effort and resources are invested in the activities as developing 
the complete requirements specification, design for the complete functionality 
and so on. Therefore, accommodating even small change requests after the 
development activities are underway not only requires overhauling the plan, 
but also the artifacts that have already been developed. 

 

The basic assumption made in the iterative waterfall model that methodical 
requirements gathering and analysis alone would comprehensively and 
correctly identify all the requirements by the end of the requirements phase is 
flawed. 



 

 

 

 

Incremental delivery not supported: In the iterative waterfall model, the 
full software is completely developed and tested before it is delivered to the 
customer. There is no provision for any intermediate deliveries to occur. This 

is problematic because the complete application may take several months or 
years to be completed and delivered to the customer. By the time the 
software is delivered, installed, and becomes ready for use, the customer’s 
business process might have changed substantially. This makes the 
developed application a poor fit to the customer’s requirements. 

Phase overlap not supported: For most real life projects, i t becomes 

difficult to follow the rigid phase sequence prescribed by the waterfall model. 
By the term a rigid phase sequence, we mean that a phase can start only after 

the previous phase is complete in all respects. As already discussed, strict 
adherence to the waterfall model creates blocking states. The waterfall model 

is usually adapted for use in real-life projects by allowing overlapping of 

various phases as shown in Figure 2.4. 

Error correction unduly expensive: In waterfall model, validation is 
delayed till the complete development of the software. As a result, the 
defects that are noticed at the time of validation incur expensive rework and 
result in cost escalation and delayed delivery. 

Limited customer interactions: This model supports very limited customer 
interactions. It is generally accepted that software developed in isolation 
from the customer is the cause of many problems. In fact, interactions occur 
only at the start of the project and at project completion. As a result, the 
developed software usually turns out to be a misfit to the customer’s actual 
requirements. 

Heavy weight: The waterfall model overemphasises documentation. A 
significant portion of the time of the developers is spent in preparing 
documents, and revising them as changes occur over the life cycle. Heavy 
documentation though useful during maintenance and for carrying out review, 
is a source of team inefficiency. 

No support for risk handling and code reuse: It becomes difficult to use 
the waterfall model in projects that are susceptible to various types of risks, 
or those involving significant reuse of existing development artifacts. Please 
recollect that software services types of projects usually involve significant 
reuse. 

 



 

 

 

 

2.1.3 V-Model 

A popular development process model, V-model is a variant of the waterfall 
model. As is the case with the waterfall model, this model gets its name from 
its visual  appearance  (see  Figure  2.5).  In  this  model  verification  and 

validation activities are carried out throughout the development life cycle, 
and therefore the chances bugs in the work products considerably reduce. 
This model is therefore generally considered to be suitable for use in projects 
concerned with development of safety-critical software that are required to 
have high reliability. 

 

Figure 2.5: V-model. 

As shown in Figure 2.5, there are two main phases—development and 
validation phases. The left half of the model comprises the development 
phases and the right half comprises the validation phases. 

 In each development phase, along with the development of a work 
product, test case design and the plan for testing the work product are 
carried out, whereas the actual testing is carried out in the validation 
phase. This validation plan created during the development phases is 
carried out in the corresponding validation phase which have been 
shown by dotted arcs in Figure 2.5. 



 

 

 

 

 In the validation phase, testing is carried out in three steps—unit, 
integration, and system testing. The purpose of these three different 
steps of testing during the validation phase is to detect defects that 
arise  in  the  corresponding  phases  of  software  development— 

requirements analysis and specification, design, and coding 
respectively. 

V-model versus waterfall model 

We have already pointed out that the V-model can be considered to be 
an extension of the waterfall model. However, there are major 
differences between the two. As already mentioned, in contrast to the 
iterative waterfall model where testing activities are confined to the 
testing phase only, in the V-model testing activities are spread over the 
entire life cycle. As shown in Figure 2.5, during the requirements 
specification phase, the system test suite design activity takes place. 
During the design phase, the integration test cases are designed. 
During coding, the unit test cases are designed. Thus, we can say that 
in this model, development and validation activities proceed hand in 
hand. 

Advantages of V-model 

The important advantages of the V-model over the iterative waterfall 
model are as following: 

 In the V-model, much o f the testing activities (test case design, test 
planning, etc.) are carried out in parallel with the development 
activities. Therefore, before testing phase starts significant part of the 
testing activities, including test case design and test planning, is 
already complete. Therefore, this model usually leads to a shorter 
testing phase and an overall faster product development as compared 
to the iterative model. 

 Since test cases are designed when the schedule pressure has not built 
up, the quality of the test cases are usually better. 

 The test team is reasonably kept occupied throughout the 
development cycle in contrast to the waterfall model where the testers 
are active only during the testing phase. This leads to more efficient 
manpower utilisation. 

 In the V-model, the test team is associated with the project from the 



 

 

 

 

beginning. Therefore they build up a good understanding of the 
development artifacts, and this in turn, helps them to carry out 
effective testing of the software. In contrast, in the waterfall model 
often the test team comes on board late in the development 
cycle,since no testing activities are carried out before the start of 
the implementation and testing phase. 

Disadvantages of V-model 

Being a derivative of the classical waterfall model, this model inherits 
most of the weaknesses of the waterfall model. 

2.1.4 Prototyping Model 

The prototype model is also a popular life cycle model. The prototyping 

model can be considered to be an extension of the waterfall model. 
This model suggests building a working prototype of the system, before 

development of the actual software. A prototype is a toy and crude 

implementation of a system. It has limited functional capabilities, low 

reliability, or inefficient performance as compared to the actual 
software.  

 A prototype can be built very quickly by using several shortcuts. The 

shortcuts usually involve developing inefficient, inaccurate, or dummy 

functions. The shortcut implementation of a function, for example, may 

produce the desired results by using a table look-up rather than by 
performing the actual computations. Normally the term rapid prototyping 

is used when software tools are used for prototype construction. For 
example, tools based on fourth generation languages (4GL) may be used 

to construct the prototype for the GUI parts. 

Necessity of the prototyping model 

The prototyping model is advantageous to use for specific types of 
projects. In the following, we identify three types of projects for which 
the prototyping model can be followed to advantage: 

 It is advantageous to use the prototyping model for development of 
the graphical user interface (GUI) part of an application. Through the 
use of a prototype, it becomes easier to illustrate the input data 
formats, messages, reports, and the interactive dialogs to the 
customer. This is a valuable mechanism for gaining better 



 

 

 

 

understanding of the customers’ needs. In this regard, the prototype 
model turns out to be especially useful in developing the graphical user 

interface (GUI) part of a system. For the user, it becomes much easier 

to form an opinion regarding what would be more suitable by 
experimenting with a working user interface, rather than trying to 
imagine the working of a hypothetical user interface. 

 

 The prototyping model is especially useful when the exact technical 
solutions are unclear to the development team. A prototype can help 
them to critically examine the technical issues associated with product 
development.  

 An important reason for developing a prototype is that it is impossible 
to “get it right” the first time. As advocated by Brooks [1975], one 
must plan to throw away the software in order to develop a good 
software later. Thus, the prototyping model can be deployed when 
development of highly optimised and efficient software is required. 

From the above discussions, we can conclude the following: 
 

Life cycle activities of prototyping model 

The prototyping model of software development is graphically shown in 

Figure 2.6. As shown in Figure 2.6, software is developed through two 
major activities—prototype construction and iterative waterfall-based 
software development. 

Prototype development: Prototype development starts with an initial 
requirements gathering phase. A quick design is carried out and a prototype 
is built. The developed prototype is submitted to the customer for evaluation. 
Based on the customer feedback, the requirements are refined and the 
prototype is suitably modified. This cycle of obtaining customer feedback and 
modifying the prototype continues till the customer approves the prototype. 

Iterative development: Once the customer approves the prototype, the 
actual software is developed using the iterative waterfall approach. In spite 
of the availability of a working prototype, the SRS document is usually 
needed to be developed since the SRS document is invaluable for carrying out 
traceability analysis, verification, and test case design during later phases. 
However, for GUI parts, the requirements analysis and specification phase 
becomes redundant since the working prototype that has been approved by 



 

 

 

 

the customer serves as an animated requirements specification. 

T h e code for the prototype is usually thrown away. However, the 
experience gathered from developing the prototype helps a great deal in 
developing the actual system. 

 

 

Figure 2.6: Prototyping model of software development. 
 

By constructing the prototype and submitting it for user evaluation, many 
customer requirements get properly defined and technical issues get resolved 
by experimenting with the prototype. This minimises later change requests 



 

 

 

 

from the customer and the associated redesign costs. 

Strengths of the prototyping model 

This model is the most appropriate for projects that suffer from technical 
and requirements risks. A constructed prototype helps overcome these 
risks. 

Weaknesses of the prototyping model 

The prototype model can increase the cost of development for projects 
that are routine development work and do not suffer from any 
significant risks. Even when a project is susceptible to risks, the 
prototyping model is effective only for those projects for which the risks 
can be identified upfront before the development starts. Since the 
prototype is constructed only at the start of the project, the prototyping 
model is ineffective for risks identified later during the development 
cycle. The prototyping model would not be appropriate for projects for 
which the risks can only be identified after the development is 
underway. 

2.1.5 Incremental Development Model 

This life cycle model is sometimes referred to as the successive versions model 

and sometimes as the incremental model. In this life cycle model, first a 
simple working system implementing only a few basic features is built and 
delivered to the customer. Over many successive iterations successive 
versions are implemented and delivered to the customer until the desired 
system is realised. The incremental development model has been shown in 
Figure 2.7. 

 

Figure 2.7: Incremental software development. 

Life cycle activities of incremental development model 



 

 

 

 

In the incremental life cycle model, the requirements of the software are 
first broken down into several modules or features that can be 
incrementally constructed and delivered. This has been pictorially 
depicted i n Figure 2.7. At any time, plan is made only for the next 
increment and no long-term plans a re made. Therefore, it becomes 
easier to accommodate change requests from the customers. 

The development team first undertakes to develop the core features of the 
system. The core or basic features are those that do not need to invoke any 
services from the other features. On the other hand, non-core features need 
services from the core features. Once the initial core features are developed, 
these are refined into increasing levels of capability by adding new 
functionalities in successive versions. Each incremental version is usually 
developed using an iterative waterfall model of development. The 
incremental model is schematically shown in Figure 2.8. As each successive 
version of the software is constructed and delivered to the customer, the 
customer feedback is obtained on the delivered version and these feedbacks 
are incorporated in the next version. Each delivered version of the software 
incorporates additional features over the previous version and also refines the 
features that were already delivered to the customer. 

 

 
 

  



 

 

 

 

 
Advantages 

Figure 2.8: Incremental model of software development. 



 

 

 

 

The incremental development model offers several advantages. Two 
important ones are the following: 

 Error reduction: The core modules are used by the customer from 
the beginning and therefore these get tested thoroughly. This reduces 
chances of errors in the core modules of the final product, leading to 
greater reliability of the software. 

 Incremental resource deployment: This model obviates the need 
for the customer to commit large resources at one go for development 
of the system. It also saves the developing organisation from deploying 
large resources and manpower for a project in one go. 

2.1.6 Evolutionary Model 

This model has many of the features of the incremental model. As in 
case of the incremental model, the software is developed over a 
number of increments. At each increment, a concept (feature) is 
implemented and is  deployed at  the  client  site. The  software  is 

successively refined and feature-enriched until the full software is 
realised. The principal idea behind the evolutionary life cycle model is 
conveyed by its name. In the incremental development model, 
complete requirements are first developed and the SRS document 
prepared. In contrast, in the evolutionary model, the requirements, 
plan, estimates, and solution evolve over the iterations, rather than 
fully defined and frozen in a major up-front specification effort before 
the development iterations begin. Such evolution is consistent with the 
pattern of unpredictable feature discovery and feature changes that 
take place in new product development. 

Though the evolutionary model can also be viewed as an extension of the 
waterfall model, but it incorporates a major paradigm shift that has been 
widely adopted in many recent life cycle models. Due to obvious reasons, the 
evolutionary software development process is sometimes referred to as 
design a little, build a little, test a little, deploy a little model. This means that 

after the requirements have been specified, the design, build, test, and 
deployment activities are iterated. A schematic representation of the 
evolutionary model of development has been shown in Figure 2.9. 

Advantages 

The evolutionary model of development has several advantages. Two 



 

 

 

 

important advantages of using this model are the following: 

 Effective elicitation of actual customer requirements: In this 
model, the user gets a chance to experiment with a partially developed 
software much before the complete requirements are developed. 
Therefore, the evolutionary model helps to accurately elicit user 
requirements with the help of feedback obtained on the delivery of 
different versions of the software. As a result, the change requests 
after delivery of the complete software gets substantially reduced. 

 Easy handling change requests: In this model, handling change 
requests is easier as no long term plans are made. Consequently, 
reworks required due to change requests are normally much smaller 
compared to the sequential models. 

Disadvantages 

The main disadvantages of the successive versions model are as follows: 

 



 

 

 

 

Figure 2.9: Evolutionary model of software development. 

 

 Feature division into incremental parts can be non-trivial: For 
many development projects, especially for small-sized projects, it is 
difficult to divide the required features into several parts that can be 
incrementally implemented and delivered. Further, even for larger 
problems, often the features are so interwined and dependent on each 
other that even an expert would need considerable effort to plan the 
incremental deliveries. 

 Ad hoc design: Since at a time design for only the current increment is 

done, the design can become ad hoc without specific attention being 

paid to maintainability and optimality. Obviously, for moderate sized 

problems and for those for which the customer requirements are clear, 
the iterative waterfall model can yield a better solution. 

Applicability of the evolutionary model 

The evolutionary model is normally useful for very large products, where it is 
easier t o find modules for incremental implementation. Often evolutionary 
model is used when the customer prefers to receive the product in increments 
so that he can start using the different features as and when they are 
delivered rather than waiting all the time for the full product to be developed 
and delivered. Another important category of projects for which the 
evolutionary model is suitable, is projects using object-oriented development. 

 

Evolutionary model is appropriate for object-oriented development project, 
since it is easy to partition the software into stand alone units in terms of the 
classes. Also, classes are more or less self contained units that can be 
developed independently. 

2.2 RAPID APPLICATION DEVELOPMENT (RAD) 

The rapid application development (RAD) model was proposed in the early 

nineties in an attempt to overcome the rigidity of the waterfall model 
(and its derivatives) that makes it difficult to accommodate any change 
requests from the customer. It proposed a few radical extensions to the 
waterfall model. This model has the features of both prototyping and 
evolutionary models. It deploys an evolutionary delivery model to 

The evolutionary model is well-suited to use in object-oriented software development 
projects. 



 

 

 

 

obtain and incorporate the customer feedbacks on incrementally 
delivered versions. 

In this model prototypes are constructed, and incrementally the features 
are developed and delivered to the customer. But unlike the prototyping 
model, the prototypes are not thrown away but are enhanced and used in the 
software construction 

The major goals of the RAD model are as follows: 

 To decrease the time taken and the cost incurred to develop software 
systems. 

  To limit the costs of accommodating change requests. 

  T o reduce the communication gap between the customer and the 
developers. 

Main motivation 

In the iterative waterfall model, the customer requirements need to be 
gathered, analysed, documented, and signed off upfront, before any 
development could start. However, often clients do not know what they 
exactly wanted until they saw a working system. It has now become 
well accepted among the practitioners that only through the process 
commenting on an installed application that the exact requirements can 
be brought out. But in the iterative waterfall model, the customers do 
not get to see the software, until the development is complete in all 
respects and the software has been delivered and installed. Working of 
RAD 

In the RAD model, development takes place in a series of short cycles or 

iterations. At any time, the development team focuses on the present iteration 

only, and therefore plans are made for one increment at a time. The time planned 

for each iteration is called a time box. Each iteration is planned to enhance the 

implemented functionality of the application by only a small amount. During each 

time box, a quick-and-dirty prototype-style software for some functionality is 

developed. The customer evaluates the prototype and gives feedback on the 

specific improvements that may be necessary. The prototype is refined based on 

the customer feedback. Please note that the prototype is not meant to be released 

to the customer for regular use though. 

The development team almost always includes a customer representative 
to clarify the requirements. This is intended to make the system tuned to the 
exact customer requirements and also to bridge the communication gap 
between the customer and the development team. The development team  



 

 

 

 

usually consists of about five to six members, including a customer 
representative. 

How does RAD facilitate accommodation of change requests? 

The customers usually suggest changes to a specific feature only after 
they have used it. Since the features are delivered in small increments, 
the customers are able to give their change requests pertaining to a 
feature already delivered. Incorporation of such change requests just 
after the delivery of an incremental feature saves cost as this is carried 
out before large investments have been made in development and 
testing of a large number of features. 

How does RAD facilitate faster development? 

The decrease in development time and cost, and at the same time an 
increased flexibility to incorporate changes are achieved in the RAD 
model in two main ways—minimal use of planning and heavy reuse of 
any existing code through rapid prototyping. The lack of long-term and 
detailed planning gives the flexibility to accommodate later 
requirements changes. Reuse of existing code has been adopted as an 
important mechanism of reducing the development cost. 

RAD model emphasises code reuse as an important means for completing a 
project faster. In fact, the adopters of the RAD model were the earliest to 
embrace object-oriented languages and practices. Further, RAD advocates 
use of specialised tools to facilitate fast creation of working prototypes. These 
specialised tools usually support the following features: 

 Visual style of development. 

 Use of reusable components. 

2.2.1 Applicability of RAD Model 

The following are some of the characteristics of an application that 
indicate its suitability to RAD style of development: 

 Customised software: As already pointed out a customised software is 

developed for one or two customers only by adapting an existing software. In 

customised software development projects, substantial reuse is usually made of 

code from pre-existing software. For example, a company might have 

developed a software for automating the data processing activities at 



 

 

 

 

one or more educational institutes. When any other institute requests 

for an automation package to be developed, typically only a few 

aspects needs to be tailored—since among different  educational 

institutes, most of the data processing activities such as student 
registration, grading, fee collection, estate management, accounting, 
maintenance of staff service records etc. are similar to a large extent. 
Projects involving such tailoring can be carried out speedily and cost- 
effectively using the RAD model. 

 Non-critical software: The RAD model suggests that a quick and 
dirty software should first be developed and later this should be refined 
into the final software for delivery. Therefore, the developed product is 
usually far from being optimal in performance and reliability. In this 
regard, for well understood development projects and where the scope 
of reuse is rather restricted, the Iiterative waterfall model may provide 
a better solution. 

 Highly constrained pro ject schedule: RAD aims to reduce 
development time at the expense of good documentation, 
performance, and reliability. Naturally, for projects with very 
aggressive time schedules, RAD model should be preferred. 

 Large software: Only for software supporting many features (large 
software) can incremental development and delivery be meaningfully 
carried out. 

Application characteristics that render RAD unsuitable 

The RAD style of development is not advisable if a development project 
has one or more of the following characteristics: 

 Generic products (wide distribution): As we have already pointed 
out in Chapter 1, software products are generic in nature and usually 
have wide distribution. For such systems, optimal performance and 
reliability are imperative in a competitive market. As it has already 
been discussed, the RAD model of development may not yield systems 
having optimal performance and reliability. 

 Requirement of optimal performance and/or reliability: For 
certain categories of products, optimal performance or reliability is 
required. Examples of such systems include an operating system (high 
reliability required) and a flight simulator software (high performance 



 

 

 

 

required). If such systems are to be developed using the RAD model, 
the desired product performance and reliability may not be realised. 

  Lack of similar products: If a company has not developed similar 

software, then it would hardly be able to reuse much of the existing 
artifacts. In the absence of sufficient plug-in components, it becomes 
difficult to develop rapid prototypes through reuse, and use of RAD 
model becomes meaningless. 

 Monolithic entity: For certain software, especially small-sized 
software, it may be hard to divide the required features into parts that 
can be incrementally developed and delivered. In this case, it becomes 
difficult to develop a software incrementally. 

2.2.2 Comparison of RAD with Other Models 

In this section, we compare the relative advantages and disadvantages 
of RAD with other life cycle models. 

RAD versus prototyping model 

In the prototyping model, the developed prototype is primarily used by the 
development team to gain insights into the problem, choose between 
alternatives, and elicit customer feedback. The code developed during 
prototype construction is usually thrown away. In contrast, in RAD it is the 
developed prototype that evolves into the deliverable software. 

 

RAD versus iterative waterfall model 

In the iterative waterfall model, all the functionalities of a software are 
developed together. On the other hand, in the RAD model the product 
functionalities are developed incrementally through heavy code and 
design reuse. Further, in the RAD model customer feedback is obtained 
on the developed prototype after each iteration and based on this the 
prototype is refined. Thus, it becomes easy to accommodate any 
request for requirements changes. However, the iterative waterfall 
model does not support any mechanism to accommodate any 
requirement change requests. The iterative waterfall model does have 
some important advantages that include the following. Use of the 

Though RAD is expected to lead to faster software development compared to the 
traditional models (such as the prototyping model), though the quality and reliability 
would be inferior. 



 

 

 

 

iterative waterfall model leads to production of good quality 
documentation which can help during software maintenance. Also, the 
developed software usually has better quality and reliability than 
thatdeveloped using RAD. 

RAD versus evolutionary model 

Incremental development is the hallmark of both evolutionary and RAD 
models. However, in RAD each increment results in essentially a quick 
and dirty prototype, whereas in the evolutionary model each increment 
is systematically developed using the iterative waterfall model. Also in 
the RAD model, software is developed in much shorter increments 
compared the evolutionary model. In other words, the incremental 
functionalities that are developed are of fairly larger granularity in the 
evolutionary model. 

2.3 AGILE DEVELOPMENT MODELS 

In the following, a few reasons why the waterfall-based development was 
becoming difficult to use in project in recent times: 

 In the traditional iterative waterfall-based software development 
models, the requirements for the system are determined at the start of 
a development project and are assumed to be fixed from that point on. 
Later changes to the requirements after the SRS document has been 
completed are discouraged. If at all any later requirement changes 
becomes unavoidable, then the cost of accommodating it becomes 
prohibitively high. On the other hand, accumulated experience 
indicates that customers frequently change their requirements during 
the development period due to a variety of reasons. 

 Waterfall model is called a heavy weight model, since there is too much 

emphasis on producing documentation and usage of tools. This is often 

a source of inefficiency and causes the project completion time to be 
much longer in comparison to the customer expectations. 

 Waterfall model prescribes almost no customer interactions after the 
requirements have been specified. In fact, in the waterfall model of 
software development, customer interactions are largely confined to 
the project initiation and project completion stages. 

The agile software development model was proposed in the mid-1990s to 



 

 

 

 

overcome the serious shortcomings of the waterfall model of development 
identified above. The agile model was primarily designed to help a project to 
adapt to change requests quickly.1Thus, a major aim of the agile models is to 
facilitate quick project completion. But, how is agility achieved in these 
models? Agility is achieved by fitting the process to the project, i.e. removing 
activities that may not be necessary for a specific project. Also, anything that 
that wastes time and effort is avoided. 

Please note that agile model is being used as an umbrella term to refer to a 
group of development processes. These processes share certain common 
characteristics, but do have certain subtle differences among themselves. A 
few popular agile SDLC models are the following: 

 Crystal 

  Atern (formerly DSDM) 

 Feature-driven development 

 Scrum 

 Extreme programming (XP) 

 Lean development 
 Unified process 

In the agile model, the requirements are decomposed into many small 
parts that can be incrementally developed. The agile model adopts an 
iterative approach. Each incremental part is developed over an iteration. Each 
iteration is intended to be small and easily manageable and lasting fo r a 

couple of weeks only. At a time, only one increment is planned, developed, 
and then deployed at the customer site. No long-term plans are made. The 
time to complete an iteration is called a time box. The implication of the term 
time box is that the end date for an iteration does not change. That is, the 

delivery date is considered sacrosanct. The development team can, however, 
decide to reduce the delivered functionality during a time box if necessary. 

A central principle of the agile model is the delivery of an increment to the 
customer after each time box. A few other principles that are central to the 
agile model are discussed below. 

2.3.1 Essential Idea behind Agile Models 

For establishing close contact with the customer during development and 
to gain a clear understanding of the domain-specific issues, each agile 
project usually includes a customer representative in the team. At the 



 

 

 

 

end of each iteration, stakeholders and the customer representative 
review the progress made and re-evaluate the requirements. A 
distinguishing characteristics of the agile models is frequent delivery of 
software increments to the customer. 

Agile model emphasise face-to-face communication over written 
documents. It is recommended that the development team size be 
deliberately kept small (5–9 people) to help the team members meaningfully 
engage in face-to-face communication and have collaborative work 
environment. It is implicit then that the agile model is suited to the 
development of small projects. However, if a large project is required to be 
developed using the agile model, it is likely that the collaborating teams 
might work at different locations. In this case, the different teams are needed 
to maintain as much daily contact as possible through video conferencing, 

telephone, e-mail, etc. 
 

The following important principles behind the agile model were publicised 
in the agile manifesto in 2001: 

  Working software over comprehensive documentation. 

 Frequent delivery of incremental versions of the software to the 
customer in intervals of few weeks. 

 Requirement change requests from the customer are encouraged and 
are efficiently incorporated. 

 Having competent team members and enhancing interactions among 
them is considered much more important than issues such as usage of 
sophisticated tools or strict adherence to a documented process. It is 
advocated that enhanced communication among the development 
team members can be realised through face-to-face communication 
rather than through exchange of formal documents. 

 Continuous interaction with the customer is considered much more 
important rather than effective contract negotiation. A customer 
representatives is required to be a part of the development team, thus 
facilitating close, daily co-operation between customers and 
developers. 

Agile development projects usually deploy pair programming. 
 

Several studies indicate that programmers working in pairs produce 
compact well-written programs and commit fewer errors as compared to 



 

 

 

 

programmers working alone. 

Advantages and disadvantages of agile methods 

The agile methods derive much of their agility by relying on the tacit 
knowledge of the team members about the development project and 
informal communications to clarify issues, rather than spending 
significant  amounts  of  time  in  preparing  formal  documents  and 

reviewing them. Though this eliminates some overhead, but lack of 
adequate documentation may lead to several types of problems, which 
are as follows: 

 Lack of formal documents leaves scope for confusion and important 
decisions taken during different phases can be misinterpreted at later 
points of time by different team members. 

 In the absence of any formal documents, it becomes difficult to get 
important project decisions such as design decisions to be reviewed by 
external experts. 

 When the project completes and the developers disperse, maintenance 
can become a problem. 

2.3.2 Agile versus Other Models 

In the following subsections, we compare the characteristics of the agile 
model with other models of development. 

Agile model versus iterative waterfall model 

The waterfall model is highly structured and systematically steps through 
requirements-capture, analysis, specification, design, coding, and 
testing stages in a planned sequence. Progress is generally measured in 
terms of the number of completed and reviewed artifacts such as 
requirement specifications, design documents, test plans, code reviews, 
etc. for which review is complete. In contrast, while using an agile 
model, progress is measured in terms of the developed and delivered 
functionalities. In agile model, delivery of working versions of a 
software is made in several increments. However, as regards to 
similarity it can be said that agile teams use the waterfall model on a 
small scale, repeating the entire waterfall cycle in every iteration. 

If a project being developed using waterfall model is cancelled mid-way 
during development, then there i s nothing to show from the abandoned 



 

 

 

 

project beyond several documents. With agile model, even if a project is 
cancelled midway, it still leaves the customer with some worthwhile code, 
that might possibly have already been put into live operation. 

Agile versus exploratory programming 

Though a few similarities do exist between the agile and exploratory 
programming styles, there are vast differences between the two as 
well. Agile development model’s frequent re- evaluation of plans, 
emphasis on face-to-face communication, and relatively sparse use of 
documentation are similar to that of the exploratory style. Agile teams, 
however, do follow defined and disciplined processes and carry out 
systematic requirements capture, rigorous designs, compared to chaotic 
coding in exploratory programming. 

Agile model versus RAD model 

The important differences between the agile and the RAD models are 
the following: 

 Agile model does not recommend developing prototypes, but 
emphasises systematic development of each incremental feature. In 
contrast, the central theme of RAD is based on designing quick-and- 
dirty prototypes, which are then refined into production quality code. 

 Agile projects logically break down the solution into features that are 
incrementally developed and delivered. The RAD approach does not 
recommend this. Instead, developers using the RAD model focus on 
developing all the features of an application by first doing it badly and 
then successively improving the code over time. 

 Agile teams only demonstrate completed work to the customer. In 
contrast, RAD teams demonstrate to customers screen mock ups, and 
prototypes, that may be based on simplifications such as table look-ups 
rather than actual computations. 

2.3.3 Extreme Programming Model 

Extreme programming (XP) is an important process model under the 
agile umbrella and was proposed by Kent Beck in 1999. The name of 
this model reflects the fact that it recommends taking these best 

practices that have worked well in the past in program development 

projects to extreme levels. This model is based on a rather simple 



 

 

 

 

philosophy: ”If something is known to be beneficial, why not put it to 
constant use?” Based on this principle, it puts forward several key 
practices that need to be practised to the extreme. Please note that 
most of the key practices that it emphasises were already recognised as 
good practices for some time. 

Good practices that need to be practised to the extreme 

In the following subsections, we mention some of the good practices that 
have been recognised in the extreme programming model and the 
suggested way to maximise their use: 

Code review: It is good since it helps detect and correct problems most 
efficiently. It suggests pair programming as the way to achieve continuous 

review. In pair programming, coding is carried out by pairs of programmers. 
The programmers take turn in writing programs and while one writes the 
other reviews code that is being written. 

Testing: Testing code helps to remove bugs and improves its reliability. XP 
suggests test-driven development (TDD) to continually write and execute test 

cases. In the TDD approach, test cases are written even before any code is 
written. 

Incremental development: Incremental development is good, since it 
helps to get customer feedback, and extent of features delivered is a reliable 
indicator of progress. It suggests that the team should come up with new 
increments every few days. 

Simplicity: Simplicity makes it easier to develop good quality code, as well 
as to test and debug it. Therefore, one should try to create the simplest code 
that makes the basic functionality being written to work. For creating the 
simplest code, one can ignore the aspects such as efficiency, reliability, 
maintainability, etc. Once the simplest thing works, other aspects can be 
introduced through refactoring. 

Design: Since having a good quality design is important to develop a good 

quality solution, everybody should design daily. This can be achieved through 
refactoring, whereby a working code is improved for efficiency and 

maintainability. 

Integration testing: It is important since it helps identify the bugs at the 
interfaces of different functionalities. To this end, extreme programming 
suggests that the developers should achieve continuous integration, by 
building and performing integration testing several times a day. 



 

 

 

 

Basic idea of extreme programming model 

XP is based on frequent releases (called iteration ), during which the 

developers implement “user stories”. User stories are similar to use 

cases, but are more informal and are simpler. A user story is the 

conversational description by the user about a feature of the required 

system. For example, a user story about a library software can be: 

  A library member can issue a book. 

  A library member can query about the availability of a book. 

 A library member should be able to return a borrowed book. 
 

On the basis o f user stories, the project team proposes “metaphors”—a 
common vision of how the system would work. The development team may 
decide to construct a spike for some feature. A spike, is a very simple program 

that is constructed to explore the suitability of a solution being proposed. A 
spike can be considered to be similar to a prototype. 

X P prescribes several basic activities to be part of the software 
development process. We discuss these activities in the following 
subsections: 

Coding: XP argues that code is the crucial part of any system development 
process, since without code it is not possible to have a working system. 
Therefore, utmost care and attention need to be placed on coding activity. 
However, the concept of code as used in XP has a slightly different meaning 
from what is traditionally understood. For example, coding activity includes 
drawing diagrams (modelling) that will be transformed to code, scripting a 
web-based system, and choosing among several alternative solutions. 

Testing: XP places high importance on testing and considers it be the 
primary means for developing a fault-free software. 

Listening: The developers need to carefully listen to the customers if they 
have to develop a good quality software. Programmers may not necessarily 
be having an in-depth knowledge of the the specific domain of the system 
under development. On the other hand, customers usually have this domain 
knowledge. Therefore, for the programmers to properly understand what the 

A user story is a simplistic statement of a customer about a functionality he needs, it 
does not mention about finer details such as the different scenarios that can occur, 
the precondition (state at which the system) to be satisfied before the feature can be 
invoked, etc. 



 

 

 

 

functionality of the system should be, they have to listen to the customer. 

Designing: Without proper design, a system implementation becomes too 
complex and the dependencies within the system become too numerous and 
it becomes very difficult to comprehend the solution, and thereby making 
maintenance   prohibitively expensive.  A  good  design  should  result  
inelimination of complex dependencies within a system. Thus, effective use of 
a suitable design technique is emphasised. 

Feedback: It espouses the wisdom: “A system staying out of users is trouble 
waiting to happen”. It recognises the importance of user feedback in 
understanding the exact customer requirements. The time that elapses 
between the development of a version and collection of feedback on it is 
critical to learning and making changes. It argues that frequent contact with 
the customer makes the development effective. 

Simplicity: A corner-stone of XP is based on the principle: “build something 
simple that will work today, rather than trying to build something that would 
take time and yet may never be used”. This in essence means that attention 
should be focused on specific features that are immediately needed and 
making them work, rather than devoting time and energy on speculations 
about future requirements. 

 

Applicability of extreme programming model 

The following are some of the project characteristics that indicate the 
suitability of a project for development using extreme programming 
model: 

Projects involving new technology or research pro jects: In this case, 
the requirements change rapidly and unforeseen technical problems need to 
be resolved. 

Small projects: Extreme programming was proposed in the context of small 
teams as face to face meeting is easier to achieve. 

Project characteristics not suited to development using 
agile models 

The following are some of the project characteristics that indicate 

XP is in favour of making the solution to a problem as simple as possible. In contrast, 
the traditional system development methods recommend planning for reusability and 
future extensibility of code and design at the expense of higher code and design 
complexity. 



 

 

 

 

unsuitability of agile development model for use in a development 
project: 

 Stable requirements: Conventional development models are more 
suited to use in projects characterised by stable requirements. For such 

projects, it is known that few changes, if at all, will occur. Therefore, 
process models such as iterative waterfall model that involve making 
long-term plans during project initiation can meaningfully be used. 

 Mission critical or safety critical systems: In the development of 
such systems, the traditional SDLC models are usually preferred to 
ensure reliability. 

2.3.4 Scrum Model 

In the scrum model, a project is divided into small parts of work that can 
be incrementally developed and delivered over time boxes that are 
called sprints. The software therefore gets developed over a series of 

manageable chunks. Each sprint typically takes only a couple of weeks 
to complete. At the end of each sprint, stakeholders and team members 
meet to assess the progress made and the stakeholders suggest to the 
development team any changes needed to features that have already 
been developed and any overall improvements that they might feel 
necessary. 

In the scrum model, the team members assume three fundamental roles— 
software owner, scrum master, and team member. The software owner is 
responsible for communicating the customers vision of the software to the 
development team. The scrum master acts as a liaison between the software 
owner and the team, thereby facilitating the development work. 

2.4 SPIRAL MODEL 

This model gets its name from the appearance of its diagrammatic 
representation that looks like a spiral with many loops (see Figure 
2.10). The exact number of loops of the spiral is not fixed and can vary 
from project to project. The number of loops shown in Figure 2.10 is 
just an example. Each loop of the spiral is called a phase of the software 

process. The exact number of phases through which the product is 
developed can be varied by the project manager depending upon the 
project risks. A prominent feature of the spiral model is handling 



 

 

 

 

unforeseen risks that can show up much after the project has started. In 
this context, please recollect that the prototyping model can be used 
effectively only when the risks in a project can be identified upfront 
before the development work starts. As we shall discuss, this model 
achieves this by incorporating much more flexibility compared to SDLC 
other models. 

While the prototyping model does provide explicit support for risk handling, 
the risks are assumed to have been identified completely before the project 
start. This is required since the prototype is constructed only at the start of 
the project. In contrast, in the spiral model prototypes are built at the start of 
every phase. Each phase of the model is represented as a loop in its 
diagrammatic representation. Over each loop, one or more features of the 
product are elaborated and analysed and the risks at that point of time are 
identified and are resolved through prototyping. Based on this, the identified 
features are implemented. 

Figure 2.10: Spiral model of software development. 

Risk handling in spiral model 

A risk is essentially any adverse circumstance that might hamper the 
successful completion of a software project. As an example, consider a 
project for which a risk can be that data access from a remote database 



 

 

 

 

might be too slow to be acceptable by the customer. This risk can be 
resolved by building a prototype of the data access subsystem and 
experimenting with the exact access rate. If the data access rate is too 
slow, possibly a caching scheme can be implemented or a  faster 

communication scheme can be deployed to overcome the slow data 
access rate. Such risk resolutions are easier done by using a prototype 
as the pros and cons of an alternate solution scheme can evaluated 
faster and inexpensively, as compared to experimenting using the 
actual software application being developed. The spiral model supports 
coping up with risks by providing the scope to build a prototype at every 
phase of software development. 

2.4.1 Phases of the Spiral Model 

Each phase in this model is split into four sectors (or quadrants) as 
shown in Figure 2.10. In the first quadrant, a few features of the 
software are identified to be taken u p for immediate development 
based on how crucial it is to the overall software development. With 
each iteration around the spiral (beginning at the center and moving 
outwards), progressively more complete versions of the software get 
built. In other words, implementation of the identified features forms a 
phase. 

Quadrant 1: The objectives are investigated, elaborated, and analysed. 
Based on this, the risks involved in meeting the phase objectives are 
identified. In this quadrant, alternative solutions possible for the phase under 
consideration are proposed. 

Quadrant 2: During the second quadrant, the alternative solutions are 
evaluated to select the best possible solution. To be able to do this, the 
solutions are evaluated by developing an appropriate prototype. 

Quadrant 3: Activities during the third quadrant consist of developing and 
verifying the next level of the software. At the end of the third quadrant, the 
identified features have been implemented and the next version of the 
software is available. 

Quadrant 4: Activities during the fourth quadrant concern reviewing the 
results of the stages traversed so far (i.e. the developed version of the 
software) with the customer and planning the next iteration of the spiral. 

The radius of the spiral at any point represents the cost incurred in the 
project so far, and the angular dimension represents the progress made so 



 

 

 

 

far in the current phase. 
In the spiral model of development, the project manager dynamically 

determines the number of phases as the project progresses. Therefore, in this 
model, the project manager plays the crucial role of tuning the model 
tospecific projects. 

To make the model more efficient, the different features of the software 
that can be developed simultaneously through parallel cycles are identified. 
To keep our discussion simple, we shall not delve into parallel cycles in the 
spiral model. 

Advantages/pros and disadvantages/cons of the spiral 
model 

There are a few disadvantages of the spiral model that restrict its use to 
a only a few types of projects. To the developers of a project, the spiral 
model usually appears as a complex model to follow, since it is risk- 
driven and is more complicated phase structure than the other models 
we discussed. It would therefore be counterproductive to use, unless 
there are knowledgeable and experienced staff in the project. Also, it is 
not very suitable for use in the development of outsourced projects, 
since the software risks need to be continually assessed as it is 
developed. 

In spite of the disadvantages of the spiral model that we pointed out, for 
certain categories of projects, the advantages of the spiral model can 
outweigh its disadvantages. 

 

In this regard, it is much more powerful than the prototyping model. 
Prototyping model can meaningfully be used when all the risks associated 
with a project are known beforehand. All these risks are resolved by building 
a prototype before the actual software development starts. 

Spiral model as a meta model 

As compared to the previously discussed models, the spiral model can be 
viewed as a meta model, since it subsumes all the discussed models. For 

example, a single loop spiral actually represents the waterfall model. The 
spiral model uses the approach of the prototyping model by first building a 
prototype in each phase before the actual development starts. This 
prototypes are used as a risk reduction mechanism. The spiral model 
incorporates the systematic step- wise approach of the waterfall model. Also, 
the spiral model can be considered as supporting the evolutionary model—the 



 

 

 

 

iterations along the spiral can be considered as evolutionary levels through 
which the complete system is built. This enables the developer to understand 
and resolve the risks at each evolutionary level (i.e. iteration along the 
spiral). 

 

2.5 A COMPARISON OF DIFFERENT LIFE CYCLE MODELS 

The classical waterfall model can be considered as the basic model and 
all other life cycle models as embellishments of this model. However, 
the classical waterfall model cannot be used in practical development 
projects, since this model supports no mechanism to correct the errors 
that are committed during any of the phases but detected at a later 
phase. This problem is overcome by the iterative waterfall model 
through the provision of feedback paths. 

The iterative waterfall model is probably the most widely used software 
development model so far. This model is simple to understand and use. 
However, this model is suitable only for well-understood problems, and is not 
suitable for development of very large projects and projects that suffer from 
large number of risks. 

The prototyping model is suitable for projects for which either the user 
requirements or the underlying technical aspects are not well understood, 
however all the risks can be identified before the project starts. This model is 
especially popular for development of the user interface part of projects. 

The evolutionary approach is suitable for large problems which can be 
decomposed into a set of modules for incremental development and delivery. 
This model is also used widely for object-oriented development projects. Of 
course, this model can only be used if incremental delivery of the system is 
acceptable to the customer. 

The spiral model is considered a meta model and encompasses all other life 

cycle models. Flexibility and risk handling are inherently built into this model. 
The spiral model is suitable for development of technically challenging and 
large software that are prone to several kinds of risks that are difficult to 
anticipate at the start of the project. However, this model is mu ch more 
complex than the other models—this is probably a factor deterring its use in 
ordinary projects. 

Let us now compare the prototyping model with the spiral model. The 
prototyping model can be used if the risks are few and can be determined at 
the start of the project. The spiral model, on the other hand, is useful when 



 

 

 

 

the risks are difficult to anticipate at the beginning of the project, but are 
likely to crop up as the development proceeds. 

Let us compare the different life cycle models from the viewpoint of the 
customer. Initially, customer confidence is usually high on the development 
team irrespective of the development model followed. During the lengthy 
development process, customer confidence normally drops off, as no working 
software is yet visible. Developers answer customer queries using technical 
slang, and delays are announced. This gives rise to customer resentment. On 
the other hand, an evolutionary approach lets the customer experiment with 
a working software much earlier than the monolithic approaches. Another 
important advantage of the incremental model is that it reduces the 
customer’s trauma of getting used to an entirely new system. The gradual 
introduction of the software via incremental phases provides time to the 
customer to adjust to the new software. Also, from the customer’s financial 
view point, incremental development does not require a large upfront capital 
outlay. The customer can order the incremental versions as and when he can 
afford them. 

2.5.1 Selecting an Appropriate Life Cycle Model for a Pro ject 

We have discussed the advantages and disadvantages of the various life 
cycle models. However, how to select a suitable life cycle model for a 
specific project? The answer to this question would depend on several 
factors. A suitable life cycle model can possibly be selected based on an 
analysis of issues such as the following: 

Characteristics of the software to be developed: The choice of the life 
cycle model to a large extent depends on the nature of the software that is 
being developed. For small services projects, the agile model is favoured. On 
the other hand, for product and embedded software development, the 
iterative waterfall model can be preferred. An evolutionary model is a 
suitable model for object-oriented development projects. 

Characteristics of the development team: The skill-level of the team 
members is a significant factor in deciding about the life cycle model to use. 
If the development team is experienced in developing similar software, then 
even an embedded software can be developed using an iterative waterfall 
model. If the development team is entirely novice, then even a simple data 
processing application may require a prototyping model to be adopted. 

Characteristics of the customer: If the customer is not quite familiar with 
computers, then the requirements are likely to change frequently as it would 



 

 

 

 

be difficult to form complete, consistent, and unambiguous requirements. 
Thus, a prototyping model may be necessary to reduce later change requests 
from the customers. 



 

 

 

 

Chapter 

3 

SOFTWARE PROJECT 

MANAGEMENT 

3.1 SOFTWARE PROJECT MANAGEMENT COMPLEXITIES 

Management of software projects is much more complex than 
management of many other types of projects. The main factors 
contributing to the complexity of managing a software project, as 
identified by [Brooks75], are the following: 

Invisibility: Software remains invisible, until its development is complete 
and it is operational. Anything that is invisible, is difficult to manage and 
control. Consider a house building project. For this project, the project 
manger can very easily assess the progress of the project through a visual 
examination of the building under construction. Therefore, the manager can 
closely monitor the progress of the project, and take remedial actions 
whenever he finds that the progress is not as per plan. In contrast, it 
becomes very difficult for the manager of a software project to assess the 
progress of the project due to the invisibility of software. The best that he 
can do perhaps is to monitor the milestones that have been completed by the 
development team and the documents that have been produced—which are 
rough indicators of the progress achieved. 

 

Changeability: Because the software part of any system is easier to change 
as compared to the hardware part, the software part is the one that gets 
most frequently changed. This is especially true in the later stages of a 
project. As far as hardware development is concerned, any late changes to 
the specification of the hardware system under development usually amounts 
to redoing the entire project. This makes late changes to a hardware project 
prohibitively expensive to carry out. This possibly is a reason why 
requirement changes are frequent in software projects. These changes 
usually arise from changes to the business practices, changes to the 
hardware or underlying software (e.g. operating system, other applications), 
or just because the client changes his mind. 



 

 

 

 

 

 

Complexity: Even a moderate sized software has millions of parts 
(functions) that interact with each other in many ways—data coupling, serial 
and concurrent runs, state transitions, control dependency, file sharing, etc. 
Due to the inherent complexity of the functioning of a software product in 
terms of the basic parts making up the software, many types of risks are 
associated with its development. This makes managing these projects much 
more difficult as compared to many other kinds of projects. 

Uniqueness: Every software project is usually associated with many unique 
features or situations. This makes every project much different from the 
others. This is unlike projects in other domains, such as car manufacturing or 
steel manufacturing where the projects are more predictable. Due to the 
uniqueness of the software projects, a project manager in the course of a 
project faces many issues that are quite unlike the others he had 
encountered in the past. As a result, a software project manager has to 
confront many unanticipated issues in almost every project that he manages. 

Exactness of the solution: Mechanical components such as nuts and bolts 
typically work satisfactorily as long as they are within a tolerance of 1 per 
cent or so of their specified sizes. However, the parameters of a function call 
in a program are required to be in complete conformity with the function 
definition. This requirement not only makes it difficult to get a software 
product up and working, but also makes reusing parts of one software 
product in another difficult. This requirement of exact conformity of the 
parameters of a function introduces additional risks and contributes to the 
complexity of managing software projects. 

Team-oriented and intellect-intensive work: Software development 
projects are akin to research projects in the sense that they both involve 
team-oriented, intellect-intensive work. In contrast, projects in many domains 
are labour-intensive and each member works in a high degree of autonomy. 
Examples of such projects are planting rice, laying roads, assembly-line 
manufacturing, constructing a multi-storeyed building, etc. In a software 
development project, the life cycle activities not only highly intellect- 
intensive, but each member has to typically interact, review, and interface 
with several other members, constituting another dimension of complexity of 
software projects. 



 

 

 

 

3.2 RESPONSIBILITIES OF A SOFTWARE PROJECT 
MANAGER 

In this section, we examine the principal job responsibilities of a project 
manager and the skills necessary to accomplish those. 

3.2.1 Job Responsibilities for Managing Software Projects 

A software project manager takes the overall responsibility of steering a 
project to success. This surely is a very hazy job description. In fact, it is very 
difficult to objectively describe the precise job responsibilities of a project 
manager. The job responsibilities of a project manager ranges from invisible 
activities like building up of team morale to highly visible customer 
presentations. Most managers take the responsibilities for project proposal 
writing, project cost estimation, scheduling, project staffing, software process 
tailoring, project monitoring and control, software configuration management, 
risk management, managerial report writing and presentation, and interfacing 
with clients. These activities are certainly numerous and varied. We can still 
broadly classify these activities into two major types—project planning and 
project monitoring and control. 

 

In the following subsections, we give an overview of these two classes of 
responsibilities. Later on, we shall discuss them in more detail. 

Project planning: Project planning is undertaken immediately after the 
feasibility study phase and before the starting of the requirements analysis 
and specification phase. 

 

The initial project plans are revised from time to time as the project 
progresses and more project data become available. 

Project monitoring and control: Project monitoring and control activities 
are undertaken once the development activities start.While carrying out project 

monitoring and control activities, a project manager may sometimes find it necessary to change the plan to 
cope up with specific situations at hand. 

3.2.2 Skills Necessary for Managing Software Projects 

A theoretical knowledge of various project management techniques is 
certainly important to become a successful project manager. However, a 
purely theoretical knowledge of various project management techniques 
would hardly make one a successful project manager. Effective software 
project management calls for good qualitative judgment and decision taking 
capabilities. In addition to having a good grasp of the latest software project 



 

 

 

 

management techniques such as cost estimation, risk management, and 
configuration management, etc., project managers need good communication 
skills and the ability to get work done. Some skills such as tracking and 
controlling the progress of the project, customer interaction, managerial 
presentations, and team building are largely acquired through experience. 
Never the less, the importance of a sound knowledge of the prevalent project 
management techniques cannot be overemphasized. The objective of the rest 
of this chapter is to introduce the reader to the same. 

 

With this brief discussion on the overall responsibilities of a software 
project manager and the skills necessary to accomplish these, in the next 
section we examine some important issues in project planning. 

3.3 METRICS FOR PROJECT SIZE ESTIMATION 

As already mentioned, accurate estimation of project size is central to 
satisfactory estimation of all other project parameters such as effort, 
completion time, and total project cost. Before discussing the available 
metrics to estimate the size of a project, let us examine what does the 
term “project size” exactly mean. The size of a project is obviously not 
the number of bytes that the source code occupies, neither is it the size 
of the executable code. 

The project size is a measure of the problem complexity in terms of the 
effort and time required to develop the product. 

Currently, two metrics are popularly being used to measure size—lines of 
code (LOC) and function point (FP). Each of these metrics has its own 
advantages and disadvantages. These are discussed in the following 
subsection. Based on their relative advantages, one metric may be more 
appropriate than the other in a particular situation. 

3.3.1 Lines of Code (LOC) 

LOC is possibly the simplest among all metrics available to measure 
project size. Consequently, this metric is extremely popular. This metric 
measures the size of a project by counting the number of source 
instructions in the developed program. Obviously, while counting the 
number of source instructions, comment lines, and header lines are 

Three skills that are most critical to successful project management are the following: 

• Knowledge of project management techniques. 
• Decision taking capabilities. 
• Previous experience in managing similar projects. 



 

 

 

 

ignored. 
Determining the LOC count at the end of a project is very simple. However, 

accurate estimation of LOC count at the beginning of a project is a very 
difficult task. One can possibly estimate the LOC count at the starting of a 
project, only by using some form of systematic guess work. Systematic 
guessing typically involves the following. The project manager divides the 
problem into modules, and each module into sub-modules and so on, until 
the LOC of the leaf-level modules are small enough to be predicted. To be 
able to predict the LOC count for the various leaf-level modules sufficiently 
accurately, past experience in developing similar modules is very helpful. By 
adding the estimates for all leaf level modules together, project managers 
arrive at the total size estimation. In spite of its conceptual simplicity, LOC 
metric has several shortcomings when used to measure problem size. We 
discuss the important shortcomings of the LOC metric in the following 
subsections: 

LOC is a measure of coding activity alone. A good problem size 
measure should consider the total effort needed to carry out various life cycle 
activities (i.e. specification, design, code, test, etc.) and not just the coding 
effort. LOC, however, focuses on the coding activity alone—it merely 
computes the number of source lines in the final program. We have already 
discussed in Chapter 2 that coding is only a small part of the overall software 
development effort. 

 

The presumption that the total effort needed to develop a project is 
proportional to the coding effort is easily countered by noting the fact that 
even when the design or testing issues are very complex, the code size might 
be small and vice versa. Thus, the design and testing efforts can be grossly 
disproportional to the coding effort. Code size, therefore, is obviously an 
improper indicator of the problem size. 

LOC count depends on the choice of specific instructions: LOC gives a 
numerical value of problem size that can vary widely with coding styles of 
individual programmers. By coding style, we mean the choice of code layout, 
the choice of the instructions in writing the program, and the specific 
algorithms used. Different programmers may lay out their code in very 
different ways. For example, one programmer might write several source 
instructions on a single line, whereas another might split a single instruction 
across several lines. Unless this issue is handled satisfactorily, there is a 
possibility of arriving at very different size measures for essentially identical 
programs. This problem can, to a large extent, be overcome by counting the 



 

 

 

 

language tokens in a program rather than the lines of code. However, a more 
intricate problem arises due to the specific choices of instructions made in 
writing the program. For example, one programmer may use a switch 
statement in writing a C program and another may use a sequence of if ... 
then ... else ... statements. Therefore, the following can easily be concluded. 

 

LOC measure correlates poorly with the quality and efficiency of the 
code: Larger code size does not necessarily imply better quality of code or 
higher efficiency. Some programmers produce lengthy and complicated code 
as they do not make effective use of the available instruction set or use 
improper algorithms. In fact, it is true that a piece of poor a n d sloppily 
written piece of code can have larger number of source instructions than a 
piece t h a t is efficient and has been thoughtfully written. Calculating 
productivity as LOC generated per man-month may encourage programmers 
to write lots of poor quality code rather than fewer lines of high quality code 
achieve the same functionality. 

LOC metric penalises use of higher-level programming languages 
and code reuse: A paradox is that if a programmer consciously uses several 
library routines, then the LOC count will be lower. This would sh ow up as 
smaller program size, and in turn, would indicate lower effort! Thus, if 
managers use the LOC count to measure the effort put in by different 
developers (that is, their productivity), they would be discouraging code 
reuse by developers. Modern programming methods such as object-oriented 
programming and reuse of components makes the relationships between LOC 
and other project attributes even less precise. 

LOC metric measures the lexical complexity of a program and does 
not address the more important issues of logical and structural 
complexities: Between two programs with equal LOC counts, a program 
incorporating complex logic would require much more effort to develop than a 
program with very simple logic. To realise why this is so, imagine the effort 
that would be required to develop a program having multiple nested loops 
and decision constructs and compare that with another program having only 
sequential control flow. 

It is very difficult to accurately estimate LOC of the final program 
from problem specification: As already discussed, at the project initiation 
time, it is a very difficult task to accurately estimate the number of lines of 
code (LOC) that the program would have after development. The LOC count 
can accurately be computed only after the code has fully been developed. 
Since project planning is carried out even before any development activity 



 

 

 

 

starts, the LOC metric is of little use to the project managers during project 
planning. 

 

 

3.3.2 Function Point (FP) Metric 

Function point metric was proposed by Albrecht in 1983. This metric 
overcomes many of the shortcomings of the LOC metric. Since its 
inception in late 1970s, function point metric has steadily gained 
popularity. Function point metric has several advantages over LOC 
metric. One of the important advantages of the function point metric 
over the LOC metric is that it can easily be computed from the problem 
specification itself. Using the LOC metric, on the other hand, the size 
can accurately be determined only after the product has fully been 
developed. 

The conceptual idea behind the function point metric is the following. The 
size of a software product is directly dependent on the number of different 
high-level functions or features it supports. This assumption is reasonable, 
since each feature would take additional effort to implement. 

 

Though each feature takes some effort to develop, different features may 
take very different amounts of efforts to develop. For example, in a banking 
software, a function to display a help message may be much easier to 
develop compared to say the function that carries out the actual banking 
transactions. This has been considered by the function point metric by 
counting the number of input and output data items and the number of files 
accessed by the function. 

 The implicit assumption made is that the more the number of data items 
that a function reads from the user and outputs and the more the number of 
files accessed, the higher is the complexity of the function. Now let us analyse 
why this assumption must be intuitively correct. Each feature when invoked 
typically reads some input data and then transforms those to the required 
output data. For example, the query book feature (see Figure 3.2) of a Library 
Automation Software takes the name of the book as input and displays its 
location in the library and the total number of copies available. Similarly, the 
issue book and the return book features produce their output based on the 
corresponding input data. It can therefore be argued that the computation of 
the number of input and output data items 



 

 

 

 

would give a more accurate indication of the code size compared to simply 
counting the number of high-level functions supported by the system. 

 

Figure 3.2: System function as a mapping of input data to output data. 

Albrecht postulated that in addition to the number of basic functions that a 
software performs, size also depends on the number of files and the number 
of interfaces that are associated with the software. Here, interfaces refer to 
the different mechanisms for data transfer with external systems including 
the interfaces with the user, interfaces with external computers, etc. 

Function point (FP) metric computation 

The size of a software product (in units of function points or FPs) is 
computed using different characteristics of the product identified in its 
requirements specification. It is computed using the following three 
steps: 

 Step 1: Compute the unadjusted function point (UFP) using a heuristic 
expression. 

 Step 2: Refine UFP to reflect the actual complexities of the different 
parameters used in UFP computation. 

 Step 3: Compute FP by further refining UFP to account for the specific 
characteristics of the project that can influence the entire development 
effort. 

We discuss these three steps in more detail in the following. 

Step 1: UFP computation 



 

 

 

 

The unadjusted function points (UFP) is computed as the weighted sum of 
five characteristics of a product as shown in the following expression. The 
weights associated with the five characteristics were determined empirically 
by Albrecht through data gathered from many projects. 

UFP = (Number of inputs)*4 + (Number of outputs)*5 + 

(Number of inquiries)*4 + (Number of files)*10 + 

(Number of interfaces)*10 (3.1) 

The meanings of the different parameters of Eq. 3.1 are as follows: 

1. Number of inputs: Each data item input by the user is counted. 
However, it should be noted that data inputs are considered different 
from user inquiries. Inquiries are user commands such as print- 
account-balance that require no data values to be input by the user. 
Inquiries are counted separately (see the third point below). It needs 
to be further noted that individual data items input by the user are 
not simply added up to compute the number of inputs, but related 
inputs are grouped and considered as a single input. For example, 
while entering the data concerning an employee to an employee pay 
roll software; the data items name, age, sex, address, phone number, 
etc. are together considered as a single input. All these data items 
can be considered to be related, since they describe a single 
employee. 

2. Number of outputs: The outputs considered include reports printed, 
screen outputs, error messages produced, etc. While computing the 
number of outputs, the individual data items within a report are not 
considered; but a set of related data items is counted as just a single 
output. 

3. Number of inquiries: An inquiry is a user command (without any 
data input) and only requires some actions to be performed by the 
system. Thus, the total number of inquiries is essentially the number 
of distinct interactive queries (without data input) which can be made 
by the users. Examples of such inquiries are print account balance, 
print all student grades, display rank holders’ names, etc. 

4. Number of files: The files referred to here are logical files. A logical 
file represents a group of logically related data. Logical files include 
data structures as well as physical files. 

5. Number of interfaces: Here the interfaces denote the different 
mechanisms  that  are  used  to  exchange  information  with  other 



 

 

 

 

systems. Examples of such interfaces are data files on tapes, disks, 
communication links with other systems, etc. 

Step 2: Refine parameters 

UFP computed at the end of step 1 is a gross indicator of the problem size. 
This UFP needs to be refined. This is possible, since each parameter (input, 
output, etc.) has been implicitly assumed to be of average complexity. 
However, this is rarely true. For example, some input values may be 
extremely complex, some very simple, etc. In order to take this issue into 
account, UFP is refined by taking into account the complexities of the 
parameters of UFP computation (Eq. 3.1). The complexity of each parameter 
is graded into three broad categories—simple, average, or complex. The 
weights for the different parameters are determined based on the numerical 
values shown in Table 3.1. Based on these weights of the parameters, the 
parameter values in the UFP are refined. For example, rather than each input 
being computed as four FPs, very simple inputs are computed as three FPs 
and very complex inputs as six FPs. 

 

Table 3.1: Refinement of Function Point Entities 

Type Simple Average Complex 

Input(I) 3 4 6 

Output (O) 4 5 7 

Inquiry (E) 3 4 6 

Number of files (F) 7 10 15 

Number of interfaces 5 7 10 

Step 3: Refine UFP based on complexity of the overall project 

In the final step, several factors that can impact the overall project size are 
considered to refine the UFP computed in step 2. Examples of such project 
parameters that can influence the project sizes include high transaction rates, 
response time requirements, scope for reuse, etc. Albrecht identified 14 
parameters that can influence the development effort. The list of these 
parameters have been shown in Table 3.2. Each of these 14 parameters is 
assigned a value from 0 (not present or no influence) to 6 (strong influence). 
The resulting numbers are summed, yielding the total degree of influence 
(DI). A technical complexity factor (TCF) for the project is computed and the 
TCF is multiplied with UFP to yield FP. The TCF expresses the overall impact 
of the corresponding project parameters on the development effort. TCF is 
computed as (0.65+0.01*DI). As DI can vary from 0 to 84, TCF can vary from 



 

 

 

 

0.65 to 1.49. Finally, FP is given as the product of UFP and TCF. That is, 
FP=UFP*TCF. 

 

Example 3.1 Determine the function point measure of the size of the 
following supermarket software. A supermarket needs to develop the 
following software to encourage regular customers. For this, the customer 
needs to supply his/her residence address, telephone number, and the driving 
license number. Ea ch customer who registers for this scheme is assigned a 
unique customer number (CN) by the computer. Based on the generated CN, 
a clerk manually prepares a customer identity card after getting the market 
manager’s signature on it. A customer can present his customer identity card 
to the check out staff when he makes any purchase. In this case, the value of 
his purchase is credited against his CN. At the end of each year, the 
supermarket intends to award surprise gifts to 10 customers who make the 
highest total purchase over the year. Also, it intends to award a 22 caret gold 
coin to every customer whose purchase exceeded Rs. 10,000. The entries 
against the CN are reset on the last day of every year after the prize winners’ 
lists are generated. Assume that various project characteristics determining 
the complexity of software development to be average. 

Answer: 

Step 1: From an examination of the problem description, we find that 
there are two inputs, three outputs, two files, and no interfaces. Two 
files would be required, one for storing the customer details and 
another for storing the daily purchase records. Now, using equation 3.1, 
we get: 

UFP = 2 × 4 + 3 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 47 

Step  2: A l l the parameters are of moderate complexity, except the 

Table 3.2: Function Point Relative Complexity Adjustment Factors 

Requirement for reliable backup and recovery 

Requirement for data communication 

Extent of distributed processing 

Performance requirements 

Expected operational environment 

Extent of online data entries 

Extent of multi-screen or multi-operation online data input 

Extent of online updating of master files 

Extent of complex inputs, outputs, online queries and files 

Extent of complex data processing 

Extent that currently developed code can be designed for reuse 

Extent of conversion and installation included in the design 

Extent of multiple installations in an organisation and variety of customer organisations 

Extent of change and focus on ease of use 



 

 

 

 

output parameter of customer registration, in which the only output is 
the CN value. Consequently, the complexity of the output parameter of 
the customer registration function can be categorized as simple. By 
consulting Table 3.1, we find that the value for simple output is given to 
be 4. The UFP can be refined as follows: 

UFP = 3 × 4 + 2 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 46 

Therefore, the UFP will be 46. 

Step 3: Since the complexity adjustment factors have average values, 
therefore the total degrees of influence would be: DI = 14 × 4 = 56 

TCF = 0.65 + 0.01 + 56 = 1.21 

Therefore, the adjusted FP=46*1.21=55.66 

Feature point metric shortcomings: A major shortcoming of the 
function point measure is that it does not take into account the 
algorithmic complexity of a function. That is, the function point metric 
implicitly assumes that the effort required to design and develop any 
two different functionalities of the system is the same. But, we know 
that this is highly unlikely to be true. The effort required to develop any 
two functionalities may vary widely. For example, in a library 
automation software, the create-member feature would be much 
simpler compared to the loan-from-remote-library feature. FP only 
considers the number of functions that the system supports, without 
distinguishing the difficulty levels of developing the various 
functionalities. To overcome this problem, an extension to the function 
point metric called feature point metric has been proposed. 

Feature point metric incorporates algorithm complexity as an extra 
parameter. This parameter ensures that the computed size using the feature 
point metric reflects the fact that higher the complexity of a function, the 
greater the effort required to develop it—therefore, it should have larger size 
compared to a simpler function. 

Critical comments on the function point and feature point 
metrics 

Proponents of function point and feature point metrics claim that these 
t w o metrics are language-independent and can be easily computed 
from the SRS document during project planning stage itself. On the 
other hand, opponents claim that these metrics are subjective and 
require a sleight of hand. An example of the subjective nature of the 



 

 

 

 

function point metric can be that the way one groups input and output 
data items into logically related groups can be very subjective. For 
example, consider that certain functionality requires the employee 
name and employee address to be input. It is possible that one can 
consider both these items as a single unit of data, since after all, these 
describe a single employee. It is also possible for someone else to 
consider an employee’s address as a single unit of input data and name 
as another. Such ambiguities leav e sufficient scope for debate and keep 
open the possibility for different project managers to arrive at different 
function point measures for essentially the same problem. 

3.4 PROJECT ESTIMATION TECHNIQUES 

Estimation of various project parameters is an important project planning 
activity. The different parameters of a project that need to be 
estimated include—project size, effort required to complete the project, 
project duration, and cost. Accurate estimation of these parameters is 
important, since these not only help in quoting an appropriate project 
cost to the customer, but also form the basis for resource planning and 
scheduling. A large number of estimation techniques have been 
proposed by researchers. These can broadly be classified into three 
main categories: 

• Empirical estimation techniques 

• Heuristic techniques 

• Analytical estimation techniques 

In the following subsections, we provide an overview of the different 
categories of estimation techniques. 

3.4.1 Empirical Estimation Techniques 

Empirical estimation techniques are essentially based on making an 
educated guess of the project parameters. While using this technique, 
prior experience with development of similar products is helpful. 
Although empirical estimation techniques are based on common sense 
and subjective decisions, over the years, the different activities involved 
in estimation have been formalised to a large extent. We shall discuss 
two such formalisations of the basic empirical estimation techniques 
known as expert judgement and the Delphi techniques in Sections 3.6.1 
and 3.6.2 respectively. 



 

 

 

 

3.4.2 Heuristic Techniques 

Heuristic techniques assume that the relationships that exist among the 
different project parameters can be satisfactorily modelled using 
suitable mathematical expressions. Once the basic (independent) 
parameters are known, the other (dependent) parameters can be easily 
determined by substituting the values of the independent parameters in 
the corresponding mathematical expression. Different heuristic 
estimation models can be divided into the following two broad 
categories—single variable and multivariable models. 

S i n g l e variable estimation models assume that various project 
characteristic can be predicted based on a single previously estimated basic 
(independent) characteristic of the software such as its size. A single variable 
estimation model assumes that the relationship between a parameter to be 
estimated and the corresponding independent parameter can be 
characterised by an expression of the following form: 

Estimated Parameter = c1 ◻ ed1 

In the above expression, e represents a characteristic of the software that 
has already been estimated (independent variable). Estimated P arameter is 
the dependent parameter (to be estimated). The dependent parameter to be 
estimated could be effort, project duration, staff size, etc., c1 a nd d1 are 

constants. The values of the constants c1 a nd d1 a re usually determined 

using data collected from past projects (historical data). The COCOMO model 
discussed in Section 3.7.1, is an example of a single variable cost estimation 
model. 

A multivariable cost estimation model assumes that a parameter can be 
predicted based on the values of more than one independent parameter. It 
takes the following form: 

Estimated Resource = c1 ◻ p1
d1 + c2 ◻ p2

d2 + ... 

where, p1, p2, ... are the basic (independent) characteristics of the 

software already estimated, and c1, c2, d1, d2, .... are constants. 

Multivariable estimation models are expected to give more accurate 
estimates compared to the single variable models, since a project 
parameter is typically influenced by several independent parameters. 
The independent parameters influence the dependent parameter to 
different extents. This is modelled by the different sets of constants c1 , 



 

 

 

 

d1 , c2 , d2 , .... Values of these constants are usually determined from 

an analysis of historical data. The intermediate COCOMO model 
discussed in Section 3.7.2 can b e considered to be an example of a 
multivariable estimation model. 

3.4.3 Analytical Estimation Techniques 

Analytical estimation techniques derive the required results starting with 
certain basic assumptions regarding a project. Unlike empirical and 
heuristic techniques, analytical techniques do have certain scientific 
basis. As an example of an analytical technique, we shall discuss the 
Halstead’s software science in Section 3.8. We shall see that starting 
with a few simple assumptions, Halstead’s software science derives 
some interesting results. Halstead’s software science is especially useful 
for estimating software maintenance efforts. In fact, it outperforms both 
empirical and heuristic techniques as far as estimating software 
maintenance efforts is concerned. 

3.5 EMPIRICAL ESTIMATION TECHNIQUES 

We have already pointed out that empirical estimation techniques have, 
over the years, been formalised to a certain extent. Yet, these are still 
essentially euphemisms for pure guess work. These techniques are easy 
to use and give reasonably accurate estimates. Two popular empirical 
estimation techniques are—Expert judgement and Delphi estimation 
techniques. We discuss these two techniques in the following 
subsection. 

3.5.1 Expert Judgement 

Expert judgement is a widely used size estimation technique. In this 
technique, an expert makes an educated guess about the problem size 
after analysing the problem thoroughly. 

Usually, the expert estimates the cost of the different components (i.e. 
modules or subsystems) that would make up the system and then combines 
the estimates for the individual modules to arrive at the overall estimate. 
However, this technique suffers from several shortcomings. The outcome of 
the expert judgement technique is subject to human errors and individual 
bias. Also, it is possible that an expert may overlook some factors 
inadvertently. Further, an expert making an estimate may not have relevant 



 

 

 

 

experience and knowledge of all aspects of a project. For example, he may 
be conversant with the database and user interface parts, but may not be 
very knowledgeable about the computer communication part. Due to these 
factors, the size estimation arrived at by the judgement of a single expert 
may be far from being accurate. 

A more refined form of expert judgement is the estimation made by a 
group of experts. Chances of errors arising out of issues such as individual 
oversight, lack of familiarity with a particular aspect of a project, personal 
bias, and the desire to win contract through overly optimistic estimates is 
minimised when the estimation is done by a group of experts. However, the 
estimate made by a group of experts may still exhibit bias. For example, on 
certain issues the entire group of experts may be biased due to reasons such 
as those arising out of political or social considerations. Another important 
shortcoming of the expert judgement technique is that the decision made by 
a group may be dominated by overly assertive members. 

3.5.2 Delphi Cost Estimation 

Delphi cost estimation technique tries to overcome some of the 
shortcomings of the expert judgement approach. Delphi estimation is 
carried out by a team comprising a group of experts and a co-ordinator. 
In this approach, the co-ordinator provides each estimator with a copy 
of the software requirements specification (SRS) document and a form 
for recording his cost estimate. Estimators complete their individual 
estimates anonymously and submit them to the co-ordinator. In their 
estimates, the estimators mention any unusual characteristic of the 
product which has influenced their estimations. The co-ordinator 
prepares the summary of the responses of all the estimators, and also 
includes any unusual rationale noted by any of the estimators. The 
prepared summary information is distributed to the estimators. Based 
on this summary, the estimators re-estimate. This process is iterated 
for several rounds. However, no discussions among the estimators is 
allowed during the entire estimation process. The purpose behind this 
restriction is that if any discussion is allowed among the estimators, 
then many estimators may easily get influenced by the rationale of an 
estimator who may be more experienced or senior. After the completion 
of several iterations of estimations, the co-ordinator takes the 
responsibility of compiling the results and preparing the final estimate. 
The  Delphi  estimation,  though  consumes  more  time  and  effort, 



 

 

 

 

overcomes an important shortcoming of the expert judgement 
technique in that the results can not unjustly be influenced by overly 
assertive and senior members. 

3.6 COCOMO—A HEURISTIC ESTIMATION TECHNIQUE 

COnstructive COst estimation MOdel (COCOMO) was proposed by Boehm 
[1981]. COCOMO prescribes a three stage process for project 
estimation. In the first stage, an initial estimate is arrived at. Over the 
next two stages, the initial estimate is refined to arrive at a more 
accurate estimate. COCOMO uses both single and multivariable 
estimation models at different stages of estimation. 

The three stages of COCOMO estimation technique are—basic COCOMO, 
intermediate COCOMO, and complete COCOMO. We discuss these three 
stages of estimation in the following subsection. 

3.6.1 Basic COCOMO Model 

Boehm postulated that any software development project can be 
classified into one of the following three categories based on the 
development complexity—organic, semidetached, and embedded. 
Based on the category of a software development project, he gave 
different sets of formulas to estimate the effort and duration from the 
size estimate. 

Three basic classes of software development projects 

In order to classify a project into the identified categories, Boehm 
requires us to consider not only the characteristics of the product but 
also those of the development team and development environment. 
Roughly speaking, the three product development classes correspond to 
development of application, utility and system software. Normally, data 

processing programs1 are considered to be application programs. 
Compilers, linkers, etc., are utility programs. Operating systems and 
real-time system programs, etc. are system programs. System 
programs interact directly with the hardware and programming 
complexities also arise out of the requirement for meeting timing 
constraints and concurrent processing of tasks. 

Brooks [1975] states that utility programs are roughly three times as 
difficult to write as application programs and system programs are roughly 
three times as difficult  as utility programs. Thus according to Brooks, the 



 

 

 

 

relative levels of product development complexity for the three categories 
(application, utility and system programs) of products are 1:3:9. 

Boehm’s [1981] definitions of organic, semidetached, and embedded 
software are elaborated as follows: 

Organic: We can classify a development project to be of organic type, if the 
project deals with developing a well-understood application program, the size 
of the development team is reasonably small, and the team members are 
experienced in developing similar types of projects. 

Semidetached: A development project can be classify to be of 
semidetached type, if the development team consists of a mixture of 
experienced and inexperienced staff. Team members may have limited 
experience on related systems but may be unfamiliar with some aspects of 
the system being developed. 

Embedded: A development project is considered to be of embedded type, if 
the software being developed is strongly coupled to hardware, or if stringent 
regulations on the operational procedures exist. Team members may have 
limited experience on related systems but may be unfamiliar with some 
aspects of the system being developed. 

Observe that in deciding the category of the development project, in 
addition to considering the characteristics of the product being developed, we 
need to consider the characteristics of the team members. Thus, a simple 
data processing program may be classified as semidetached, if the team 
members are inexperienced in the development of similar products. 

For the three product categories, Boehm provides different sets of 
expressions to predict the effort (in units of person-months) and development 
time from the size estimation given in kilo lines of source code (KLSC). But, 
how much effort is one person-month? 

 

What is a person-month? 

Person-month (PM) is a popular unit for effort measurement. 
 

One person month is the effort an individual can typically put in a month. The 
person-month estimate implicitly takes into account the productivity losses that 
normally occur due to time lost in holidays, weekly offs, coffee breaks, etc. 

Person-month (PM) is considered to be an appropriate unit for measuring effort, 
because developers are typically assigned to a project for a certain number of 
months. 



 

 

 

 

It should be carefully noted that an effort estimation of 100 PM does not 
imply that 100 persons should work for 1 month. Neither does it imply that 1 
person should be employed for 100 months to complete the project. The 
effort estimation simply denotes the area under the person-month curve (see 
Figure 3.3 ) for the project. The plot in Figure 3.3 shows that different 
number of personnel may work at different points in the project development. 
The number of personnel working on the project usually increases or 
decreases by an integral number, resulting in the sharp edges in the plot. We 
shall elaborate in Section 3.9 how the exact number of persons to work at 
any time on the product development can be determined from the effort and 
duration estimates. 

 

Figure 3.3: Person-month curve. 

General form of the COCOMO expressions 

The basic COCOMO model is a single variable heuristic model that 
gives an approximate estimate of the project parameters. The basic 
COCOMO estimation model is given by expressions of the following 
forms: 

Effort = a1 × (KLOC)a2 PM 

Tdev = b1 × (Effort)b2 months 

where, 

  KLOC is the estimated size of the software product expressed in Kilo 
Lines Of Code. 

  a1, a2, b1, b2 are constants for each category of software product. 

  Tdev is the estimated time to develop the software, expressed in 



 

 

 

 

months. 

  Effort is the total effort required to develop the software product, 
expressed in person- months (PMs). 

According to Boehm, every line of source text should be calculated as one 
LOC irrespective of the actual number of instructions on that line. Thus, if a 
single instruction spans several lines (say n lines), it is considered to be 
nLOC. The values of a1, a2, b1, b2 for different categories of products as 

given by Boehm [1981] are summarised below. He derived these values by 
examining historical data collected from a large number of actual projects. 

Estimation of development effort: For the three classes of software 
products, the formulas for estimating the effort based on the code size are 
shown below: 

Organic : Effort = 2.4(KLOC)1.05 PM 

Semi-detached : Effort = 3.0(KLOC)1.12 PM 
Embedded : Effort = 3.6(KLOC)1.20 PM 

Estimation of development time: For the three classes of software products, 
the formulas for estimating the development time based on the effort are 
given below: 

Organic : Tdev = 2.5(Effort)0.38 Months 

Semi-detached : Tdev = 2.5(Effort)0.35 Months 
Embedded : Tdev = 2.5(Effort)0.32 Months 

We can gain some insight into the basic COCOMO model, if we plot the 
estimated effort and duration values for different software sizes. Figure 3.4 
shows the plots of estimated effort versus product size for different categories 
of software products. 

Observations from the effort-size plot From Figure 3.4, we can observe 
that the effort is some what superlinear (that is, slope of the curve>1) in the 
size of the software product. 



 

 

 

 

 

 

Figure 3.4: Effort versus product size. 

This is because the exponent in the effort expression is more than 1. Thus, 
the effort required to develop a product increases rapidly with project size. 
However, observe that the increase in effort with size is not as bad as that 
was portrayed in Chapter 1. The reason for this is that COCOMO assumes that 
projects are carefully designed and developed by using software engineering 
principles. 

Observations from the development time—size plot 

The development time versus the product size in KLOC is plotted in 
Figure 3.5. From 

Figure 3.5, we can observe the following: 

 The development time is a sublinear function of the size of the product. 
That is, when the size of the product increases by two times, the time 
to develop the product does not double but rises moderately. For 
example, to develop a product twice as large as a product of size 
100KLOC, the increase in duration may only be 20 per cent. It may 
appear surprising that the duration curve does not increase 
superlinearly—one would normally expect the curves to behave similar 
to those in the effort-size plots. This apparent anomaly can be 
explained by the fact that COCOMO assumes that a project 
development is carried out not by a single person but by a team of 
developers. 

  From Figure 3.5 we can observe that for a project of any given size, the 



 

 

 

 

development time is roughly the same for all the three categories of 
products. For example, a 60 KLOC program can be developed in 
approximately 18 months, regardless of whether it is of organic, semi- 
detached, or embedded type. (Please verify this using the basic 
COCOMO formulas discussed in this section). However, according to 
the COCOMO formulas, embedded programs require much higher effort 
than either application or utility programs. We can interpret it to mean 
that there is more scope for parallel activities for system programs 
than those in utility or application programs. 

 

 

 
Cost estimation 

Figure 3.5: Development time versus size. 

From the effort estimation, project cost can be obtained by multiplying 
the estimated effort (in man-month) by the manpower cost per month. 
Implicit in this project cost computation is the assumption that the 
entire project cost is incurred on account of the manpower cost alone. 
However, in addition to manpower cost, a project would incur several 
other types of costs which we shall refer to as the overhead costs. The 
overhead costs would include the costs due to hardware and software 
required for the project and the company overheads for administration, 
office space,electricity, etc. Depending on the expected values of the 
overhead costs, the project manager has to suitably scale up the cost 



 

 

 

 

arrived by using the COCOMO formula. 

Implications of effort and duration estimate 

An important implicit implication of the COCOMO estimates are that if you 
try to complete the project in a time shorter than the estimated duration, 
then the cost will increase drastically. But, if you complete the project over a 
longer period of time than that estimated, then there is almost no decrease 
in the estimated cost value. The reasons for this are discussed in Section 3.9. 
Thus, we can consider that the COCOMO effort and duration values to 
indicate the following. 

 

Staff-size estimation 

Given the estimations for the project development effort and the nominal 
development time, can the required staffing level be determined by a 
simple division of the effort estimation by the duration estimation? The 
answer is “No”. It will be a perfect recipe for project delays and cost 
overshoot. We examine the staffing problem in more detail in Section 
3.9. From the discussions in Section 3.9, it would become clear that the 
simple division approach to obtain the staff size would be highly 
improper. 

Example 3.2 Assume that the size of an organic type software product has 
been estimated to be 32,000 lines of source code. Assume that the average 
salary of a software developer is Rs. 15,000 per month. Determine the effort 
required to develop the software product, the nominal development time, and 
the cost to develop the product. 

From the basic COCOMO estimation formula for organic software: Effort = 
2.4 × (32)1.05 = 91 PM 

Nominal development time = 2.5 × (91)0.38 = 14 months 

Staff cost required to develop the product = 91 × Rs. 15, 000 = Rs. 
1,465,000 

3.6.2 Intermediate COCOMO 

The basic COCOMO model assumes that effort and development time are 
functions of the product size alone. However, a host of other project 
parameters besides the product size affect the effort as well as the time 
required to develop the product. For example the effort to develop a 
product would vary depending upon the sophistication of the 



 

 

 

 

development environment. 
Therefore, in order to obtain an accurate estimation of the effort and 

project duration, the effect of all relevant parameters must be taken into 
account. The intermediate COCOMO model recognises this fact and refines 
the initial estimates. 
 

The intermediate COCOMO model uses a set of 15 cost drivers (multipliers) 
that are determined based on various attributes of software development. 
These cost drivers are multiplied with the initial cost and effort estimates 
(obtained from the basic COCOMO) to appropriately scale those up or down. 
For example, if modern programming practices are used, the initial estimates 
are scaled downward by multiplication with a cost driver having a value less 
than 1. If there are stringent reliability requirements on the software product, 
the initial estimates are scaled upward. Boehm requires the project manager 
to rate 15 different parameters for a particular project on a scale of one to 
three. For each such grading of a project parameter, he has suggested 
appropriate cost drivers (or multipliers) to refine the initial estimates. 

In general, the cost drivers identified by Boehm can be classified as being 
attributes of the following items: 

Product: The characteristics of the product that are considered include the 
inherent complexity of the product, reliability requirements of the product, 
etc. 

Computer: Characteristics of the computer that are considered include the 
execution speed required, storage space required, etc. 

Personnel: The attributes of development personnel that are considered 
include the experience level of personnel, their programming capability, 
analysis capability, etc. 

Development environment: Development environment attributes capture 
the development facilities available to the developers. An important 
parameter that is considered is the sophistication of the automation (CASE) 
tools used for software development. 

We have discussed only the basic ideas behind the intermediate COCOMO 
model. A detailed discussion on the intermediate COCOMO model are beyond 
the scope of this book and the interested reader may refer [Boehm81]. 

3.6.3 Complete COCOMO 

A major shortcoming of both the basic and the intermediate COCOMO 
models is that they consider a software product as a single 



 

 

 

 

homogeneous entity. However, most large systems are made up of 
several smaller sub-systems. These sub-systems often have widely 
different characteristics. For example, some sub-systems may be 
considered as organic type, some semidetached, and some even 
embedded. Not only may the inherent development complexity of the 

subsystems be different, but for some subsystem the reliability 
requirements may be high, for some the development team might have 
no previous experience of similar development, and so on. 

The complete COCOMO model considers these differences in characteristics 
of the subsystems and estimates the effort and development time as the sum 
of the estimates for the individual sub-systems. 

In other words, the cost to develop each sub-system is estimated 
separately, and the complete system cost is determined as the subsystem 
costs. This approach reduces the margin of error in the final estimate. 

L e t us consider the following development project as an example 
application of the complete COCOMO model. A distributed management 
information system (MIS) product for an organisation having offices at several 
places across the country can have the following sub-component: 

• Database part 

• Graphical user interface (GUI) part 

• Communication part 

Of these, the communication part can be considered as embedded 
software. The database part could be semi-detached software, and the GUI 
part organic software. The costs for these three components can be 
estimated separately, and summed up to give the overall cost of the system. 

To further improve the accuracy of the results, the different parameter 
values of the model can be fine-tuned and validated against an organisation’s 
historical project database to obtain more accurate estimations. Estimation 
models such as COCOMO are not totally accurate and lack a full scientific 
justification. Still, software cost estimation models such as COCOMO are 
required for an engineering approach to software project management. 
Companies consider computed cost estimates to be satisfactory, if these are 
within about 80 per cent of the final cost. Although these estimates are gross 
approximations—without such models, one has only subjective judgements to 
rely on. 

3.6.4 COCOMO 2 

Since the time that COCOMO estimation model was proposed in the early 



 

 

 

 

1980s, the software development paradigms as well as the 
characteristics of development projects have undergone a sea change. 
The present day software projects are much larger in size and reuse of 
existing software to develop new products has become pervasive. For 
example,  component-based   development   and  service-oriented 

architectures (SoA) have become very popular (discussed in Chapter 
15). New life cycle models and development paradigms are being 
deployed for web-based and component-based software. During the 
1980s rarely any program was interactive, and graphical user interfaces 
were almost non-existent. On the other hand, the present day software 
products are highly interactive and support elaborate graphical user 
interface. Effort spent on developing the GUI part is often as much as 
the effort spent on developing the actual functionality of the software. 
To make COCOMO suitable in the changed scenario, Boehm proposed 
COCOMO 2 [Boehm95] in 1995. 

COCOMO 2 provides three models to arrive at increasingly accurate cost 
estimations. These can be used to estimate project costs at different phases 
of the software product. As the project progresses, these models can be 
applied at the different stages of the same project. 

Application composition model: This model as the name suggests, can be 
used to estimate the cost for prototype development. We had already 
discussed in Chapter 2 that a prototype is usually developed to resolve user 
interface issues. 

Early design model: This supports estimation of cost at the architectural 
design stage. 

Post-architecture model: This provides cost estimation during detailed 
design and coding stages. 

The post-architectural model can be considered as an update of the original 
COCOMO. The other two models help consider the following two factors. Now 
a days every software is interactive and GUI-driven. GUI development 
constitutes a significant part of the overall development effort. The second 
factor concerns several issues that affect productivity such as the extent of 
reuse. We briefly discuss these three models in the following. 

Application composition model 

The application composition model is based on counting the number of 
screens, reports, and modules (components). Each of these components 
is considered to be an object (this has nothing to do with the concept of 



 

 

 

 

objects in the object-oriented paradigm). These are used to compute 
the object points of the application. 

Effort is estimated in the application composition model as follows: 

1. Estimate the number of screens, reports, and modules (components) 

from an analysis of the SRS document. 

2. Determine the complexity level of each screen and report, and rate 
these as either simple, medium, or difficult. The complexity of a 
screen or a report is determined by the number of tables and views it 
contains. 

3. Use the weight values in Table 3.3 to 3.5. 

The weights have been designed to correspond to the amount of effort 
required to implement an instance of an object at the assigned complexity 
class. 

 

Table 3.3: SCREEN Complexity Assignments for the Data Tables 

Number of views Tables < 4 Tables < 8 Tables ≥ 8 

< 3 Simple Simple Medium 

3–7 Simple Medium Difficult 

>8 Medium Difficult Difficult 

. 
Table 3.4: Report Complexity Assignments for the Data Tables 

Number of views Tables < 4 Tables < 8 Tables ≥ 8 

0 or 1 Simple Simple Medium 

2 or 3 Simple Medium Difficult 

4 or more Medium Difficult Difficult 

4.  Add all the assigned complexity values for the object instances together 
to obtain the object points. 

Table 3.5: Table of Complexity Weights for Each Class for Each Object Type 

Object type Simple Medium Difficult 

Screen 1 2 3 

Report 2 5 8 

3GL component — — 10 

5.  Estimate percentage of reuse expected in the system. Note that reuse 
refers to the amount of pre-developed software that will be used within 
the system. Then, evaluate New Object-Point count (NOP) as follows, 



 

 

 

 

 

6. Determine the productivity using Table 3.6. The productivi ty depends 
onthe experience of the developers as well as the maturity of the CASE environment used. 

7.  Finally, the estimated effort in person-months is computed as E = 
NOP/PROD. 

 

Table 3.6: Productivity Table 

Developers’ experience Very low Low Nominal High Very high 

CASE maturity Very low Low Nominal High Very high 

PRODUCTIVITY 4 7 13 25 50 

Early design model 

T he unadjusted function points (UFP) are counted and converted to 
source lines of code (SLOP). In a typical programming environment, 
each UFP would correspond to about 128 lines of C, 29 lines of C++, or 
320 lines of assembly code. Of course, the conversion from UFP to LOC 
is environment specific, and depends on factors such as extent of 
reusable libraries supported. Seven cost drivers that characterise the 
post-architecture model are used. These are rated on a seven points 
scale. The cost drivers include product reliability and complexity, the 
extent of reuse, platform sophistication, personnel experience, CASE 
support, and schedule. 

The effort is calculated using the following formula: 

Effort = K SLOC × ◻i cost driveri 

Post-architecture model 

The effort is calculated using the following formula, which is similar to 
the original COCOMO model. 

Effort = a × K SLOCb × ◻i cost driveri 

The post-architecture model differs from the original COCOMO model in the 
choice of the set of cost drivers and the range of values of the exponent b. 
The exponent b can take values in the range of 1.01 to 1.26. The details of 
the COCOMO 2 model, and the exact values of b and the cost drivers can be 
found in [Boehm 97]. 

 



 

 

 

 

3.7 HALSTEAD’S SOFTWARE SCIENCE—AN ANALYTICAL 
TECHNIQUE 

Halstead’s software science2 is an analytical technique to measure size, 

development effort, and development cost of software products. 
Halstead used a few primitive program parameters to develop the 
expressions for over all program length, potential minimum volume, 
actual volume, language level, effort, and development time. 

For a given program, let: 

 h1 be the number of unique operators used in the program, 

 h2 be the number of unique operands used in the program, 

 N1 be the total number of operators used in the program, 

  N2 be the total number of operands used in the program. 

Although the terms operators a nd operands have intuitive meanings, a 
precise definition of these terms is needed to avoid ambiguities. But, 
unfortunately we would not be able to provide a precise definition of these 
two terms. There is no general agreement among researchers on what is the 
most meaningful way to define the operators and operands for different 
programming languages. However, a few general guidelines regarding 
identification of operators and operands for any programming language can 
be provided. For instance, assignment, arithmetic, and logical operators are 
usually counted as operators.  

A pair of parentheses, as well as a block begin 

—block end pair, are considered as single operators. A label is considered to 
be an operator, if it is used as the target of a GOTO statement. The 
constructs if ... then ... else ... endif and a while ... do 

are considered as single operators. A sequence (statement termination) 
operator ’;’ is considered as a single operator. Subroutine declarations and 
variable declarations comprise the operands. Function name in a function call 
statement is considered as an operator, and the arguments of the function 
call are considered as operands. However, the parameter list of a function in 
the function declaration statement is not considered as operands. We list 
below what we consider to be the set of operators and operands for the ANSI 
C language. However, it should be realised that there is considerable 
disagreement among various researchers in this regard. 



 

 

 

 

 

Operators and Operands for the ANSI C language 

The following is a suggested list of operators for the ANSI C language: 

( [ . , -> * + - ~ ! ++ -- * / % + - << >> < > <= >= != 

== & ^ | && || = *= /= %= += -= <<= >>= &= ^= |= : ? { ; 

CASE DEFAULT IF ELSE SWITCH WHILE DO FOR GOTO CONTINUE 

BREAK RETURN and a function name in a function call 

Operands are those variables and constants which are being used with 
operators in expressions. Note that variable names appearing in declarations 
are not considered as operands. 

Example 3.3 Consider the expression a = &b; a, b are the operands and =, 
& are the operators. 

Example 3.4 The function name in a function definition is not counted as an 
operator. 

int func ( int a, int b ) 

{ 

. . . 

} 

For the above example code, the operators are: {}, ( ) We do not consider 
func, a, and b as operands, since these are part of the function definition. 

Example 3.5 Consider the function call statement: func (a, b);. In this, func 
‘ ,’ a n d ; are considered as operators and variables a, b are treated as 
operands. 

3.7.1 Length and Vocabulary 

The length of a program as defined by Halstead, quantifies total usage 
of all operators and operands in the program. Thus, length N = N1 + 

N2. Halstead’s definition of the length of the program as the total 

number of operators and operands roughly agrees with the intuitive 
notion of the program length as the total number of tokens used in the 
program. 

The program vocabulary is the number of unique operators and operands 
used in the program. Thus, program vocabulary h = h1 + h2. 

3.7.2 Program Volume 



 

 

 

 

The length of a program (i.e., the total number of operators and 
operands used in the code) depends on the choice of the operators and 
operands used. In other words, for the same programming problem, the 
length would depend on the programming style. This type of 
dependency would produce different measures of length for essentially 
the same problem when different programming languages are used. 

Thus, while expressing program size, the programming language used 
must be taken into consideration: 

V = N log2 h 

Let us try to understand the important idea behind this expression. 
Intuitively, the program volume V is the minimum number of bits 
needed to encode the program. In fact, to represent h different 

identifiers uniquely, we need at least log2 h bits (where h is the 

program vocabulary). In this scheme, we need N log2 h bits to store a 

program of length N. Therefore, the volume V represents the size of the 
program by approximately compensating for the effect of the 
programming language used. 

3.7.3 Potential Minimum Volume 

The potential minimum volume V* is defined as the volume of the most 
succinct program in which a problem can be coded. The minimum 
volume is obtained when the program can be expressed using a single 

source code instruction, say a function call like foo();. In other words, 

the volume is bound from below due to the fact that a program would 
have at least two operators and no less than the requisite number of 
operands. Note that the operands are the input and output data items. 

Thus, if an algorithm operates on input and output data d1, d2, ... dn, the 

most succinct program would be f(d1, d2 , ..., dn); for which, h1 = 2, h2 = n. 

Therefore, V* = (2 + h2) log2 (2 + h2). 

The program level L is given by L = V*/V. The concept of program level L 
has been introduced in an attempt to measure the level of abstraction 
provided by the programming language. Using this definition, languages can 
be ranked into levels that also appear intuitively correct. 

The above result implies that the higher the level of a language, the less 
effort it takes to develop a program using that language. This result agrees 
with the intuitive notion that it takes more effort to develop a program in 



 

 

 

 

assembly language than to develop a program in a high-level language to 
solve a problem. 

3.7.4 Effort and Time 

The effort required to develop a program can be obtained by dividing the 
program volume with the level of the programming language used to 
develop the code. Thus, effort E = V /L, where E is the number of 
mental discriminations required to implement the program and also the 
effort required to read and understand the program. Thus, the 

programming effort E = V2/V* (since L = V*/V) varies as the square of 
the volume. Experience shows that E is well correlated to the effort 
needed for maintenance of an existing program. 

The programmer’s time T = E/S, where S is the speed of mental 
discriminations. The value of S has been empirically developed from 
psychological reasoning, and its recommended value for programming 
applications is 18. 

3.7.5 Length Estimation 

Even though the length of a program can be found by calculating the 
tota l number of operators and operands in a program, Halstead 
suggests a way to determine the length of a program using the number 
of unique operators and operands used in the program. Using this 
method, the program parameters such as length, volume, cost, effort, 
etc., can be determined even before the start of any programming 
activity. His method is summarised below. 

Halstead assumed that it is quite unlikely that a program has several 

identical parts— in formal language terminology identical substrings—of 
length greater than h(h being the program vocabulary). In fact, once a piece 

of code occurs identically at several places, it is usually made into a 

procedure or a function. Thus, we can safely assume that any program of 
length N consists of N/h unique strings of length h. Now, it is a standard 

combinatorial result that for any given alphabet of size K, there are exactly Kr 

different strings of length r. Thus, 
 

Since operators and operands usually alternate in a program, we can 



 

 

 

 

further refine the upper bound into N ≤ hh1
h1 h2

h3. Also, N must include not 

only the ordered set of N elements, but it should also include all possible 
subsets of that ordered set, i.e. the power set of N strings 

(This particular reasoning of Halstead is hard to justify!). 
Therefore, 

 

 

Experimental evidence gathered from the analysis of a large number of 
programs suggests that the computed and actual lengths match very closely. 
However, the results may be inaccurate when small programs are considered 
individually. 

Example 3.6 Let us consider the following C program: 

main() 

{ 

int a,b,c,avg; 

scanf("%d %d %d",&a,&b,&c); 

avg=(a+b+c)/3; 

printf("avg= %d",avg); 

} 

The unique operators are: main, (), {}, int, scanf, &, “,”, “;”, 
=, +, /, printf 

The unique operands are: a,b,c,&a,&b,&c,a+b+c,avg,3,”%d %d 

%d”, “avg=%d” 

Therefore, 

 



 

 

 

 

In conclusion, Halstead’s theory tries to provide a formal definition and 
quantification of such qualitative attributes as program complexity, ease of 
understanding, and the level of abstraction based on some low-level 
parameters such as the number of operands, and operators appearing in the 
program. Halstead’s software science provides gross estimates of properties 
of a large collection of software, but extends to individual cases rather 
inaccurately. 

3.8 RISK MANAGEMENT 

Every project is susceptible to a large number of risks. Without effective 
management of the risks, even the most meticulously planned project may go 
hay ware. 

 

We need to distinguish between a risk which is a problem that might occur 
from the problems currently being faced by a project. If a risk becomes real, 
the anticipated problem becomes a reality and is no more a risk. If a risk 
becomes real, it can adversely affect the project and hamper the successful 
and timely completion of the project. Therefore, it is necessary for the project 
manager to anticipate and identify different risks that a project is susceptible 
to, so that contingency plans can be prepared beforehand to contain each 
risk. In this context, risk management aims at reducing the chances of a risk 
becoming real as well as reducing the impact of a risks that becomes real. 
Risk management consists of three essential activities—risk identification, risk 
assessment, and risk mitigation. We discuss these three activities in the 
following subsections. 

3.8.1 Risk Identification 

The project manager needs to anticipate the risks in a project as early as 
possible. As soon as a risk is identified, effective risk management plans 
are made, so that the possible impacts of the risks is minimised. So, 
early risk identification is important. Risk identification is somewhat 
similar to the project manager listing down his nightmares. For 
example, project manager might be worried whether the vendors whom 

you have asked to develop certain modules might not complete their 
work in time, whether they would turn in poor quality work, whether 
some of your key personnel might leave the organisation, etc. All such 

A risk is any anticipated unfavourable event or circumstance that can occur while a 

project is underway. 



 

 

 

 

risks that are likely to affect a project must be identified and listed. 
 
A project can be subject to a large variety of risks. In order to be able to 

systematically identify the important risks which might affect a project, it is 
necessary to categorise risks into different classes. The project manager can 
then examine which risks from each class are relevant to the project. There 
are three main categories of risks which can affect a software project: project 
risks, technical risks, and business risks. We discuss these risks in the 
following. 

Project risks: Project risks concern various forms of budgetary, schedule, 
personnel, resource, and customer-related problems. An important project 
risk is schedule slippage. Since, software is intangible, it is very difficult to 
monitor and control a software project. It is very difficult to control something 
which cannot be seen. For any manufacturing project, such as manufacturing 
of cars, the project manager can see the product taking shape. He can for 
instance, see that the engine is fitted, after that the doors are fitted, the car 
is getting painted, etc. Thus he can accurately assess the progress of the 
work and control it, if he finds any activity is progressing at a slower rate than 
what was planned. The invisibility of the product being developed is an 
important reason why many software projects suffer from the risk of schedule 
slippage. 

Technical risks: Technical risks concern potential design, implementation, 
interfacing, testing, and maintenance problems. Technical risks also include 
ambiguous specification, incomplete specification, changing specification, 
technical uncertainty, and technical obsolescence. Most technical risks occur 
due the development team’s insufficient knowledge about the product. 

Business risks: This type of risks includes the risk of building an excellent 
product that no one wants, losing budgetary commitments, etc. 

Classification of risks in a project 

Example 3.12 Let us consider a satellite based mobile communication 
product discussed in Case Study 2.2 of Section 2.5. The project 
manager can identify several risks in this project. Let us classify them 
appropriately. 

 What if the project cost escalates and overshoots what was 

estimated?: Project risk. 

 What if the mobile phones that are developed become too bulky in size 



 

 

 

 

to conveniently carry?: Business risk. 

  What if it is later found out that the level of radiation coming from the 
phones is harmful to human being?: Business risk. 

  What if call hand-off between satellites becomes too difficult to 
implement?: Technical risk. 

In order to be able to successfully foresee and identify different risks that 
might affect a software project, it is a good idea to have a company disaster 
list. This list would contain all the bad events that have happened to software 
projects of the company over the years including events that can be laid at 
the customer’s doors. This list can be read by the project mangers in order to 
be aware of some of the risks that a project might be susceptible to. Such a 
disaster list has been found to help in performing better risk analysis. 

3.8.2 Risk Assessment 

The objective of risk assessment is to rank the risks in terms of their 
damage causing potential. For risk assessment, first each risk should be 
rated in two ways: 

  The likelihood of a risk becoming real (r). 

  The consequence of the problems associated with that risk (s). 

Based on these two factors, the priority of each risk can be computed as 
follows: 

p = r ◻ s 

where, p is the priority with which the risk must be handled, r is the 
probability of the risk becoming real, and s is the severity of damage 
caused due to the risk becoming real. If all identified risks are 
prioritised, then the most likely and damaging risks can be handled first 
and more comprehensive risk abatement procedures can be designed 
for those risks. 

3.8.3 Risk Mitigation 

After all the identified risks of a project have been assessed, plans are 
made to contain the most damaging and the most likely risks first. 
Different types of risks require different containment procedures. In 

fact, most risks require considerable ingenuity on the part of the project 
manager in tackling the risks. 



 

 

 

 

There are three main strategies for risk containment: 

Avoid the risk: Risks can be avoided in several ways. Risks often arise due 
to project constraints and can be avoided by suitably modifying the 
constraints. The different categories of constraints that usually give rise to 
risks are: 

Process-related risk: These risks arise due to aggressive work schedule, 
budget, and resource utilisation. 

Product-related risks: These risks arise due to commitment to challenging 
product features (e.g. response time of one second, etc.), quality, reliability 
etc. 

Technology-related risks: These risks arise due to commitment to use certain 
technology (e.g., satellite communication). 

A few examples of risk avoidance can be the following: Discussing with the 
customer to change the requirements to reduce the scope of the work, giving 
incentives to the developers to avoid the risk of manpower turnover, etc. 

Transfer the risk: This strategy involves getting the risky components 
developed by a third party, buying insurance cover, etc. 

Risk reduction: This involves planning ways to contain the damage due to a 
risk. For example, if there is risk that some key personnel might leave, new 
recruitment may be planned. The most important risk reduction techniques 
for technical risks is to build a prototype that tries out the technology that 
you are trying to use. For example, if you are using a compiler for recognising 
user commands, you would have to construct a compiler for a small and very 
primitive command language first. 

There can be several strategies to cope up with a risk. To choose the most 
appropriate strategy for handling a risk, the project manager must consider 
the cost of handling the risk and the corresponding reduction of risk. For this 
we may compute the risk leverage of the different risks. Risk leverage is the 
difference in risk exposure divided by the cost of reducing the risk. More 
formally, 

 

Even though we identified three broad ways to handle any risk, effective 
risk handling cannot be achieved by mechanically following a set procedure, 



 

 

 

 

but requires a lot of ingenuity on the part of the project manager. As an 
example, let us consider the options available to contain an important type of 
risk that occurs in many software projects—that of schedule slippage. 



 

 

 

 

REQUIREMENTS ANALYSIS AND 

SPECIFICATION 

4.1 REQUIREMENTS GATHERING AND ANALYSIS 

The complete set of requirements are almost never available in the form 
of a single document from the customer. In fact, it would be unrealistic 
to expect the customers to produce a comprehensive document 
containing a precise description of what he wants. Further, the 
complete requirements are rarely obtainable from any single customer 
representative. Therefore, the requirements have to be gathered by the 
analyst from several sources in bits and pieces. These gathered 
requirements need to be analysed to remove several types of problems 
that frequently occur in the requirements that have been gathered 
piecemeal from different sources. 

We can conceptually divide the requirements gathering and analysis activity 
into two separate tasks: 

• Requirements gathering 

• Requirements analysis 

We discuss these two tasks in the following subsections. 

4.1.1 Requirements Gathering 

Requirements gathering is also popularly known as requirements elicitation. 

The primary objective of the requirements gathering task is to collect the 
requirements from the stakeholders. 

 

Requirements gathering may sound like a simple task. However, in practice 
it is very difficult to gather all the necessary information from a large number 
of stakeholders and from information scattered across several pieces of 
documents. Gathering requirements turns out to be especially challenging if 
there is no working model of the software being developed. 

Suppose a customer wants to automate some activity in his organisation 
that is currently being carried out manually. In this case, a working model of 
the system (that is, the manual system) exists. Availability of a working 

model is usually of great help in requirements gathering.  

Typically even before visiting the customer site, requirements gathering 



 

 

 

 

activity is started by studying the existing documents to collect all possible 
information about the system to be developed. During visit to the customer 
site,  the analysts normally  interview the end-users  and customer 

representatives,1carry  out requirements  gathering activities  such  as 
In the following, we briefly discuss the important ways in which an 

experienced analyst gathers requirements: 

1. Studying existing documentation: The analyst usually studies all the 

available documents regarding the system to be developed before visiting the 
customer site. Customers usually provide statement of purpose (SoP) 
document to the developers. Typically these documents might discuss issues 
such as the context in which the software is required, the basic purpose, the 
stakeholders, features of any similar software developed elsewhere, etc. 

2. Interview: Typically, there are many differe nt categories of users of a 
software. Each category of users typically requires a different set of features 
from the software. Therefore, it is important for the analyst to first identify 
the different categories of users and then determine the requirements of 
each. For example, the different categories of users of a library automation 
software could be the library members, the librarians, and the accountants. 
The library members would like to use the software to query availability of 
books and issue and return books. The librarians might like to use the 
software to determine books that are overdue, create member accounts, 
delete member accounts, etc. The accounts personnel might use the software 
to invoke functionalities concerning financial aspects such as the total fee 
collected from the members, book procurement expenditures, staff salary 
expenditures, etc. 

To systematise this method of requirements gathering, the Delphi 
technique can be followed. In this technique, the analyst consolidates the 
requirements as understood by him in a document and then circulates it for 
the comments of the various categories of users. Based on their feedback, he 
refines his document. This procedure is repeated till the different users agree 
on the set of requirements. 

3. Task analysis: The users usually have a black-box view of a software and 
consider the software as something that provides a set of services 
(functionalities). A service supported by a software is also called a task. We 

can therefore say that the software performs various tasks of the users. In 
this context, the analyst tries to identify and understand the different tasks to 
be performed by the software. For each identified task, the analyst tries to 



 

 

 

 

formulate the different steps necessary to realise the required functionality in 
consultation with the users. For example, for the issue book service, the steps 
may be—authenticate user, check the number of books issued to the 
customer and determine if the maximum number of books that this member 
can borrow has been reached, check whether the book has been reserved, 
post the book issue details in the member’s record, and finally print out a 
book issue slip that can be presented by the member at the security counter 
to take the book out of the library premises. 

 
 

 

Scenario analysis: A task can have many scenarios of operation. The 
different scenarios of a task may take place when the task is invoked under 
different situations. For different types of scenarios of a task, the behaviour of 
the software can be different. For example, the possible scenarios for the 
book issue task of a library automation software may be: 

 
  Book is issued successfully to the member and the book issue slip is 
printed. 

  The book is reserved, and hence cannot be issued to the member. 

  The maximum number of books that can be issued to the member is 
already reached, and no more books can be issued to the member. 

For various identified tasks, the possible scenarios of execution are 
identified and the details of each scenario is identified in consultation with 
the users. For each of the identified scenarios, details regarding system 
response, the exact conditions under which the scenario occurs, etc. are 
determined in consultation with the user. 

Form analysis: Form analysis is an important and effective 
requirements gathering activity that is undertaken by the analyst, when 
the project involves automating an existing manual system. During the 
operation of a manual system, normally several forms are required to 
b e filled up by the stakeholders, and in turn they receive several 
notifications (usually manually filled forms). In form analysis the exiting 
forms and the formats of the notifications produced are analysed to 
determine the data input to the system and the data that are output 
from the system. For the different sets of data input to the system, how 
these input data would be used by the system to produce the 
corresponding output data is determined from the users. 



 

 

 

 

4.1.2 Requirements Analysis 

After requirements gathering is complete, the analyst analyses the gathered 
requirements to form a clear understanding of the exact customer 
requirements and to weed out any problems in the gathered requirements. It 
is natural to expect that the data collected from various stakeholders to 
contain several contradictions, ambiguities, and incompleteness, since each 
stakeholder typically has only a partial and incomplete view of the software. 
Therefore, it is necessary to identify all the problems in the requirements and 
resolve them through further discussions with the customer. 

 

For carrying out requirements analysis effectively, the analyst first needs to 
develop a clear grasp of the problem. The following basic questions 
pertaining to the project should be clearly understood by the analyst before 
carrying out analysis: 

  What is the problem? 
  Why is it important to solve the problem? 

 What exactly are the data input to the system and what exactly are 
the data output by the system? 

 What are the possible procedures that need to be followed to solve the 
problem? 

 What are the likely complexities that might arise while solving the 
problem? 

 If there are external software or hardware with which the developed 
software has to interface, then what should be the data interchange 
formats with the external systems? 

After the analyst has understood the exact customer requirements, he 
proceeds to identify and resolve the various problems that he detects in the 
gathered requirements. 

 

The main purpose of the requirements analysis activity is to analyse the gathered 
requirements to remove all ambiguities, incompleteness, and inconsistencies from the 
gathered customer requirements and to obtain a clear understanding of the software 
to be developed. 

During requirements analysis,the analyst needs to identify and resolve three main 
types of problems in the requirements: 
• Anomaly 

• Inconsistency 

• Incompleteness 



 

 

 

 

Let us examine these different types of requirements problems in detail. 

Anomaly: It is an anomaly is an ambiguity in a requirement. When a 
requirement is anomalous, several interpretations of that requirement are 
possible. Any anomaly in any of the requirements can lead to the 
development of an incorrect system, since an anomalous requirement can be 
interpreted in the several ways during development. The following are two 
examples of anomalous requirements: 

problems existing in the gathered requirements? 

Many of the inconsistencies, anomalies, and incompleteness are 
detected effortlessly, while some others require a focused study of the 
specific requirements. A few problems in the requirements can, 
however, be very subtle and escape even the most experienced eyes. 
Many of these subtle anomalies and inconsistencies can be detected, if 
the requirements are specified and analysed using a formal method. 
Once a system has been formally specified, it can be systematically 
(and even automatically) analysed to remove all problems from the 
specification. We will discuss the basic concepts of formal system 
specification in Section 4.3. Though the use of formal techniques is not 
widespread, the current practice is to formally specify only the safety- 
critical parts of a system. 

4.2 SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 

After the analyst has gathered all the required information regarding the 
software to be developed, and has removed all incompleteness, 
inconsistencies, and anomalies from the specification, he starts to 
systematically  organise  the  requirements  in  the  form  of  an  SRS 
document. The SRS document usually contains all the user 
requirements in a structured though an informal form. 

Among all the documents produced during a software development life 
cycle, SRS document is probably the most important document and is the 
toughest to write. One reason for this difficulty is that the SRS document is 
expected to cater to the needs of a wide variety of audience. In the following 
subsection, we discuss the different categories of users of an SRS document 
and their needs from it. 

4.2.1 Users of SRS Document 

Usually a large number of different people need the SRS document for 



 

 

 

 

very different purposes. Some of the important categories of users of 
the SRS document and their needs for use are as follows: 

Users, customers, and marketing personnel: These stakeholders need 
to refer to the SRS document to ensure that the system as described in the 
document will meet their needs. Remember that the customer may not be 
the user of the software, but may be some one employed or designated by 
the user. For generic products, the marketing personnel need to understand 
the requirements that they can explain to the customers. 

Software developers: The software developers refer to the SRS document 
to make sure that they are developing exactly what is required by the 
customer. 

Test engineers: The test engineers use the SRS document to understand 
the functionalities, and based on this write the test cases to validate its 
working. They need that the required functionality should be clearly 
described, and the input and output data should have been identified 
precisely. 

User documentation writers: The user documentation writers need to 
read the SRS document to ensure that they understand the features of the 
product well enough to be able to write the users’ manuals. 

Pro ject managers: The project managers refer to the SRS document to 
ensure that they can estimate the cost of the project easily by referring to the 
SRS document and that it contains all the information required to plan the 
project. 

Maintenance engineers: The SRS document helps the maintenance 
engineers to under- stand the functionalities supported by the system. A clear 
knowledge of the functionalities can help them to understand the design and 
code. Also, a proper understanding of the functionalities supported enables 
them to determine the specific modifications to the system’s functionalities 
would be needed for a specific purpose. 

Many software engineers in a project consider the SRS document to be a 
reference document. However, it is often more appropriate to think of the 
SRS document as the documentation of a contract between the development 
team and the customer. In fact, the SRS document can be used to resolve 
any disagreements between the developers and the customers that may arise 
in the future. The SRS document can even be used as a legal document to 
settle disputes between the customers and the developers in a court of law. 
Once the customer agrees to the SRS document, the development team 
proceeds to develop the software and ensure that it conforms to all the 



 

 

 

 

requirements mentioned in the SRS document. 

4.2.2 Why Spend Time and Resource to Develop an SRS Document? 

A well-formulated SRS document finds a variety of usage other than the 
primary intended usage as a basis for starting the software 
development work. In the following subsection, we identify the 
important uses of a well-formulated SRS document: 

Forms an agreement between the customers and the developers: A 
good SRS document sets the stage for the customers to form their 
expectation about the software and the developers about what is expected 
from the software. 

Reduces future reworks: The process of preparation of the SRS document 
forces the stakeholders to rigorously think about all of the requirements 
before design and development get underway. This reduces later redesign, 
recoding, and retesting. Careful review of the SRS document can reveal 
omissions, misunderstandings, and inconsistencies early in the development 
cycle. 

Provides a basis for estimating costs and schedules: Project managers 
usually estimate the size of the software from an analysis of the SRS 
document. Based on this estimate they make other estimations such as the 
effort required to develop the software and the total cost of development. 
The SRS document also serves as a basis for price negotiations with the 
customer. The pr oject manager also uses the SRS document for work 
scheduling. 

Provides a baseline for validation and verification: The SRS document 
provides a baseline against which compliance of the developed software can be checked. It is also used by 
the test engineers to create the test plan. 

Facilitates future extensions: The SRS document usually serves as a basis 
for planning future enhancements. 

Before we discuss about how to write an SRS document, we first discuss the 
characteristics of a good SRS document and the pitfalls that one must 
consciously avoid while writing an SRS document. 

4.2.3 Characteristics of a Good SRS Document 

The skill of writing a good SRS document usually comes from the 
experience gained from writing SRS documents for many projects. 
However, the analyst should be aware of the desirable qualities that 
every good SRS document should possess. IEEE Recommended Practice 



 

 

 

 

for Software Requirements Specifications[IEEE830] describes the 
content and qualities of a good software requirements specification 
(SRS). Some of the identified desirable qualities of an SRS document 
are the following: 

 Concise: The SRS document should be concise and at the same time 
unambiguous, consistent, and complete. Verbose and irrelevant 
descriptions reduce readability and also increase the possibilities of 
errors in the document. 

 Implementation-independent: The SRS should be free of design 
and implementation decisions unless those decisions reflect actual 
requirements. It should only specify what the system should do and 
refrain from stating how to do these. This means that the SRS 
document should specify the externally visible behaviour of the system 
a nd not discuss the implementation issues.  

Traceable: It should be possible to trace a specific requirement to the 
design elements that implement it and vice versa. Similarly, it should be 

possible to trace a requirement to the code segments that implement it and 
the test cases that test this requirement and vice versa. Traceability is also 

important to verify the results of a phase with respect to the previous phase 

and to analyse the impact of changing a requirement on the design elements 

and the code. 

Modifiable: Customers frequently change the requirements during the 
software development development due to a variety of reasons. Therefore, in 
practice the SRS document undergoes several revisions during software 
development. Also, an SRS document is often modified after the project 
completes to accommodate future enhancements and evolution. To cope up 
with the requirements changes, the SRS document should be easily 
modifiable. For this, an SRS document should be well-structured. A well- 
structured document is easy to understand and modify. Having the 
description of a requirement scattered across many places in the SRS 
document may not be wrong—but it tends to make the requirement difficult 
to understand and also any modification to the requirement would become 
difficult as it would require changes to be made at large number of places in 
the document. 

Identification of response to undesired events: The SRS document 
should  discuss  the  system responses  to  various  undesired  events  and 
exceptional conditions that may arise. 



 

 

 

 

Verifiable: All requirements of the system as documented in the SRS 
document should be verifiable. This means that it should be possible to 
design test cases based on the description of the functionality as to whether 
or not requirements have been met in an implementation. A requirement 
such as “the system should be user friendly” is not verifiable. On the other 
hand, the requirement—“When the name of a book is entered, the software 
should display whether the book is available for issue or it has been loaned 
out” is verifiable. Any feature of the required system that is not verifiable 
should be listed separately in the goals of the implementation section of the 
SRS document. 

4.2.4 Attributes of Bad SRS Documents 

SRS documents written by novices frequently suffer from a variety of 
problems. As discussed earlier, the most damaging problems are 
incompleteness, ambiguity, and contradictions. There are many other 
types problems that a specification document might suffer from. By 
knowing these problems, one can try to avoid them while writing an 
SRS document. Some of the important categories of problems that 
many SRS documents suffer from are as follows: 

Over-specification: It occurs when the analyst tries to address the “how to” 
aspects in the SRS document. For example, in the library automation 
problem, one should not specify whether the library membership records 
need to be stored indexed on the member’s first name or on the library 
member’s identification (ID) number. Over-specification restricts the freedom 
of the designers in arriving at a good design solution. 

Forward references: One should not refer to aspects that are discussed 
much later in the SRS document. Forward referencing seriously reduces 
readability of the specification. 

Wishful thinking: This type of problems concern description of aspects 
which would be difficult to implement. 

Noise: The term noise refers to presence of material not directly relevant to 
the software development process. For example, in t h e register customer 

function, suppose the analyst writes that customer registration department is 
manned by clerks who report for work between 8am and 5pm, 7 days a week. 
This information can be called noise as it would hardly be of any use to the 

software developers and would unnecessarily clutter the SRS document, 



 

 

 

 

diverting the attention from the crucial points. 

Several other “sins” of SRS documents can be listed and used to guard 
against writing a bad SRS document and is also used as a checklist to review 
an SRS document. 

4.2.5 Important Categories of Customer Requirements 

A good SRS document, should properly categorize and organise the 
requirements into different sections [IEEE830]. As per the IEEE 830 
guidelines, the important categories of user requirements are the following. 

 

In the following subsections, we briefly describe the different categories of 
requirements. 

Functional requirements 

The functional requirements capture the functionalities required by the 
users from the system.  

The functional requirements of the system, should clearly describe each 

functionality that the system would support along with the 

corresponding input and output data set. documented effectively. 

Non-functional requirements 

The non-functional requirements are non-negotiable obligations that must be 
supported by the software. The non-functional requirements capture those 
requirements of the customer that cannot be expressed as functions (i.e., 
accepting input data and producing output data). Non-functional 
requirements usually address aspects concerning external interfaces, user 
interfaces, maintainability, portability, usability, maximum number of 
concurrent users, timing, and throughput (transactions per second, etc.). The 
non-functional requirements can be critical in the sense that any failure by 
the developed software to achieve some minimum defined level in these 
requirements can be considered as a failure and make the software 
unacceptable by the customer. 

An SRS document should clearly document the following aspects of a software: 
• Functional requirements 
• Non-functional requirements 

— Design and implementation constraints 
— External interfaces required 
— Other non-functional requirements 

• Goals of implementation. 



 

 

 

 

 

In the following subsections, we discuss the different categories of non- 
functional requirements that are described under three different sections: 

Design and implementation constraints: Design and implementation 
constraints are an important category of non-functional requirements describe 
any items or issues that will limit the options available to the developers. 
Some of the example constraints can be—corporate or regulatory policies that 
needs to be honoured; hardware limitations; interfaces with other 
applications; specific technologies, tools, and databases to be used; specific 
communications protocols to be used; security considerations; design 
conventions or programming standards to be followed, etc. Consider an 
example of a constraint that can be included in this section—Oracle DBMS 
needs to be used as this would facilitate easy interfacing with other 
applications that are already operational in the organisation. 

External interfaces required: Examples of external interfaces are— 
hardware, software and communication interfaces, user interfaces, report 
formats, etc. To specify the user interfaces, each interface between the 
software and the users must be described. The description may include 
sample screen images, any GUI standards or style guides that are to be 
followed, screen layout constraints, standard buttons and functions (e.g., 
help) that will appear on every screen, keyboard shortcuts, error message 
display standards, and so on. One example of a user interface requirement of 
a software can be that it should be usable by factory shop floor workers who 
may not even have a high school degree. The details of the user interface 
design such as screen designs, menu structure, navigation diagram, etc. 
should be documented in a separate user interface specification document. 

Other non-functional requirements: This section contains a description of 
non- functional requirements that are neither design constraints and nor are 
external interface requirements. An important example is a performance 
requirement such as the number of transactions completed per unit time. 
Besides performance requirements, the other non-functional requirements to 
be described in this section may include reliability issues, accuracy of results, 
and security issues. 

Goals of implementation 

The ‘goals of implementation’ part of the SRS document offers some general 
suggestions regarding the software to be developed. These are not binding 
on the developers, and they may take these suggestions into account if 
possible. For example, the developers may use these suggestions while 



 

 

 

 

choosing among different design solutions. 
 

The goals of implementation section might document issues such as easier 
revisions to the system functionalities that may be required in the future, 
easier support for new devices to be supported in the future, reusability 
issues, etc. These are the items which the developers might keep in their 
mind during development so that the developed system may meet some 
aspects that are not required immediately. It is useful to remember that 
anything that would be tested by the user and the acceptance of the system 
would depend on the outcome of this task, is usually considered as a 
requirement to be fulfilled by the system and not a goal and vice versa. 

4.2.6 Functional Requirements 

In order to document the functional requirements of a system, it is 
necessary to first learn to identify the high-level functions of the 
systems by reading the informal documentation of the gathered 
requirements. The high-level functions would be split into smaller 
subrequirements. Each high-level function is an instance of use of the 
system (use case) by the user in some way. 

A high-level function is one using which the user can get some useful piece 
of work done. 

In Figure 4.2, the different scenarios occur depending on the amount 
entered for withdrawal. The different scenarios are essentially different 
behaviour exhibited by the system for the same high-level function. Typically, 
each user input and the corresponding system action may be considered as a 
sub-requirement of a high-level requirement. Thus, each high-level 
requirement can consist of several sub-requirements. 



 

 

 

 

 

Figure 4.2: User and system interactions in high-level functional requirement. 

 

4.2.7 How to Identify the Functional Requirements? 

The high-level functional requirements often need to be identified either from 
an informal problem description document or from a conceptual 
understanding of the problem. 

 

Remember that there can be many types of users of a system and their 
requirements from the system may be very different. So, it is often useful to 
first identify the different types of users who might use the system and then 
try to identify the different services expected from the software by different 
types of users. 

The decision regarding which functionality of the system can be taken to be 

a high-level functional requirement and the one that can be considered as 

part of another function (that is, a subfunction) leaves scope for some 



 

 

 

 

subjectivity. For example, consider the issue-book function in a Library 

Automation System. Suppose, when a user invokes the issue-book function, 

the system would require the user to enter the details of each book to be 

issued. Should the entry of the book details be considered as a high-level 
function, or as only a part of the issue-book function? Many times, the choice is 

obvious. But, sometimes it requires making non-trivial decisions. 

4.2.8 How to Document the Functional Requirements? 

Once all the high-level functional requirements have been identified and 
the requirements problems have been eliminated, these are documented. 
A function can be documented by identifying the state at which the data is 
to be input to the system, its input data domain, the output data domain, 
and the type of processing to be carried on the input data to obtain the 
output data. We now illustrate the specification of the functional 
requirements through two examples. Let us first try to document the 
withdraw-cash function of an automated tell e r machine (ATM) system in the 
following. The withdraw-cash is a high-level requirement. It has several 

sub-requirements corresponding to the different user interactions. These 
user interaction sequences may vary from one invocation from another 
depending on some conditions. These different interaction sequences 
capture the different scenarios. To accurately describe a functional 

requirement, we must document all the different scenarios that may occur. 

4.2.9 Traceability 

Traceability means that it would be possible to identify (trace) the 
specific design component which implements a given requirement, the 
code part that corresponds to a given design component, and test cases 
that test a given requirement. Thus, any given code component can be 
traced to the corresponding design component, and a design 
component can be traced to a specific requirement that it implements 
a nd vice versa. Traceability analysis is an important concept and is 

frequently used during software development. For example, by doing a 
traceability analysis, we can tell whether all the requirements have 
been satisfactorily addressed in all phases. It can also be used to assess 
the impact of a requirements change. That is, traceability makes it easy 
to identify which parts of the design and code would be affected, when 
certain requirement change occurs. It can also be used to study the 
impact of a bug that is known to exist in a code part on various 



 

 

 

 

requirements, etc. 

4.2.10 Organisation of the SRS Document 

I n this section, we discuss the organisation of an SRS document as 
prescribed by the IEEE 830 standard[IEEE 830]. Please note that IEEE 830 
standard has been intended to serve only as a guideline for organizing a 
requirements specification document into sections and allows the flexibility of 
tailoring it, as may be required for specific projects. Depending on the type of 
project being handled, some sections can be omitted, introduced, or 
interchanged as may be considered prudent by the analyst. However, 
organisation of the SRS document to a large extent depends on the 
preferences of the system analyst himself, and he is often guided in this by 
the policies and standards being followed by the development company. Also, 
the organisation of the document and the issues discussed in it to a large 
extent depend on the type of the product being developed. However, 
irrespective of the company’s principles and product type, the three basic 
issues that any SRS document should discuss are—functional requirements, 
non-functional requirements, and guidelines for system implementation. 

The introduction section should describe the context in which the system is 
being developed, and provide an overall description of the system, and the 
environmental characteristics. The introduction section may include the 
hardware that the system will run on, the devices that the system will 
interact with and the user skill-levels. Description of the user skill-level is 
important, since the command language design and the presentation styles of 
the various documents depend to a large extent on the types of the users it is 
targeted for. For example, if the skill-levels of the users is “novice”, it would 
mean that the user interface has to be very simple and rugged, whereas if 
the user-level is “advanced”, several short cut techniques and advanced 
features may be provided in the user interface. 

It is desirable to describe the formats for the input commands, input data, 
output reports, and if necessary the modes of interaction. We have already 



 

 

 

 

discussed how the contents of the Sections on the functional requirements, 
the non-functional requirements, and the goals of implementation should be 
written. In the following subsections, we outline the important sections that 
an SRS document should contain as suggested by the IEEE 830 standard, for 
each section of the document, we also briefly discuss the aspects that should 
be discussed in it. 

4.3 FORMAL SYSTEM SPECIFICATION 

In recent years, formal techniques3 have emerged as a central issue in 
software engineering. This is not accidental; the importance of precise 
specification, modelling, and verification is recognised to be important 
in most engineering disciplines. Formal methods provide us with tools to 
precisely describe a system and show that a system is correctly 
implemented. We say a system is correctly implemented when it 
satisfies its given specification. The specification of a system can be 
given either as a list of its desirable properties (property-oriented 
approach) or as an abstract  model  of  the system (model-oriented 

approach). These two approaches are discussed here. Before discussing 
representative examples of these two types of formal specification 
techniques, we first discuss a few basic concepts in formal specification 
We will first highlight some important concepts in formal methods, and 
examine the merits and demerits of using formal techniques. 

4.3.1 What is a Formal Technique? 

A formal technique is a mathematical method to specify a hardware 

and/or software system, verify whether a specification is realisable, 

verify that an implementation satisfies its specification, prove properties 

of a system without necessarily running the system, etc. The 
mathematical basis of a formal method is provided by its specification 

language. More precisely, a formal specification language consists of 
two sets—syn and sem, and a relation sat between them. The set syn is 

called the syntactic domain, the set sem is called the semantic domain, and 

the relation sat is called the satisfaction relation. For a given specification 

syn, and model of the system sem, if sat (syn, sem), then syn is said to be 

the specification of sem, and sem is said to be the specificand of syn. 

T he generally accepted paradigm for system development is through a 
hierarchy of abstractions. Each stage in this hierarchy is an implementation of 



 

 

 

 

its preceding stage and a specification of the succeeding stage. The different 
stages in this system development activity are requirements specification, 
functional design, architectural design, detailed design, coding, 
implementation, etc. In general, formal techniques can be used at every 
stage of the system development activity to verify that the output of one 
stage conforms to the output of the previous stage. 

Syntactic domains 

The syntactic domain of a formal specification language consists of an 
alphabet of symbols and a set of formation rules to construct well- 
formed formulas from the alphabet. The well-formed formulas are used 
to specify a system. 

Semantic domains 

Formal techniques can have considerably different semantic domains. 
Abstract data type specification languages are used to specify algebras, 
theories, and programs. Programming languages are used to specify 
functions  from  input  to  output  values.  Concurrent and  distributed 

system specification languages are used to specify state sequences, 
event sequences, state-transition sequences, synchronisation trees, 
partial orders, state machines, etc. 

Satisfaction relation 

Given the model of a system, it is important to determine whether an 

element of the semantic domain satisfies the specifications. This 
satisfaction is determined by using a homomorphism known as semantic 

abstract i on function. The semantic abstraction function maps the 

elements of the semantic domain into equivalent classes. There can be 

different specifications describing different aspects of a system model, 

possibly using different specification languages. Some of these 
specifications describe the system’s behaviour and the others describe 

the system’s structure. Consequently, t wo broad classes of semantic 
abstraction functions are defined— those that preserve a system’s 

behaviour and those that preserve a system’s structure. 

Model versus property-oriented methods 

Formal methods are usually classified into two broad categories—the so- 
called model-oriented and the property-oriented approaches. In a model- 



 

 

 

 

oriented style, one defines a system’s behaviour directly by constructing 

a model of the system in terms of mathematical structures such as 
tuples, relations, functions, sets, sequences, etc. In the property-oriented 

style, the system’s behaviour is defined indirectly by stating its 

properties, usually in the form of a set of axioms that the system must 

satisfy. Let us consider a simple producer/consumer example. In a 
property-oriented style, we would probably start by listing the properties 

of the system like—the consumer can start consuming only after the 
producer has produced an item, the producer starts to produce an item 

only after the consumer has consumed the last item, etc. Two examples 

of property-oriented specification styles are axiomatic specification and 
algebraic specification. 

In a model-oriented style, we would start by defining the basic operations, p 

(produce) and c (consume). Then we can state that S 1 + p ⇒ S, S + c ⇒ S 
1. Thus model-oriented approaches essentially specify a program by writing 
another, presumably simpler program. A few notable examples of popular 
model-oriented specification techniques are Z, CSP,CCS, etc. 

It is alleged that property-oriented approaches are more suitable for 
requirements specification, and that the model-oriented approaches are more 
suited to system design specification. The reason for this distinction is the fact 

that property-oriented approaches specify a system behaviour not by what 
they say of the system but by what they do not say of the system. Thus, 
property-oriented specifications permit a large number of possible 
implementations.  

4.3.2 Operational Semantics 

Informally, the operational semantics of a formal method is the way 

computations are represented. There are different types of operational 

semantics according to what is meant by a single run of the system and 

how the runs are grouped together to describe the behaviour of the 

system. In the following subsection we discuss some of the commonly 

used operational semantics. 

Linear semantics: In this approach, a run o f a system is described by a 
sequence (possibly infinite) of events or states. The concurrent activities of 
the system are represented by non-deterministic interleavings of the atomic 

actions. For example, a concurrent activity a || b is represented by the set of 
sequential activities a; b a nd b; a. This is a simple but rather unnatural 



 

 

 

 

representation of concurrency. The behaviour of a system in this model 
consists of the set of all its runs. To make this model more realistic, usually 
justice and fairness restrictions are imposed on computations to exclude the 

unwanted interleavings. 

Branching semantics: In this approach, the behaviour of a system is 
represented by a directed graph. The nodes of the graph represent the 
possible states in the evolution of a system. The descendants of each node of 
the graph represent the states which can be generated by any of the atomic 
actions enabled at that state. Although this semantic model distinguishes the 
branching points in a computation, still it represents concurrency by 
interleaving. 

Maximally parallel semantics: In this approach, all the concurrent actions 
enabled at any state are assumed to be taken together. This is again not a 
natural model of concurrency since it implicitly assumes the availability of all 
the required computational resources. 

Partial order semantics: Under this view, the semantics ascribed to a 
system is a structure of states satisfying a partial order relation among the 

states (events). The partial order represents a precedence ordering among 

events, and constrains some events to occur only after some other events 
have occurred; while the occurrence of other events (called concurrent events) 

is considered to be incomparable. This fact identifies concurrency as a 

phenomenon not translatable to any interleaved representation. 

Merits and limitations of formal methods 

In addition to facilitating precise formulation of specifications, formal 
methods possess several positive features, some of which are discussed 
as follows: 

 Formal specifications encourage rigour. It is often the case that the 
very process of construction of a rigorous specification is more 
important than the formal specification itself. The construction of a 
rigorous specification clarifies several aspects of system behaviour that 
are not obvious in an informal specification. It is widely acknowledged 
that it is cost-effective to spend more efforts at the specification stage, 
otherwise, many flaws would go unnoticed only to be detected at the 
later stages of software development that would lead to iterative 
changes to occur in the development life cycle. According to an 
estimate, for large and complex systems like distributed real-time 



 

 

 

 

systems 80 per cent of project costs and most of the cost overruns 
result from the iterative changes required in a system development 
process due to inappropriate formulation of requirements specification. 
Thus, the additional effort required to construct a rigorous specification 
is well worth the trouble. 

 Formal methods usually have a well-founded mathematical basis. 
Thus, formal specifications are not only more precise, but also 
mathematically sound and can be used to reason about the properties 
of a specification and to rigorously prove that an implementation 
satisfies its specifications. Informal specifications may be useful in 
understanding a system and its documentation, but they cannot serve 
as a basis of verification. Even carefully written specifications are prone 
to error, and experience has shown that unverified specifications are 
comparable in reliability to unverified programs. automatically avoided 
when one formally specifies a system. 

 The mathematical basis of the formal methods makes it possible for 
automating the analysis of specifications. For example, a tableau- 
based technique has been used to automatically check the consistency 
of specifications. Also, automatic theorem proving techniques can be 
used to verify that an implementation satisfies its specifications. The 
possibility of automatic verification is one of the most important 
advantages of formal methods. 

  Formal specifications can be executed to obtain immediate feedback 
o n the features of the specified system. This concept of executable 
specifications is related to rapid prototyping. Informally, a prototype is 
a “toy” working model of a system that can provide immediate 
feedback on the behaviour of the specified system, and is especially 
useful in checking the completeness of specifications. 

It is clear that formal methods provide mathematically sound frameworks 
within which large, complex systems can be specified, developed and verified 
in a systematic rather than in an ad hoc manner. However, formal meth ods 
suffer from several shortcomings, some of which are as following: 

  Formal methods are difficult to learn and use. 

 The basic incompleteness results of first-order logic suggest that it is 
impossible to check absolute correctness of systems using theorem 

proving techniques. 



 

 

 

 

 Formal techniques are not able to handle complex problems. This 
shortcoming results from the fact that, even moderately complicated 
problems blow up the complexity of formal specification and their 
analysis. Also, a large unstructured set of mathematical formulas is 
difficult to comprehend. 

In the following two sections, we discuss the axiomatic and algebraic 
specification styles. Both these techniques can be classified as the property- 
oriented specification techniques. 

4.4 AXIOMATIC SPECIFICATION 

In axiomatic specification of a system, first-order logic is used to write 
the pre- and post- conditions to specify the operations of the system in 
the form of axioms. The pre-conditions basically capture the conditions 
that must be satisfied before an operation can successfully be invoked. 
In essence, the pre-conditions capture the requirements on the input 
parameters of a function. The post-conditions are the conditions that 
must be satisfied when a function post-conditions are essentially 
constraints on the results produced for the function execution to be 
considered successful. 

How to develop an axiomatic specifications? 

The following are the sequence of steps that can be followed to 
systematically develop the axiomatic specifications of a function: 

 Establish the range of input values over which the function should 
behave correctly. Establish the constraints on the input parameters as 
a predicate. 

 Specify a predicate defining the condition which must hold on the 
output of the function if it behaved properly. 

 Establish the changes made to the function’s input parameters after 
execution of the function. Pure mathematical functions do not change 
their input and therefore this type assertion is not necessary for pure 
functions. 

  Combine all of the above into pre- and post-conditions of the function. 

We now illustrate how simple abstract data types can be algebraically 
specified through two simple examples. 

4.5 ALGEBRAIC SPECIFICATION 



 

 

 

 

In the algebraic specification technique, an object class or type is 
specified in terms of relationships existing between the operations 
defined on that type. It was first brought into prominence by Guttag 
[1980,1985] in specification of abstract data types. Various notations of 
algebraic specifications have evolved, including those based on OBJ and 
Larch languages. 

Essentially, algebraic specifications define a system as a heterogeneous 

algebra. A heterogeneous algebra is a collection of different sets on which 

several operations are defined. Traditional algebras are homogeneous. A 

homogeneous algebra consists of a single set and several operations defined 

in this set; e.g. { I, +, -, *, / }. In contrast, alphabetic strings S together with 

operations of concatenation and length {S, I , con, len}, is not a 

homogeneous algebra, since the range of the length operation is the set of 

integers. 
Each set of symbols in a heterogeneous algebra is called a sort of the 

algebra. To define a heterogeneous algebra, besides defining the sorts, we 
need to specify the involved operations, their signatures, and their domains 

and ranges. Using algebraic specification, we define the meaning of a set of 
interface procedure by using equations. An algebraic specification is usually 

presented in four sections. 

Types section: In this section, the sorts (or the data types) being used is 
specified. 

Exception section: This section gives the names of the exceptional 
conditions that might occur when different operations are carried out. These 
exception conditions are used in the later sections of an algebraic 
specification. 

Syntax section: This section defines the signatures of the interface 
procedures. The collection of sets that form input domain of an operator and 
the sort where the output is produced are called the signature of the operator. 

For example, PUSH takes a stack and an element as its input and returns a 
new stack that has been created. 

Equations section: This section gives a set of rewrite rules (or equations) 

defining the meaning of the interface procedures in terms of each other. In 

general, this section is allowed to contain conditional expressions. 
By convention each equation is implicitly universally quantified over all 

possible values of the variables. This means that the equation holds for all 
possible values of the variable. Names not mentioned in the syntax section 



 

 

 

 

such r or e are variables. The first step in defining an algebraic specification is 
to identify the set of required operations. After having identified the required 
operators, it is helpful to classify them as either basic constructor operators, 
extra constructor operators, basic inspector operators, or extra inspection 
operators. The definition of these categories of operators is as follows: 

Basic construction operators: These operators are used to create or 
modify entities of a type. The basic construction operators are essential to 
generate all possible element of the type being specified. For example, 
‘create’ and ‘append’ are basic construction operators in Example 4.13. 

Extra construction operators: These are the construction operators other 
than the basic construction operators. For example, the operator ‘remove’ in Example 4.13 is an extra 

construction operator, because e ven without using ‘remove’ it is possible to generate all values of the type 
being specified. 

Basic inspection operators: These operators evaluate attributes of a type 
without modifying them, e.g., eval, get, etc. Let S be the set of operators 
whose range is not the data type being specified—these are the inspection 
operators. The set of the basic operators S1 is a subset of S , such that each 
operator from S -S 1 can be expressed in terms of the operators from S 1. 

Extra inspection operators: These are the inspection operators that are 
not basic inspectors. A simple way to determine whether an operator is a 
constructor (basic or extra) or an inspector (basic or extra) is to check the 
syntax expression for the operator. If the type being specified appears on the 
right hand side of the expression then it is a constructor, otherwise it is an 
inspection operator. For example, in Example 4.13, create is a constructor 
because point appears on the right hand side of the expression and point is 
the data type being specified. But, xcoord is an inspection operator since it 
does not modify the point type. 

Properties of algebraic specifications 

Three important properties that every algebraic specification should 
possess are: 

Completeness: This property ensures that using the equations, it should be 
possible to reduce any arbitrary sequence of operations on the interface 
procedures. When the equations are not complete, at some step during the 
reduction process, we might not be able to reduce the expression arrived at 
that step by using any of the equations. There is no simple procedure to 
ensure that an algebraic specification is complete. 

Finite termination property: This property essentially addresses the 



 

 

 

 

following question: Do applications of the rewrite rules to arbitrary 
expressions involving the interface procedures always terminate? For 
arbitrary algebraic equations, convergence (finite termination) is undecidable. 

But, if the right hand side of each rewrite rule has fewer terms than the left, 
then the rewrite process must terminate. 

Unique termination property: This property indicates whether application 
of rewrite rules in different orders always result in the same answer. 
Essentially, to determine this property, the answer to the following question 
needs to be checked—Can all possible sequence of choices in application of 
the rewrite rules to an arbitrary expression involving the interface procedures 
always give the same answer? Checking the unique termination property is a 
very difficult problem. 

4.5.1 Structured Specification 

Developing algebraic specifications is time consuming. Therefore efforts 
have been made to devise ways to ease the task of developing 
algebraic specifications. The following are some of the techniques that 
have successfully been used to reduce the effort in writing the 
specifications. 

Incremental specification: The idea behind incremental specification is to 
first develop the specifications of the simple types and then specify more 
complex types by using the specifications of the simple types. 

Specification instantiation: This involves taking an existing specification 
which has been developed using a generic parameter and instantiating it with 
some other sort. 

Pros and Cons of algebraic specifications 

Algebraic specifications have a strong mathematical basis and can be 
viewed as heterogeneous algebra. Therefore, they are unambiguous 
and precise. Using an algebraic specification, the effect of any arbitrary 
sequence of operations involving the interface procedures can 
automatically be studied. A major shortcoming of algebraic 
specifications is that they cannot deal with side effects. Therefore, 
algebraic specifications are difficult to integrate with typical 
programming languages. Also, algebraic specifications are hard to 
understand. 



 

 

 

 

SOFTWARE DESIGN 

 

 
During the software design phase, the design document is produced, based 
on the customer requirements as documented in the SRS document. We can 
state the main objectives of the design phase, in other words, as follows. 

 

This view of a design process has been shown schematically in Figure 5.1. 
As shown in Figure 5.1, the design process starts using the SRS document and 
completes with the production of the design document. The design document 
produced at the end of the design phase should be implementable using a 
programming language in the subsequent (coding) phase. 

 

Figure 5.1: The design process. 

 

5.1 OVERVIEW OF THE DESIGN PROCESS 

The design process essentially transforms the SRS document into a 
design document. In the following sections and subsections, we will 
discuss a few important issues associated with the design process. 

5.1.1 Outcome of the Design Process 

The following items are designed and documented during the design 
phase. 

Different modules required: The different modules in the solution should 
be clearly identified. Each module is a collection of functions and the data 
shared by the functions of the module. Each module should accomplish some 
well-defined task out of the overall responsibility of the software. Each 
module should be named according to the task it performs. For example, in 
an academic automation software, the module consisting of the functions and 



 

 

 

 

data necessary to accomplish the task of registration of the students should 
be named handle student registration. 

Control relationships among modules: A control relationship between 
two modules essentially arises due to function calls across the two modules. 
The control relationships existing among various modules should be identified 
in the design document. 

Interfaces among different modules: The interfaces between two 
modules identifies the exact data items that are exchanged between the two 
modules when one module invokes a function of the other module. 

Data structures of the individual modules: Each module normally stores 
some data that the functions of the module need to share to accomplish the 
overall responsibility of the module. Suitable data structures for storing and 
managing the data of a module need to be properly designed and 
documented. 

Algorithms required to implement the individual modules: Each 
function in a module usually performs some processing activity. The 
algorithms required to accomplish the processing activities of various modules 
need to be carefully designed and documented with due considerations given 
to the accuracy of the results, space and time complexities. 

Starting with the SRS document (as shown in Figure 5.1), the design 
documents are produced through iterations over a series of steps that we are 
going to discuss in this chapter and the subsequent three chapters. The 
design documents are reviewed by the members of the development team to 
ensure that the design solution conforms to the requirements specification. 

5.1.2 Classification of Design Activities 

A good software design is seldom realised by using a single step 
procedure, rather it requires iterating over a series of steps called the 
design activities. Let us first classify the design activities before 
discussing them in detail. Depending on the order in which various 
design activities are performed, we can broadly classify them into two 
important stages. 

• Preliminary (or high-level) design, and 

• Detailed design. 

The meaning and scope of these two stages can vary considerably from one 
design methodology to another. However, for the traditional function-oriented 
design approach, it is possible to define the objectives of the high-level 



 

 

 

 

design as follows: 
 

The outcome of high-level design is called the program structure or the 
software architecture. High-level design is a crucial step in the overall design 
of a software. When the high-level design is complete, the problem should 
have been decomposed into many small functionally independent modules 
that are cohesive, have low coupling among themselves, and are arranged in 
a hierarchy. Many different types of notations have been used to represent a 
high-level design. A notation that is widely being used for procedural 
development is a tree-like diagram called the structure chart. Another popular 
design representation techniques called UML that is being used to document 
object-oriented design, involves developing several types of diagrams to 
document the object-oriented design of a systems. 

 

5.1.3 Classification of Design Methodologies 

The design activities vary considerably based on the specific design 

methodology being used. A large number of software design 
methodologies are available. We can roughly classify these 
methodologies into procedural and object-oriented approaches. These 
two approaches are two fundamentally different design paradigms. In 
this chapter, we shall discuss the important characteristics of these two 
fundamental design approaches. Over the next three chapters, we shall 
study these two approaches in detail. 

Do design techniques result in unique solutions? 

Even while using the same design methodology, different designers 
usually arrive at very different design solutions. The reason is that a 
design technique often requires the designer to make many subjective 
decisions and work out compromises to contradictory objectives. As a 
result, it is possible that even the same designer can work out many 
different solutions to the same problem. Therefore, obtaining a good 
design would involve trying out several alternatives (or candidate 
solutions) and picking out the best one. However, a fundamental 
question that arises at this point is—how to distinguish superior design 
solution from an inferior one? Unless we know what a good software 
design is and how to distinguish a superior design solution from an 
inferior one, we can not possibly design one. We investigate this issue 
in the next section. 



 

 

 

 

5.2 HOW TO CHARACTERISE A GOOD SOFTWARE DESIGN? 

Coming up with an accurate characterisation of a good software design 
that would hold across diverse problem domains is certainly not easy. In 
fact, the definition of a “good” software design can vary depending on 
the exact application being designed. However, most researchers and 
software engineers agree on a few desirable characteristics that every 
good software design for general applications must possess. These 
characteristics are listed below: 

Correctness: A good design should first of all be correct. That is, it should 
correctly implement all the functionalities of the system. 

Understandability: A good design should be easily understandable. Unless 
a design solution is easily understandable, it would be difficult to implement 
and maintain it. 

Efficiency: A good design solution should adequately address resource, 
time, and cost optimisation issues. 

Maintainability: A good design should be easy to change. This is an 
important requirement, since change requests usually keep coming from the customer even after product 
release. 

5.2.1 Understandability of a Design: A Ma jor Concern 

While performing the design of a certain problem, assume that we have 
arrived at a large number of design solutions and need to choose the best 
one. Obviously all incorrect designs have to be discarded first. Out of the 
correct design solutions, how can we identify the best one? 

 

Recollect from our discussions in Chapter 1 that a good design should help 
overcome the human cognitive limitations that arise due to limited short-term 
memory. A large problem overwhelms the human mind, and a poor design 
would make the matter worse. Unless a design solution is easily 
understandable, it could lead to an implementation having a large number of 
defects and at the same time tremendously pushing up the development 
costs. Therefore, a good design solution should be simple and easily 
understandable. A design that is easy to understand is also easy to develop 
and maintain. A complex design would lead to severely increased life cycle 
costs. Unless a design is easily understandable, it would require tremendous 
effort to implement, test, debug, and maintain it.  

An understandable design is modular and layered 



 

 

 

 

How can the understandability of two different designs be compared, so 
that we can pick the better one? To be able to compare the 
understandability of two design solutions, we should at least have an 
understanding of the general features that an easily understandable 
design should possess. A design solution should have the following 
characteristics to be easily understandable: 

 It should assign consistent and meaningful names to various design 
components. 

 It should make use of the principles of decomposition and abstraction 
in good measures to simplify the design. 

We had discussed the essential concepts behind the principles of 
abstraction and decomposition principles in Chapter 1. But, how can the 
abstraction and decomposition principles are used in arriving at a design 
solution? These two principles are exploited by design methodologies to 
make a design modular and layered. (Though there are also a few other 
forms in which the abstraction and decomposition principles can be used in 
the design solution, we discuss those later). We can now define the 
characteristics of an easily understandable design as follows: A design 
solution is understandable, if it is modular and the modules are arranged in 
distinct layers. 

 

We now elaborate the concepts of modularity and layering of modules: 

Modularity 

A modular design is an effective decomposition of a problem. It is a basic 
characteristic of any good design solution. A modular design, in simple 
words, implies that the problem has been decomposed into a set of 
modules that have only limited interactions with each other. 
Decomposition of a problem into modules facilitates taking advantage 
of the divide and conquer principle. If different modules have either no 
interactions or little interactions with each other, then each module can 
be understood separately. This reduces the perceived complexity of the 
design solution greatly. To understand why this is so, remember that it 
may be very difficult to break a bunch of sticks which have been tied 
together, but very easy to break the sticks individually. 

 

A design solution should be modular and layered to be understandable. 

A design solution is said to be highly modular, if the different modules in the solution 
have high cohesion and their inter-module couplings are low. 



 

 

 

 

A software design with high cohesion and low coupling among modules is 
the effective problem decomposition we discussed in Chapter 1. Such a 
design would lead to increased productivity during program development by 
bringing down the perceived problem complexity. 

 

Figure 5.2: Two design solutions to the same problem. 

Based on this classification, we would be able to easily judge the cohesion 
and coupling existing in a design solution. From a knowledge of the cohesion 
and coupling in a design, we can form our own opinion about the modularity 
of the design solution. We shall define the concepts of cohesion and coupling 
and the various classes of cohesion and coupling in Section 5.3. Let us now 
discuss the other important characteristic of a good design solution—layered 
design. 

Layered design 

A layered design is one in which when the call relations among different 
modules are represented graphically, it would result in a tree-like 
diagram with clear layering. In a layered design solution, the modules 
are arranged in a hierarchy of layers. A module can only invoke 
functions of the modules in the layer immediately below it. The higher 
layer modules can be considered to be similar to managers that invoke 
(order) the lower layer modules to get certain tasks done. A layered 
design can be considered to be implementing control abstraction, since 
a module at a lower layer is unaware of (about how to call) the higher 
layer modules. 

A layered design can make the design solution easily understandable, since 
to understand the working of a module, one would at best have to 



 

 

 

 

understand how the immediately lower layer modules work without having to 
worry about the functioning of the upper layer modules. 

When a failure is detected while executing a module, it is obvious that the 
modules below it can possibly be the source of the error. This greatly 
simplifies debugging since one would need to concentrate only on a few 
modules to detect the error. We shall elaborate these concepts governing 
layered design of modules in Section 5.4. 

5.3 COHESION AND COUPLING 

We have so far discussed that effective problem decomposition is an 
important characteristic of a good design. Good module decomposition 
is indicated through high cohesion of the individual modules and low 
coupling of the modules with each other. Let us now define what is 
meant by cohesion and coupling. 

Cohesion is a measure of the functional strength of a module, whereas the 
coupling between two modules is a measure of the degree of interaction (or 
interdependence) between the two modules. 

In this section, we first elaborate the concepts of cohesion and coupling. 
Subsequently, we discuss the classification of cohesion and coupling. 

Coupling: Intuitively, we can think of coupling as follows. Two modules are 
said to be highly coupled, if either of the following two situations arise: 

  If the function calls between two modules involve passing large chunks 

of shared data, the modules are tightly coupled. 

 If the interactions occur through some shared data, then also we say 
that they are highly coupled. 

If two modules either do not interact with each other at all or at best 
interact by passing no data or only a few primitive data items, they are said 
to have low coupling. 

Cohesion: To understand cohesion, let us first understand an analogy. 
Suppose you listened to a talk by some speaker. You would call the speech to 
be cohesive, if all the sentences of the speech played some role in giving the 
talk a single and focused theme. Now, we can extend this to a module in a 
design solution. When the functions of the module co-operate with each other 
for performing a single objective, then the module has good cohesion. If the 
functions of the module do very different things and do not co-operate with 
each other to perform a single piece of work, then the module has very poor 



 

 

 

 

cohesion. 

Functional independence 

By the term functional independence, we mean that a module performs a 
single task and needs very little interaction with other modules. 

 

Functional independence is a key to any good design primarily due to the 
following advantages it offers: 

Error isolation: Whenever an error exists in a module, functional 
independence reduces the chances of the error propagating to the other 
modules. The reason behind this is that if a module is functionally 
independent, its interaction with other modules is low. Therefore, an error 
existing in the module is very unlikely to affect the functioning of other 
modules. 

Further, once a failure is detected, error isolation makes it very easy to 
locate the error. On the other hand, when a module is not functionally 
independent, once a failure is detected in a functionality provided by the 
module, the error can be potentially in any of the large number of modules 
and propagated to the functioning of the module. 

Scope of reuse: Reuse of a module for the development of other 
applications becomes easier. The reasons for this is as follows. A functionally 
independent module performs some well-defined and precise task and the 
interfaces of the module with other modules are very few and simple. A 
functionally independent module can therefore be easily taken out and 
reused in a different program. On the other hand, if a module interacts with 
several other modules or the functions of a module perform very different 
tasks, then it would be difficult to reuse it. This is especially so, if the module 
accesses the data (or code) internal to other modules. 

Understandability: When modules are functionally independent, complexity 
of the design is greatly reduced. This is because of the fact that different 
modules can be understood in isolation, since the modules are independent 
of each other. We have already pointed out in Section 5.2 that 
understandability is a major advantage of a modular design. Besides the 
three we have listed here, there are many other advantages of a modular 
design as well. We shall not list those here, and leave it as an assignment to 
the reader to identify them. 

A module that is highly cohesive and also has low coupling with other modules is said 
to be functionally independent of the other modules. 



 

 

 

 

5.3.1 Classification of Cohesiveness 

Cohesiveness of a module is the degree to which the different functions of the 
module co-operate to work towards a single objective. The different modules 
of a design can possess different degrees of freedom. However, the different 
classes of cohesion that modules can possess are depicted in Figure 5.3. The 
cohesiveness increases from coincidental to functional cohesion. That is, 
coincidental is the worst type of cohesion and functional is the best cohesion 
possible. These different classes of cohesion are elaborated below. 

 

Figure 5.3: Classification of cohesion. 

Coincidental cohesion: A module is said to have coincidental cohesion, 
if it performs a set of tasks that relate to each other very loosely, if at 
all. In this case, we can say that the module contains a random 
collection of functions. It is likely that the functions have been placed in 
the module out of pure coincidence rather than through some thought 
or design. The designs made by novice programmers often possess this 
category of cohesion, since they often bundle functions to modules 
rather arbitrarily. An example of a module with coincidental 
cohesionhas been shown in Figure 5.4(a).Observe that the different 
functions of the module carry out very different and unrelated 
activities starting from issuing of library books to creating library 
member records on one hand, and handling librarian leave request on 
the other. 

 

Figure 5.4: Examples of cohesion. 

Logical cohesion: A module is said to be logically cohesive, if all 



 

 

 

 

elements of the module perform similar operations, such as error 
handling, data input, data output, etc. As an example of logical 
cohesion, consider a module that contains a set of print functions to 
generate various types of output reports such as grade sheets, salary 
slips, annual reports, etc. 

Temporal cohesion: When a module contains functions that are related by 
the fact that these functions are executed in the same time span, then the 
module is said to possess temporal cohesion. As an example, consider the 
following situation. When a computer is booted, several functions need to be 
performed. These include initialisation of memory and devices, loading the 
operating system, etc. When a single module performs all these tasks, then 
the module can be said to exhibit temporal cohesion. Other examples of 
modules having temporal cohesion are the following. Similarly, a module 
would exhibit temporal cohesion, if it comprises functions for performing 
initialisation, or start-up, or shut-down of some process. 

Procedural cohesion: A module is said to possess procedural cohesion, if 
the set of functions of the module are executed one after the other, though 
these functions may work towards entirely different purposes and operate on 
very different data. Consider the activities associated with order processing in 
a trading house. The functions login(), place-order(), check-order(), print- 
bill(), place-order-on-vendor(), update-inventory(), and logout() all do 
different thing and operate on different data. However, they are normally 
executed one after the other during typical order processing by a sales clerk. 

Communicational cohesion: A module is said to have communicational 
cohesion, if all functions of the module refer to or update the same data 
structure. As an example of procedural cohesion, consider a module named 
student in which the different functions in the module such as admitStudent, 
enterMarks, printGradeSheet, etc. access and manipulate data stored in an 
array named studentRecords defined within the module. 

Sequential cohesion: A module is said to possess sequential cohesion, if 
the different functions of the module execute in a sequence, and the output 
from one function is input to the next in the sequence. As an example 
consider the following situation. In an on-line store consider that after a 
customer requests for some item, it is first determined if the item is in stock. 
In this case, if the functions create-order(), check-item-availability(), place- 
order-on-vendor() are placed in a single module, then the module would 
exhibit sequential cohesion. Observe that the function create-order() creates 
an order that is processed by the function check-item-availability() (whether 



 

 

 

 

the items are available in the required quantities in the inventory) is input to 
place-order-on-vendor(). 

Functional cohesion: A module is said to possess functional cohesion, if 
different functions of the module co-operate to complete a single task. For 
example, a module containing all the functions required to manage 
employees’ pay-roll displays functional cohesion. In this case, all the functions 
of the module (e.g., computeOvertime(), computeWorkHours(), 
computeDeductions(), etc.) work together to generate the payslips of the 
employees. Another example of a module possessing functional cohesion has 
been shown in Figure 5.4(b). In this example, the functions issue-book(), 
return-book(), query-book(), and find-borrower(), together manage all 
activities concerned with book lending. When a module possesses functional 
cohesion, then we should be able to describe what the module does using 
only one simple sentence. For example, for the module of Figure 5.4(a), we 
can describe the overall responsibility of the module by saying “It manages 
the book lending procedure of the library.” 

5.3.2 Classification of Coupling 

The coupling between two modules indicates the degree of interdependence 
between them. Intuitively, if two modules interchange large amounts of data, 
then they are highly interdependent or coupled. We can alternately state this 
concept as follows. 

 

The interface complexity is determined based on the number of parameters 
and the complexity of the parameters that are interchanged while one 
module invokes the functions of the other module. 

Let us now classify the different types of coupling that can exist between 
two modules. Between any two interacting modules, any of the following five 
different types of coupling can exist. These different types of coupling, in 
increasing order of their severities have also been shown in Figure 5.5. 

 

Figure 5.5: Classification of coupling. 

Data coupling: Two modules are data coupled, if they communicate using 

The degree of coupling between two modules depends on their interface complexity. 



 

 

 

 

an elementary data item that is passed as a parameter between the two, e.g. 
an integer, a float, a character, etc. This data item should be problem related 
and not used for control purposes. 

Stamp coupling: Two modules are stamp coupled, if they communicate 
using a composite data item such as a record in PASCAL or a structure in C. 

Control coupling: Control coupling exists between two modules, if data 
from one module is used to direct the order of instruction execution in 
another. An example of control coupling is a flag set in one module and 

tested in another module. 

Common coupling: Two modules are common coupled, if they share some 
global data items. 

Content coupling: Content coupling exists between two modules, if they 
share code. That is, a jump from one module into the code of another module 
can occur. Modern high-level programming languages such as C do not 
support such jumps across modules. 

The different types of coupling are shown schematically in Figure 5.5. The 
degree of coupling increases from data coupling to content coupling. High 
coupling among modules not only makes a design solution difficult to 
understand and maintain, but it also increases development effort and also 
makes it very difficult to get these modules developed independently by 
different team members. 

 

5.4 APPROACHES TO SOFTWARE DESIGN 

There are two fundamentally different approaches to software design 
that are in use today— function-oriented design, and object-oriented 
design. Though these two design approaches are radically different, 
they are complementary rather than competing techniques. The object- 
oriented approach is a relatively newer technology and is still evolving. 
For development of large programs, the object- oriented approach is 
becoming increasingly popular due to certain advantages that it offers. 
On the other hand, function-oriented designing is a mature technology 
and has a large following. Salient features of these two approaches are 
discussed in subsections 5.5.1 and 5.5.2 respectively. 

5.4.1 Function-oriented Design 



 

 

 

 

The following are the salient features of the function-oriented design 
approach: 

Top-down decomposition: A system, to start with, is viewed as a black 
box that provides certain services (also known as high-level functions) to the 
users of the system. 

In top-down decomposition, starting at a high-level view of the system, 
each high-level function is successively refined into more detailed functions. 

For example, consider a function create-new-library m e m be r which 
essentially creates the record for a new member, assigns a unique 
membership number to him, and prints a bill towards his membership charge. 
This high-level function may be refined into the following subfunctions: 

• assign-membership-number 

• create-member-record 

• print-bill 

Each of these subfunctions may be split into more detailed subfunctions and 
so on. 

Centralised system state: The system state can be defined as the values 
of certain data items that determine the response of the system to a user 
action or external event. For example, the set of books (i.e. whether 
borrowed by different users or available for issue) determines the state of a 
library automation system. Such data in procedural programs usually have 
global scope and are shared by many modules. 

 

For example, in the library management system, several functions such as 
the following share data such as member-records for reference and updation: 

• create-new-member 

• delete-member 

• update-member-record 

A large number of function-oriented design approaches have been proposed 
in the past. A few of the well-established function-oriented design 
approaches are as following: 

• Structured design by Constantine and Yourdon, [1979] 

• Jackson’s structured design by Jackson [1975] 

• Warnier-Orr methodology [1977, 1981] 

The system state is centralised and shared among different functions. 



 

 

 

 

• Step-wise refinement by Wirth [1971] 

• Hatley and Pirbhai’s Methodology [1987] 

5.4.2 Object-oriented Design 

In the object-oriented design (OOD) approach, a system is viewed as 
being made up of a collection of objects (i.e. entities). Each object is 
associated with a set of functions that are called its methods. Each 
object contains its own data and is responsible for managing it. The 
data internal to an object cannot be accessed directly by other objects 
and only through invocation of the methods of the object. The system 
state is decentralised since there is no globally shared data in the 
system and data is stored in each object. For example, in a library 
automation software, each library member may be a separate object 
with its own data and functions to operate on the stored data. The 
methods defined for one object cannot directly refer to or change the 
data of other objects. 

The object-oriented design paradigm makes extensive use of the principles 
of abstraction and decomposition as explained below. Objects decompose a 
system into functionally independent modules. Objects can also be 
considered as instances of abstract data types (ADTs). The ADT concept did 
not originate from the object-oriented approach. In fact, ADT concept was 
extensively used in the ADA programming language introduced in the 1970s. 
ADT is an important concept that forms an important pillar of object- 
orientation. Let us now discuss the important concepts behind an ADT. There 
are, in fact, three important concepts associated with an ADT—data 
abstraction, data structure, data type. We discuss these in the following 
subsection: 

Data abstraction: The principle of data abstraction implies that how 
data is exactly stored is abstracted away. This means that any entity 
external to the object (that is, an instance of an ADT) would have no 
knowledge about how data is exactly stored, organised, and 
manipulated inside the object. The entities external to the object can 
access the data internal to an object only by calling certain well-defined 
methods supported by the object. Consider an ADT such as a stack. The 
data of a stack object may internally be stored in an array, a linearly 
linked list, or a bidirectional linked list. The external entities have no 
knowledge of this and can access data of a stack object only through 
the supported operations such as push and pop. 



 

 

 

 

Data structure: A data structure is constructed from a collection of primitive 
data items. Just as a civil engineer builds a large civil engineering structure 
using primitive building materials such as bricks, iron rods, and cement; a 
programmer can construct a data structure as an organised collection of 
primitive data items such as integer, floating point numbers, characters, etc. 

Data type: A type is a programming language terminology that refers to 
anything that can be instantiated. For example, int, float, char etc., are the 
basic data types supported by C programming language. Thus, we can say 
that ADTs are user defined data types. 

In object-orientation, classes are ADTs. But, what is the advantage of 
developing an application using ADTs? Let us examine the three main 
advantages of using ADTs in programs: 

 The data of objects are encapsulated within the methods. The 
encapsulation principle is also known as data hiding. The encapsulation 
principle requires that data can be accessed and manipulated only 
through the methods supported by the object and not directly. This 
localises the errors. The reason for this is as follows. No program 
element is allowed to change a data, except through invocation of one 
of the methods. So, any error can easily be traced to the code segment 
changing the value. That is, the method that changes a data item, 
making it erroneous can be easily identified. 

  An  ADT-based  design  displays  high  cohesion  and  low  coupling. 
Therefore, object- oriented designs are highly modular. 

 Since the principle of abstraction is used, it makes the design solution 
easily understandable and helps to manage complexity. 

Similar objects constitute a class. In other words, each object is a member 
of some class. Classes may inherit features from a super class. Conceptually, 
objects communicate by message passing. Objects have their own internal 
data. Thus an object may exist in different states depending the values of the 
internal data. In different states, an object may behave differently. We shall 
elaborate these concepts in Chapter 7 and subsequently we discuss an 
object-oriented design methodology in Chapter 8. 

O b je c t - o r i e n t e d v e r s u s function-oriented   design 
approaches 

The  following are  some  of the  important  differences  between the 



 

 

 

 

function-oriented and object-oriented design: 

 Unlike function-oriented design methods in OOD, the basic abstraction 
is not the services available to the users of the system such as issue- 
book, display-book-details, find-issued-books, etc., but real-world 
entities such as member, book, book-register, etc. For example in 
OOD, an employee pay-roll software is not developed by designing 
functions such as update-employee-record, get-employee-address, 
etc., but by designing objects such as employees, departments, etc. 

 In OOD, state information exists in the form of data distributed among 
several objects of the system. In contrast, in a procedural design, the 
state information is available in a centralised shared data store. For 
example, while developing an employee pay-roll system, the employee 
data such as the names of the employees, their code numbers, basic 
salaries, etc., are usually implemented as global data in a traditional 
programming system; whereas in an object-oriented design, these 
data are distributed among different employee objects of the system. 
Objects communicate by message passing. Therefore, one object may 
discover the state information of another object by sending a message 
to it. Of course, somewhere or other the real-world functions must be 
implemented. 

 Function-oriented techniques group functions together if, as a group, 
they constitute a higher level function. On the other hand, object- 
oriented techniques group functions together on the basis of the data 
they operate on. 

To illustrate the differences between the object-oriented and the function- 
oriented design approaches, let us consider an example—that of an 
automated fire-alarm system for a large building. 

Automated fire-alarm system—customer requirements 

The owner of a large multi-storied building wants to have a 
computerised fire alarm system designed, developed, and installed in 
his building. Smoke detectors and fire alarms would be placed in each 
room of the building. The fire alarm system would monitor the status of 
these smoke detectors. Whenever a fire condition is reported by any of 
the smoke detectors, the fire alarm system should determine the 
location at which the fire has been sensed and then sound the alarms 



 

 

 

 

only in the neighbouring locations. The fire alarm system should also 
flash an alarm message on the computer console. Fire fighting 
personnel would man the console round the clock. After a fire condition 
has been successfully handled, the fire alarm system should support 
resetting the alarms by the fire fighting personnel. 

Function-oriented approach: In this approach, the different high-level 
functions are first identified, and then the data structures are designed. 

 

The functions which operate on the system state are: 
interrogate_detectors(); 

get_detector_location(); 

determine_neighbour_alarm(); 

determine_neighbour_sprinkler(); 

ring_alarm(); 

activate_sprinkler(); 

reset_alarm(); 

reset_sprinkler(); 

report_fire_location(); 

Object-oriented approach: In the object-oriented approach, the different 
classes of objects are identified. Subsequently, the methods and data for 
each object are identified. Finally, an appropriate number of instances of each 
class is created. 

class detector 

attributes: status, location, neighbours 

operations: create, sense-status, get-location, 

find-neighbours 

class alarm 

attributes: location, status 

operations: create, ring-alarm, get_location, reset- 

alarm 

class sprinkler 



 

 

 

 

attributes: location, status 

operations: create, activate-sprinkler, get_location, 

reset-sprinkler 

We can  now compare the function-oriented  and  the object-oriented 
approaches based on the two examples discussed above, and easily observe 
the following main differences: 

 In a function-oriented program, the system state (data) is centralised 
and several functions access and modify this central data. In case of an 
object-oriented program, the state information (data) is distributed 
among various objects. 

 In the object-oriented design, data is private in different objects and 
these are not available to the other objects for direct access and 
modification. 

 The basic unit of designing an object-oriented program is objects, 
whereas it is functions and modules in procedural designing. Objects 
appear as nouns in the problem description; whereas functions appear 
as verbs. 



 

 

 

 

FUNCTION-ORIENTED SOFTWARE 

DESIGN 

6.1 OVERVIEW OF SA/SD METHODOLOGY 

As the name itself implies, SA/SD methodology involves carrying out two 
distinct activities: 

 Structured analysis (SA) 

 Structured design (SD) 

The roles of structured analysis (SA) and structured design (SD) have been 
shown schematically in Figure 6.1. Observe the following from the figure: 

 During structured analysis, the SRS document is transformed into a 
data flow diagram (DFD) model. 

 During structured design, the DFD model is transformed into a 
structure chart. 

 

Figure 6.1: Structured analysis and structured design methodology. 

As shown in Figure 6.1, the structured analysis activity transforms the SRS 
document into a graphic model called the DFD model. During structured 
analysis, functional decomposition of the system is achieved. That is, each 

function that the system needs to perform is analysed and hierarchically 
decomposed into more detailed functions. On the other hand, during 
structured design, all functions identified during structured analysis are 
mapped to a module structure. This module structure is also called the high- 
level design or the software architecture for the given problem. This is 
represented using a structure chart. 



 

 

 

 

The high-level design stage is normally followed by a detailed design stage. 
During the detailed design stage, the algorithms and data structures for the 
individual modules are designed. The detailed design can directly be 
implemented as a working system using a conventional programming 
language. 

 

The results of structured analysis can therefore, be easily understood by 
the user. In fact, the different functions and data in structured analysis are 
named using the user’s terminology. The user can therefore even review the 
results of the structured analysis to ensure that it captures all his 
requirements. 

In the following section, we first discuss how to carry out structured analysis 
to construct the DFD model. Subsequently, we discuss how the DFD model 
can be transformed into structured design. 

6.2 STRUCTURED ANALYSIS 

We have already mentioned that during structured analysis, the major 
processing tasks (high-level functions) of the system are analysed, and 
t h e data flow among these processing tasks are represented 
graphically. The structured analysis technique is based on the following 
underlying principles: 

  Top-down decomposition approach. 

 Application of divide and conquer principle. Through this each high- 
level function is independently decomposed into detailed functions. 

  Graphical representation of the analysis  results us i ng data flow 
diagrams (DFDs). 

DFD representation of a problem, as we shall see shortly, is very easy to 
construct. Though extremely simple, it is a very powerful tool to tackle the 
complexity of industry standard problems. 

 

Please note that a DFD model only represents the data flow aspects and 
does not show the sequence of execution of the different functions and the 
conditions based on which a function may or may not be executed. In fact, it 
completely ignores aspects such as control flow, the specific algorithms used 

It is important to understand that the purpose of structured analysis is to capture the 
detailed structure of the system as perceived by the user, whereas the purpose of 
structured design is to define the structure of the solution that is suitable for 
implementation in some programming language. 



 

 

 

 

by the functions, etc. In the DFD terminology, each function is called a 
process or a bubble. It is useful to consider each function as a processing 
station (or process) that consumes some input data and produces some 
output data. 

DFD is an elegant modelling technique that can be used not only to 
represent the results of structured analysis of a software problem, but also 
useful for several other applications such as showing the flow of documents 
or items in an organisation. 

6.2.1 Data Flow Diagrams (DFDs) 

The DFD (also known as the bubble chart) is a simple graphical 
formalism that can be used to represent a system in terms of the input 
data to the system, various processing carried out on those data, and 
the output data generated by the system. The main reason why the 
DFD technique is so popular is probably because of the fact that DFD is 
a very simple formalism— it is simple to understand and use. A DFD 
model uses a very limited number of primitive symbols (shown in Figure 
6.2) to represent the functions performed by a system and the data 
flow among these functions. 

Starting with a set of high-level functions that a system performs, a DFD 
model represents the subfunctions performed by the functions using a 
hierarchy of diagrams. We had pointed out while discussing the principle of 
abstraction  in  Section  1.3.2  that  any  hierarchical  representation  is  an 

effective means to tackle complexity. Human mind is such that it can easily 
understand any hierarchical model of a system—because in a hierarchical 
model, starting with a very abstract model of a system, various details of the 
system are slowly introduced through different levels of the hierarchy. The 
DFD technique is also based on a very simple set of intuitive concepts and 
rules. We now elaborate the different concepts associated with building a 
DFD model of a system. 

Primitive symbols used for constructing DFDs 

There are essentially five different types of symbols used for constructing 
DFDs. These primitive symbols are depicted in Figure 6.2. The meaning of 
these symbols are explained as follows: 



 

 

 

 

 

Figure 6.2: Symbols used for designing DFDs. 

Function symbol: A function is represented using a circle. This symbol is 

called a process or a bubble. Bubbles are annotated with the names of 

the corresponding functions (see Figure 6.3). 

External entity symbol: An external entity such as a librarian, a library 
member, etc. is represented by a rectangle. The external entities are 
essentially those physical entities external to the software system which 
interact with the system by inputting data to the system or by consuming the 
data produced by the system. In addition to the human users, the external 
entity symbols can be used to represent external hardware and software such 
as another application software that would interact with the software being 
modelled. 

Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol. 
A data flow symbol represents the data flow occurring between two processes 
or between an external entity and a process in the direction of the data flow 
arrow. Data flow symbols are usually annotated with the corresponding data 
names. For example the DFD in Figure 6.3(a) shows three data flows—the 

data item number flowing from the process read-number to validate-number, data- 

item flowing into read-number, and valid-number flowing out of validate-number. 

Data store symbol: A data store is represented using two parallel lines. It 
represents a logical file. That is, a data store symbol can represent either a 
data structure or a physical file on disk. Each data store is connected to a 
process by means of a data flow symbol. The direction of the data flow arrow 
shows whether data is being read from or written into a data store. An arrow 
flowing in or out of a data store implicitly represents the entire data of the 
data store and hence arrows connecting t o a data store need not be 
annotated with the name of the corresponding data items. As an example of 
a data store, number is a data store in Figure 6.3(b). 



 

 

 

 

Output symbol: The output symbol i s as shown in Figure 6.2. The output 

symbol is used when a hard copy is produced. 
The notations that we are following in this text are closer to the Yourdon’s 

notations than to the other notations. You may sometimes find notations in 
other books that are slightly different than those discussed here. For 
example, the data store may look like a box with one end open. That is 
because, they may be following notations such as those of Gane and Sarson 
[1979]. 

Important concepts associated with constructing DFD models 

Before we discuss how to construct the DFD model of a system, let us 
discuss some important concepts associated with DFDs: 

Synchronous and asynchronous operations 

If two bubbles are directly connected by a data flow arrow, then they are 
synchronous. This means that they operate at t he same speed. An 
example of such an arrangement is shown in Figure 6.3(a). Here, the 

validate-number bubble can start processing only after t h e read- 

number bubble has supplied data to it; and the read-number bubble 

has to wait until the validate-number bubble has consumed its 

data. 
However, if two bubbles are connected through a data store, as in Figure 

6.3(b) then the speed of operation of the bubbles are independent. This 
statement can be explained using the following reasoning. The data produced 
by a producer bubble gets stored in the data store. It is therefore possible 
that the producer bubble stores several pieces of data items, even before the 

consumer bubble consumes any of them. 
 

Figure 6.3: Synchronous and asynchronous data flow. 

Data dictionary 

Every DFD model of a system must be accompanied by a data dictionary. A 



 

 

 

 

data dictionary lists all data items that appear in a DFD model. The data 
items listed include all data flows and the contents of all data stores 
appearing on all the DFDs in a DFD model. Please remember that the DFD 
model of a system typically consists of several DFDs, viz., level 0 DFD, level 1 
DFD, level 2 DFDs, etc., as shown in Figure 6.4 discussed in new subsection. 
However, a single data dictionary should capture all the data appearing in all 
the DFDs constituting the DFD model of a system. 

 

For example, a data dictionary entry may represent that the data grossPay 
consists of the components regularPay and overtimePay. 

grossP ay = regularP ay + overtimeP ay 

For the smallest units of data items, the data dictionary simply lists their 
name and their type. Composite data items are expressed in terms of 
the component data items using certain operators. The operators using 
which a composite data item can be expressed in terms of its 
component data items are discussed subsequently. 

The dictionary plays a very important role in any software development 
process, especially for the following reasons: 

 A data dictionary provides a standard terminology for all relevant data 
for use by the developers working in a project. A consistent vocabulary 
for data items is very important, since in large projects different 
developers of the project have a tendency to use different terms to 
refer to the same data, which unnecessarily causes confusion. 

 

 The data dictionary helps the developers to determine the definition of 
different data structures in terms of their component elements while 
implementing the design. 

 The data dictionary helps to perform impact analysis. That is, it is 
possible to determine the effect of some data on various processing 
activities and vice versa. Such impact analysis is especially useful when 
one wants to check the impact of changing an input value type, or a 
bug in some functionality, etc. 

For large systems, the data dictionary can become extremely complex and 
voluminous. Even moderate-sized projects can have thousands of entries in 

A data dictionary lists the purpose of all data items and the definition of all composite 
data items in terms of their component data items. 



 

 

 

 

the data dictionary. It becomes extremely di fficult to maintain a voluminous 
dictionary manually. Computer-aided software engineering (CASE) tools come 
handy to overcome this problem. Most CASE tools usually capture the data 
items appearing in a DFD as the DFD is drawn, and automatically generate 
the data dictionary. As a result, the designers do not have to spend almost 
any effort in creating the data dictionary. These CASE tools also support some 
query language facility to query about the definition and usage of data items. 
For example, queries may be formulated to determine which data item 
affects which processes, or a process affects which data items, or the 
definition and usage of specific data items, etc. Query handling is facilitated 
by storing the data dictionary in a relational database management system 
(RDBMS). 

Data definition 

Composite data items can be defined in terms of primitive data items 
using the following data definition operators. 

+: denotes composition of two data items, e.g. a+b represents data a and b. 

[,,]: represents selection, i.e. any one of the data items listed inside the 

square bracket can occur For example, [a,b] represents either a occurs or b 

occurs. 

(): the contents inside the bracket represent optional data which may or may 

not appear. 

a+(b) represents either a or a+b occurs. 

{}: represents iterative data definition, e.g. {name}5 represents five name data. 

{name}* represents zero or more instances of name data. 

=: represents equivalence, e.g. a=b+c means that a is a composite data item 

comprising of both b and c. 

/* */: Anything appearing within /* and */ is considered as comment. 

6.3 DEVELOPING THE DFD MODEL OF A SYSTEM 

A DFD model of a system graphically represents how each input data is 
transformed to its corresponding output data through a hierarchy of DFDs. 

 

The DFD model of a system i s constructed by using a hierarchy of DFDs 
(see Figure 6.4). The top level DFD is called the level 0 DFD or the context 
diagram. This is the most abstract (simplest) representation of the system 

The DFD model of a problem consists of many of DFDs and a single data dictionary. 



 

 

 

 

(highest level). It is the easiest to draw and understand. At each successive 
lower level DFDs, more and more details are gradually introduced. To 
develop a higher-level DFD model, processes are decomposed into their 
subprocesses and the data flow among these subprocesses are identified. 

To develop the data flow model of a system, first the most abstract 
representation (highest level) of the problem is to be worked out. 
Subsequently, the lower level DFDs are developed. Level 0 and Level 1 
consist of only one DFD each. Level 2 may contain up to 7 separate DFDs, 
and level 3 up to 49 DFDs, and so on. However, there is only a single data 
dictionary for the entire DFD model. All the data names appearing in all DFDs 
are populated in the data dictionary and the data dictionary contains the 
definitions of all the data items. 

6.3.1 Context Diagram 

The context diagram is the most abstract (highest level) data flow 
representation of a system. It represents the entire system as a single 
bubble. The bubble in the context diagram is annotated with the name of the 
software system being developed (usually a noun). This is the only bubble in 
a DFD model, where a noun is used for naming the bubble. The bubbles at all 
other levels are annotated with verbs according to the main function 
performed by the bubble. This is expected since the purpose of the context 
diagram is to capture the context of the system rather than its functionality. 
As an example of a context diagram, consider the context diagram a software 
developed to automate the book keeping activities of a supermarket (see 
Figure 6.10). The context diagram has been labelled as ‘Supermarket 
software’. 
 



 

 

 

 

 

Figure 6.4: DFD model of a system consists of a hierarchy of DFDs and a single data dictionary. 
 

The name context diagram of the level 0 DFD is justified because it 
represents the context in which the system would exist; that is, the external 
entities who would interact with the system and the specific data items that 
they would be supplying the system and the data items they would be 
receiving from the system. The various external entities with which the 
system interacts and the data flow occurring between the system and the 
external entities are represented. The data input to the system and the data 
output from the system are represented as incoming and outgoing arrows. 
These data flow arrows should be annotated with the corresponding data 

The context diagram establishes the context in which the system operates; that is, 
who are the users, what data do they input to the system, and what data they 
received by the system. 



 

 

 

 

names. 

To develop the context diagram of the system, we have to analyse the SRS 
document to identify the different types o f users who would be using the 
system and the kinds of data they would be inputting to the system and the 
data they would be receiving from the system. Here, the term users of the 
system also includes any external systems which supply data to or receive 
data from the system. 

6.3.2 Level 1 DFD 

The level 1 DFD usually contains three to seven bubbles. That is, the 
system is represented as performing three to seven important functions. 
To develop the level 1 DFD, examine the high-level functional 
requirements in the SRS document. If there are three to seven high- 
level functional requirements, then each of these can be directly 
represented as a bubble in the level 1 DFD. Next, examine the input 
data to these functions and the data output by these functions as 
documented in the SRS document and represent them appropriately in 
the diagram. 

What if a system has more than seven high-level requirements identified in 
the SRS document? In this case, some of the related requirements have to be 
combined and represented as a single bubble in the level 1 DFD. These can 
be split appropriately in the lower DFD levels. If a system has less than three 
high-level functional requirements, then some of the high-level requirements 
need to be split into their subfunctions so that we have roughly about five to 
seven bubbles represented on the diagram. We illustrate construction of level 
1 DFDs in Examples 6.1 to 6.4. 

Decomposition 

Each bubble in the DFD represents a function performed by the system. 
The bubbles are decomposed into subfunctions at the successive levels 
of the DFD model. Decomposition of a bubble is also known as factoring 
o r exploding a bubble. Each bubble at any level of DFD is usually 
decomposed to anything three to seven bubbles. A few bubbles at any 
level m a k e that level superfluous. For example, if a bubble is 
decomposed to just one bubble or two bubbles, then this decomposition 
becomes trivial and redundant. On the other hand, too many bubbles 
(i.e. more than seven bubbles) at any level o f a DFD makes the DFD 
model hard to understand. Decomposition of a bubble should be carried 



 

 

 

 

on until a level is reached at which the function of the bubble can be 
described using a simple algorithm. 

We can now describe how to go about developing the DFD model of a 
system more systematically. 

1.  Construction of context diagram: Examine the SRS document to 

determine: 

• Different high-level functions that the system needs to perform. 

• Data input to every high-level function. 

• Data output from every high-level function. 

• Interactions (data flow) among the identified high-level functions. 

Represent these aspects of the high-level functions in a diagrammatic 

form. This would form the top-level data flow diagram (DFD), usually 

called the DFD 0. 

Construction of level 1 diagram: Examine the high-level functions 

described in the SRS document. If there are three to seven high-level 
requirements in the SRS document, then represent each of the high-level 
function in the form of a bubble. If there are more than seven bubbles, 
then some of them have to be combined. If there are less than three 
bubbles, then some of these have to be split. 

Construction of lower-level diagrams: Decompose each high-level function 

into its constituent subfunctions through the following set of activities: 

• Identify the different subfunctions of the high-level function. 

• Identify the data input to each of these subfunctions. 

• Identify the data output from each of these subfunctions. 

• Identify the interactions (data flow) among these subfunctions. 

Represent these aspects in a diagrammatic form using a DFD. 

Recursively repeat Step 3 for each subfunction until a subfunction can be 
represented by using a simple algorithm. 

Numbering of bubbles 

It is necessary to number the different bubbles occurring in the DFD. 
These numbers help in uniquely identifying any bubble in the DFD from 
its bubble number. The bubble at the context level is usually assigned 
the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1 
are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is 



 

 

 

 

decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this 
numbering scheme, by looking at the number of a bubble we can 
unambiguously determine its level, its ancestors, and its successors. 

Balancing DFDs 

The DFD model of a system usually consists of many DFDs that are organised 
in a hierarchy. In this context, a DFD is required to be balanced with respect 
to the corresponding bubble of the parent DFD. 

 

We illustrate the concept of balancing a DFD in Figure 6.5. In the level 1 
DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2 
flows into the bubble 0.1 (shown by the dotted circle). In the next level, 
bubble 0.1 is decomposed into three DFDs (0.1.1,0.1.2,0.1.3). The 
decomposition is balanced, as d1 and d3 flow out of the level 2 diagram and 
d 2 flows in. Please note that dangling arrows (d1,d2,d3) represent the data 
flows into or out of a diagram. 

How far to decompose? 

A bubble should not be decomposed any further once a bubble is found to 
represent a simple set of instructions. For simple problems, decomposition up 
to level 1 should suffice. However, large industry standard problems may 
need decomposition up to level 3 or level 4. Rarely, if ever, decomposition 
beyond level 4 is needed. 

The data that flow into or out of a bubble must match the data flow at the next level 
of DFD. This is known as balancing a DFD. 



 

 

 

 

 

Figure 6.5: An example showing balanced decomposition. 

Commonly made errors while constructing a DFD model 

Although DFDs are simple to understand and draw, students and 
practitioners alike encounter similar types of problems while modelling 
software problems using DFDs. While learning from experience is a 
powerful thing, it is an expensive pedagogical technique in the business 
world. It is therefore useful to understand the different types of 
mistakes that beginners usually make while constructing the DFD model 

of systems, so that you can consciously try to avoid them.The errors are 
as follows: 

 Many beginners commit the mistake of drawing more than one bubble 
in the context diagram. Context diagram should depict the system as a 
single bubble. 

 Many beginners create DFD models in which external entities 
appearing at all levels of DFDs. All external entities interacting with the 
system should be represented only in the context diagram. The 
external entities should not appear in the DFDs at any other level. 



 

 

 

 

  It is a common oversight to have either too few or too many bubbles in 
a DFD. Only three to seven bubbles per diagram should be allowed. 
This also means that each bubble in a DFD should be decomposed 
three to seven bubbles in the next level. 

 Many beginners leave the DFDs at the different levels of a DFD model 
unbalanced. 

 A common mistake committed by many beginners while developing a 
DFD model is attempting to represent control information in a DFD. 

 

The following are some illustrative mistakes of trying to represent control 
aspects such as: 

Illustration 1. A book can be searched in the library catalog by inputting its 

name. If the book is available in the library, then the details of the book are 
displayed. If the book is not listed in the catalog, then an error message is 
generated. While developing the DFD model for this simple problem, many 
beginners commit the mistake of drawing an arrow (as shown in Figure 6.6) 
to indicate that the error function is invoked after the search book. But, this is 
a control information and should not be shown on the DFD. 
 

 

 

Figure 6.6: It is incorrect to show control information on a DFD. 

Illustration 2. Another type of error occurs when one tries to represent 

when or in what order different functions (processes) are invoked. A 
DFD similarly should not represent the conditions under which different 

functions are invoked. 

Illustration 3. If a bubble A invokes either the bubble B or the bubble C 

It is important to realise that a DFD represents only data flow, and it does not 
represent any control information. 



 

 

 

 

depending upon some conditions, we need only to represent the data that 

flows between bubbles A and B or bubbles A and C and not the conditions 
depending on which the two modules are invoked. 

 A data flow arrow should not connect two data stores or even a data 
store with an external entity. Thus, data cannot flow from a data store 
to another data store or to an external entity without any intervening 
processing. As a result, a data store should be connected only to 
bubbles through data flow arrows. 

 All the functionalities of the system must be captured by the DFD 
model. No function of the system specified in the SRS document of the 
system should be overlooked. 

 Only those functions of the system specified in the SRS document 
should be represented. That is, the designer should not assume 
functionality of the system not specified by the SRS document and then 
try to represent them in the DFD. 

 Incomplete data dictionary and data dictionary showing incorrect 
composition of data items are other frequently committed mistakes. 

 The data and function names must be intuitive. Some students and 
even practicing developers use meaningless symbolic data names such 
as a,b,c, etc. Such names hinder understanding the DFD model. 

 Novices usually clutter their DFDs with too many data flow arrow. It 
becomes difficult to understand a DFD if any bubble is associated with 
more than seven data flows. When there are too many data flowing in 
or out of a DFD, it is better to combine these data items into a high- 
level data item. Figure 6.7 shows an example concerning how a DFD 
can be simplified by combining several data flows into a single high- 
level data flow. 

 



 

 

 

 

Figure 6.7: Illustration of how to avoid data cluttering. 
 

 

Figure 6.16: Level 1 DFD for Example 6.5. 

The level 2 DFD for the manageOwnBook bubble is shown in Figure 6.17. 
 

Figure 6.17: Level 2 DFD for Example 6.5. 

 

 



 

 

 

 

6.3.3 Extending DFD Technique to Make it Applicable to Real-time 

Systems 

In a real-time system, some of the high-level functions are associated 
with deadlines. Therefore, a function must not only produce correct 
results but also should produce them by some prespecified time. For 
real-time systems, execution time is an important consideration for 
arriving at a correct design. Therefore, explicit representation of control 
and event flow aspects are essential. One of the widely accepted 
techniques for extending the DFD technique to real-time system 
analysis is the Ward and Mellor technique [1985]. In the Ward and 
Mellor notation, a type of process that handles only control flows is 
introduced. These processes representing control processing are 
denoted using dashed bubbles. Control flows are shown using dashed 
lines/arrows. 

Unlike Ward and Mellor, Hatley and Pirbhai [1987] show the dashed and 
solid representations on separate diagrams. To be able to separate the data 
processing and the control processing aspects, a control flow diagram (CFD) 
is defined. This reduces the complexity of the diagrams. In order to link the 
data processing and control processing diagrams, a notational reference 
(solid bar) to a control specification is used. The CSPEC describes the 
following: 

  The effect of an external event or control signal. 

  The processes that are invoked as a consequence of an event. 

Control specifications represents the behavior of the system in two 
different ways: 

 It contains a state transition diagram (STD). The STD is a sequential 
specification of behaviour. 

 It contains a progra m activation table (PAT). The PAT is a 
combinatorial specification of behaviour. PAT represents  invocation 

sequence of bubbles in a DFD. 

6.4 STRUCTURED DESIGN 

The aim of structured design is to transform the results of the structured 
analysis (that i s, the DFD model) into a structure chart. A structure 



 

 

 

 

chart represents the software architecture. The various modules making 
up the system, the module dependency (i.e. which module calls which 
other modules), and the parameters that are passed among the 
different modules. The structure chart representation can be easily 
implemented using some programming language. Since the main focus 
in a structure chart representation is on module structure of a software 
and the interaction among the different modules, the procedural 
aspects (e.g. how a particular functionality is achieved) are not 
represented. 

The basic building blocks using which structure charts are designed are as 
following: 

Rectangular boxes: A rectangular box represents a module. Usually, every 

rectangular box is annotated with the name of the module it represents. 

Module invocation arrows: An arrow connecting two modules implies that 

during program execution control is passed from one module to the other in 
the direction of the connecting arrow. However, just by looking at the 
structure chart, we cannot say whether a modules calls another module just 
once or many times. Also, just by looking at the structure chart, we cannot 
tell the order in which the different modules are invoked. 

Data flow arrows: These are small arrows appearing alongside the module 

invocation arrows. The data flow arrows are annotated with the 
corresponding data name. Data flo w arrows represent the fact that the 
named data passes from one module to the other in the direction of the 
arrow. 

Library modules: A library module is usually represented by a rectangle with 

double edges. Libraries comprise the frequently called modules. Usually, 

when a module is invoked by many other modules, it is made into a library 
module. 

Selection: The diamond symbol represents the fact that one module of several 

modules connected with the diamond symbol i s invoked depending on the 

outcome of the condition attached with the diamond symbol. 

Repetition: A loop around the control flow arrows denotes that the respective 

modules are invoked repeatedly. 
In any structure chart, there should be one and only one module at the top, 

called the root. There should be at most one control relationship between any 
two modules in the structure chart. This means that if module A invokes 
module B, module B cannot invoke module A. The main reason behind this 



 

 

 

 

restriction is that we can consider the different modules of a structure chart 
to be arranged in layers or levels. The principle of abstraction does not allow 
lower-level modules to be aware of the existence of the high-level modules. 
However, it is possible for t wo higher-level modules to invoke the same 
lower-level module. An example of a properly layered design and another of a 
poorly layered design are shown in Figure 6.18. 

 

Figure 6.18: Examples of properly and poorly layered designs. 

Flow chart versus structure chart 

We are all familiar with the flow chart representation of a program. Flow 
chart is a convenient technique to represent the flo w of control in a 
program. A structure chart differs from a flow chart in three principal 
ways: 

 It is usually difficult to identify the different modules of a program from 
its flow chart representation. 

 Data interchange among different modules is not represented in a flow 
chart. 

 Sequential ordering of tasks that i s inherent to a flow chart is 
suppressed in a structure chart. 



 

 

 

 

6.4.1 Transformation of a DFD Model into Structure Chart 

Systematic techniques are available to transform the DFD representation 
of a problem into a module structure represented by as a structure 
chart. Structured design provides two strategies to guide transformation 
of a DFD into a structure chart: 

  Transform analysis 
 Transaction analysis 

 

At each level of transformation, it is important to first determine whether 
the transform or the transaction analysis is applicable to a particular DFD. 

Transform analysis 

Transform analysis identifies the primary functional components 
(modules) and the input and output data for these components. The 
first step in transform analysis is to divide the DFD into three types of 
parts: 

• Input. 

• Processing. 

• Output. 

The input portion in the DFD includes processes that transform input data 
from physical (e.g, character from terminal) to logical form (e.g. internal 
tables, lists, etc.). Each input portion is called an afferent branch. 

The output portion of a DFD transforms output data from logical form to 
physical form. Each output portion is called an efferent branch. The remaining 
portion of a DFD is called central transform. 

In the next step of transform analysis, the structure chart is derived by 
drawing one functional component each for the central transform, the 
afferent and efferent branches. These are drawn below a root module, which 
would invoke these modules. 

Identifying the input and output parts requires experience and skill. One 
possible approach is to trace the input data until a bubble is found whose 
output data cannot be deduced from its inputs alone. Processes which 
validate input are not central transforms. Processes which sort input or filter 
data from it are central tansforms. T h e first level o f structure chart is 
produced by representing each input and output unit as a box and each 
central transform as a single box. 



 

 

 

 

In the third step of transform analysis, the structure chart is refined by 
adding subfunctions required by each of the high-level functional components. 
Many levels of functional components may be added. This process of breaking 
functional components into subcomponents is called factoring. Factoring 
includes adding read and write modules, error-handling modules, initialisation 
and termination process, identifying consumer modules etc. The factoring 
process is continued until all bubbles in the DFD are represented in the 
structure chart. 

 

 

Figure 6.19: Structure chart for Example 6.6. 

Transaction analysis 

Transaction analysis is an alternative to transform analysis and is useful while 
designing transaction processing programs. A transaction allows the user to 
perform some specific type of work by using the software. For example, ‘issue 
book’, ‘return book’, ‘query book’, etc., are transactions. 

 

 



 

 

 

 

Figure 6.20: Structure chart for Example 6.7. 

As in transform analysis, first all data entering into the DFD need to be 
identified. In a transaction-driven system, different data items may pass 
through different computation paths through the DFD. This is in contrast to a 
transform centered system where each data item entering the DFD goes 
through the same processing steps. Each different way in which input data is 
processed is a transaction. A simple way to identify a transaction is the 
following. Check the input data. The number of bubbles on which the input 
data to the DFD are incident defines the number of transactions. However, 
some transactions may not require any input data. These transactions can be 
identified based on the experience gained from solving a large number of 
examples. 

For each identified transaction, trace the input data to the output. All the 
traversed bubbles belong to the transaction. These bubbles should be 
mapped to the same module on the structure chart. In the structure chart, 
draw a root module and below this module draw each identified transaction 
as a module. Every transaction carries a tag identifying its type. Transaction 
analysis uses this tag to divide the system into transaction modules a nd a 
transaction-center module. 

 

6.5 DETAILED DESIGN 

During detailed design the pseudo code description of the processing and 
the different data structures are designed for the different modules of 
the structure chart. These are usually described in the form of module 
specifications (MSPEC). MSPEC is usually written using structured 
English. The MSPEC for the non-leaf modules describe the different 
conditions under which the responsibilities are delegated to the lower- 
level modules. The MSPEC for the leaf-level modules should describe in 
algorithmic form how the primitive processing steps are carried out. To 
develop the MSPEC of a module, it is usually necessary to refer to the 
DFD model and the SRS document to determine the functionality of the 
module. 

6.6 DESIGN REVIEW 

After a design is complete, the design is required to be reviewed. The 
review team usually consists of members with design, implementation, 
testing, and maintenance perspectives, who may or may not be the 
members of the development team. Normally, members of the team 



 

 

 

 

who would code the design, and test the code, the analysts, and the 
maintainers attend the review meeting. The review team checks the 
design documents especially for the following aspects: 

Traceability: Whether each bubble of the DFD can be traced to some module 

in the structure chart a nd vice versa. They check whether each functional 

requirement in the SRS document can be traced to some bubble in the DFD 
model and vice versa. 

Correctness: Whether all the algorithms and data structures of the detailed 

design are correct. 

Maintainability: Whether the design can be easily maintained in future. 

Implementation: Whether the design can be easily and efficiently be 

implemented. 
After the points raised by the reviewers is addressed by the designers, the 

design document becomes ready for implementation. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CODING AND TESTING 

 

10.1 CODING 

The input to the coding phase is the design document produced at the end of 
the design phase. Please recollect that the design document contains not only 
the high-level design of the system in the form of a module structure (e.g., a 
structure chart), but also the detailed design. The detailed design is usually 
documented in the form of module specifications where the data structures 
and algorithms for each module are specified. During the coding phase, 
different modules identified in the design document are coded according to 
their respective module specifications. We can describe the overall objective 
of the coding phase to be the following. 

 

Normally, good software development organisations require their 
programmers to adhere to some well-defined and standard style of coding 
which is called their coding standard. These software development 
organisations formulate their own coding standards that suit them the most, 
and require their developers to follow the standards rigorously because of the 
significant business advantages it offers. The main advantages of adhering to 
a standard style of coding are the following: 

 A coding standard gives a uniform appearance to the codes written by 
different engineers. 

 It facilitates code understanding and code reuse. 

 It promotes good programming practices. 

A coding standard lists several rules to be followed during coding, such as 
the way variables are to be named, the way the code is to be laid out, the 
error return conventions, etc. Besides the coding standards, several coding 
guidelines are also prescribed by software companies. But, what is the 
difference between a coding guideline and a coding standard? 

 

After a module has been coded, usually code review is carried out to ensure 
that the coding standards are followed and also to detect as many errors as 
possible before testing. It is important to detect as many errors as possible 

The objective of the coding phase is to transform the design of a system into code in 
a high-level language, and then to unit test this code. 



 

 

 

 

during code reviews, because reviews are an efficient way of removing errors 
from code as compared to defect elimination using testing. We first discuss a 
few representative coding standards and guidelines.  

10.2 CODE REVIEW 

Testing is an effective defect removal mechanism. However, testing is 
applicable to only executable code. Review is a very effective technique 
to remove defects from source code. In fact, review has been 
acknowledged to be more cost-effective in removing defects as 
compared to testing. Over the years, review techniques have become 
extremely popular and have been generalised for use with other work 
products. 

Code review for a module is undertaken after the module successfully 
compiles. That is, all the syntax errors have been eliminated from the 
module. Obviously, code review does not target to design syntax errors in a 
program, but is designed to detect logical, algorithmic, and programming 
errors. Code review has been recognised as an extremely cost-effective 
strategy for eliminating coding errors and for producing high quality code. 

The reason behind why code review is a much more cost-effective strategy 
to eliminate errors from code compared to testing is that reviews directly 
detect errors. On the other hand, testing only helps detect failures and 
significant effort is needed to locate the error during debugging. 

The rationale behind the above statement  is explained as follows. 
Eliminating an error from code  involves three  main activities—testing, 
debugging, and then correcting the errors. Testing is carried out to detect if 

the system fails to work satisfactorily for certain types of inputs and under 
certain circumstances. Once a failure is detected, debugging is carried out to 
locate the error that is causing the failure and to remove it. Of the three 

testing  activities, debugging  is possibly the most laborious  and time 
consuming activity. In code inspection, errors are directly detected, thereby 

saving the significant effort that would have been required to locate the error. 

Normally, the following two types of reviews are carried out on the code of 
a module: 

 Code inspection. 

 Code walkthrough. 

The procedures for conduction and the final objectives of these two review 
techniques are very different. In the following two subsections, we discuss 



 

 

 

 

these two code review techniques. 

10.2.1 Code Walkthrough 

Code walkthrough is an informal code analysis technique. In this technique, 
a module is taken up for review after the module has been coded, 
successfully compiled, and all syntax errors have been eliminated. A few 
members of the development team are given the code a couple of days 
before the walkthrough meeting. Each member selects some test cases and 
simulates execution of the code by hand (i.e., traces the execution through 
different statements and functions of the code). 

 

The members note down their findings of their walkthrough and discuss 
those in a walkthrough meeting where the coder of the module is present. 

Even though code walkthrough is an informal analysis technique, several 
guidelines have evolved over the years for making this naive but useful 
analysis technique more effective. These guidelines are based on personal 
experience, common sense, several other subjective factors. Therefore, these 
guidelines should be considered as examples rather than as accepted rules to 
be applied dogmatically. Some of these guidelines are following: 

 The team performing code walkthrough should not be either too big or 
too small. Ideally, it should consist of between three to seven 
members. 

 Discussions should focus on discovery of errors and avoid deliberations 
on how to fix the discovered errors. 

 In order to foster co-operation and to avoid the feeling among the 
engineers that they are being watched and evaluated in the code 
walkthrough meetings, managers should not attend the walkthrough 
meetings. 

10.2.2 Code Inspection 

During code inspection, the code is examined for the presence of some 
common programming errors. This is in contrast to the hand simulation of 
code execution carried out during code walkthroughs. We can state the 
principal aim of the code inspection to be the following: 



 

 

 

 

 

 

The inspection process has several beneficial side effects, other than 
finding errors. The programmer usually receives feedback on programming 
style, choice of algorithm, and programming techniques. The other 
participants gain by being exposed to another programmer’s errors. 

As an example of the type of errors detected during code inspection, 
consider the classic error of writing a procedure that modifies a formal 
parameter and then calls it with a constant actual parameter. It is more lik ely 
that such an error can be discovered by specifically looking for this kinds of 
mistakes in the code, rather than by simply hand simulating execution of the 
code. In addition to the commonly made errors, adherence to coding 
standards is also checked during code inspection. 

Good software development companies collect statistics regarding different 
types of errors that are commonly committed by their engineers and identify 
the types of errors most frequently committed. Such a list of commonly 
committed errors can be used as a checklist during code inspection to look 
out for possible errors. 

Following is a list of some classical programming errors which can be 
checked during code inspection: 

 Use of uninitialised variables. 
 Jumps into loops. 
 Non-terminating loops. 

 Incompatible assignments. 
 Array indices out of bounds. 
  Improper storage allocation and deallocation. 
  Mismatch between actual and formal parameter in procedure calls. 

  Use of incorrect logical operators or incorrect precedence among 
operators. 

  Improper modification of loop variables. 
  Comparison of equality of floating point values. 

 Dangling reference caused when the referenced memory has not been 
allocated. 

10.2.3 Clean Room Testing 

Clean room testing was pioneered at IBM. This type of testing relies 



 

 

 

 

heavily on walkthroughs, inspection, and formal verification. The 
programmers are not allowed to test any of their code by executing the 
code other than doing some syntax testing using a compiler. It is 
interesting to note that the term cleanroom was first coined at IBM by 
drawing analogy to the semiconductor fabrication units where defects 
are avoided by manufacturing in an ultra-clean atmosphere. 

This technique reportedly produces documentation and code that is more 
reliable and maintainable than other development methods relying heavily on 
code execution-based testing. The main problem with this approach is that 
testing effort is increased as walkthroughs, inspection, and verification are 
time consuming for detecting all simple errors. Also testing- based error 
detection is efficient for detecting certain errors that escape manual 
inspection. 

10.3 SOFTWARE DOCUMENTATION 

When a software is developed, in addition to the executable files and the 
source code, several kinds of documents such as users’ manual, 
software requirements specification (SRS) document, design document, 
test document, installation manual, etc., are developed as part of the 
software engineering process. All these documents are considered a 
vital part of any good software development practice. Good documents 
are helpful in the following ways: 

 Good documents help enhance understandability of code. As a result, 
the availability of good documents help to reduce the effort and time 
required for maintenance. 

 Documents help the users to understand and effectively use the 
system. 

 Good documents help to effectively tackle the manpower turnover1 

problem. Even when an engineer leaves the organisation, and a new 
engineer comes in, he can build up the required knowledge easily by 
referring to the documents. 

 Production of good documents helps the manager to effectively track 
the progress of the project. The project manager would know that 
some measurable progress has been achieved, if the results of some 
pieces of work has been documented and the same has been 
reviewed. 



 

 

 

 

Different types of software documents can broadly be classified into the 
following: 

 

We discuss these two types of documentation in the next section. 

10.3.1 Internal Documentation 

Internal documentation is the code comprehension features provided in 
the source code itself. Internal documentation can be provided in the 
code in several forms. The important types of internal documentation 
are the following: 

 Comments embedded in the source code. 
 Use of meaningful variable names. 
 Module and function headers. 
 Code indentation. 
 Code structuring (i.e., code decomposed into modules and functions). 
 Use of enumerated types. 
  Use of constant identifiers. 
  Use of user-defined data types. 

Out of these different types of internal documentation, which one is the 
most valuable for understanding a piece of code? 

 

The above assertion, of course, is in contrast to the common expectation 
that code commenting would be the most useful. The research finding is 
obviously true when comments are written without much thought. For 
example, the following style of code commenting is not much of a help in 
understanding the code. 

a=10; /* a made 10 */ 

A good style of code commenting is to write to clarify certain non-obvious 
aspects of the working of the code, rather than cluttering the code with trivial 
comments. Good software development organisations usually ensure good 
internal documentation by appropriately formulating their coding standards 

Internal documentation: These are provided in the source code itself. 

External documentation: These are the supporting documents such as SRS 
document, installation document, user manual, design document, and test document. 



 

 

 

 

and coding guidelines. Even when a piece of code is carefully commented, 
meaningful variable names has been found to be the most helpful in 
understanding the code. 

10.3.2 External Documentation 

External documentation is provided through various types of supporting 
documents such as users’ manual, software requirements specification 
document, design document, test document, etc. A systematic software 
development style ensures that all these documents are of good quality 
and are produced in an orderly fashion. 

An important feature that is requierd of any good external documentation is 
consistency with the code. If the different documents are not consistent, a lot 
of confusion is created for somebody trying to understand the software. In 
other words, all the documents developed for a product should be up-to-date 
and every change made to the code should be reflected in the relevant 
external documents. Even if only a few documents are not up-to-date, they 
create inconsistency and lead to confusion. Another important feature 
required for external documents is proper understandability by the category 
of users for whom the document is designed. For achieving this, Gunning’s fog 
index is very useful. We discuss this next. 

Gunning’s fog index 

Gunning’s fog index (developed by Robert Gunning in 1952) is a metric 
that has been designed to measure the readability of a document. The 
computed metric value (fog index) of a document indicates the number 
of years of formal education that a person should have, in order to be 
able to comfortably understand that document. That is, if a certain 
document has a fog index of 12, any one who has completed his 12th 
class would not have much difficulty in understanding that document. 

The Gunning’s fog index of a document D can be computed as follows: 

 

Observe that the fog index is computed as the sum of two different factors. 
The first factor computes the average number of words per sentence (total 
number of words in the document divided by the total number of sentences). 
This factor therefore accounts for the common observation that long 
sentences are difficult to understand. The second factor measures the 
percentage of complex words in the document. Note that a syllable is a group 



 

 

 

 

o f words that can be independently pronounced. For example, the word 
“sentence” has three syllables (“sen”, “ten”, and “ce”). Words having more 
than three syllables are complex words and presence of many such words 
hamper readability of a document. 

10.4 TESTING 

The aim of program testing is to help realize identify all defects in a 
program. However, in practice, even after satisfactory completion of the 
testing phase, it is not possible to guarantee that a program is error 
free. This is because the input data domain of most programs is very 
large, and it is not practical to test the program exhaustively with 
respect to each value that the input can assume. Consider a function 
taking a floating point number as argument. If a tester takes 1sec to 
type in a value, then even a million testers would not be able to 
exhaustively test it after trying for a million number of years. Even with 
this obvious limitation of the testing process, we should not 
underestimate the importance of testing. We must remember that 
careful testing can expose a large percentage of the defects existing in 
a program, and therefore provides a practical way of reducing defects in 
a system. 

10.4.1 Basic Concepts and Terminologies 

In this section, we will discuss a few basic concepts in program testing 
on which our subsequent discussions on program testing would be 
based. 

How to test a program? 

Testing a program involves executing the program with a set of test 
inputs and observing if the program behaves as expected. If the 
program fails to behave as expected, then the input data and the 
conditions under which it fails are noted for later debugging and error 
correction. A highly simplified view of program testing is schematically 
shown in Figure 10.1. The tester has been shown as a stick icon, who 
inputs several test data to the system and observes the outputs 
produced by it to check if the system fails on some specific inputs. 
Unless the conditions under which a software fails are noted down, it 
becomes difficult for the developers to reproduce a failure observed by 
the testers. For examples, a software might fail for a test case only 



 

 

 

 

when a network connection is enabled. 
 

 

 
Terminologies 

Figure 10.1: A simplified view of program testing. 

As is true for any specialised domain, the area of software testing has 
come to be associated with its own set of terminologies. In the 
following, we discuss a few important terminologies that have been 
standardised by the IEEE Standard Glossary of Software Engineering 
Terminology [IEEE90]: 

 A mistake is essentially any programmer action that later shows up as 
an incorrect result during program execution. A programmer may 
commit a mistake in almost any development activity. For example, 
during coding a programmer might commit the mistake of not 
initializing a certain variable, or might overlook the errors that might 
arise in some exceptional situations such as division by zero in an 
arithmetic operation. Both these mistakes can lead to an incorrect 
result. 

 An error is the result of a mistake committed by a developer in any of 
the development activities. Among the extremely large variety of 
errors that can exist in a program. One example of an error is a call 
made to a wrong function. 



 

 

 

 

 

 

Though the terms error, fault, bug, and defect are all used interchangeably 
by the program testing community. Please note that in the domain of 
hardware testing, the term fault is used with a slightly different connotation 
[IEEE90] as compared to the terms error and bug. 

Verification versus validation 

The objectives of both verification and validation techniques are very 
similar since both these techniques are designed to help remove errors 
in a software. In spite of the apparent similarity between their 
objectives, the underlying principles of these two bug detection 
techniques and their applicability are very different. We summarise the 
main differences between these two techniques in the following: 

 Verification is the process of determining whether the output of one 
phase of software development conforms to that of its previous phase; 
whereas validation is the process of determining whether a fully 
developed software conforms to its requirements specification. Thus, 
the objective of verification is to check if the work products produced 
after a phase conform to that which was input to the phase. For 
example, a verification step can be to check if the design documents 
produced after the design step conform to the requirements 
specification. On the other hand, validation is applied to the fully 
developed and integrated software to check if it satisfies the 
customer’s requirements. 

 The primary techniques used for verification include review, simulation, 
formal verification, and testing. Review, simulation, and testing are 
usually considered as informal verification techniques. Formal 
verification usually involves use of theorem proving techniques or use 
of automated tools such as a model checker. On the other hand, 
validation techniques are primarily based on product testing. Note that 
we have categorised testing both under program verification and 
validation. The reason being that unit and integration testing can be 
considered as verification steps where it is verified whether the code is 
a s per the module and module interface specifications. On the other 
hand, system testing can be considered as a validation step where it is 
determined whether the fully developed code is as per its requirements 
specification. 

 Verification does not require execution of the software, whereas 



 

 

 

 

validation requires execution of the software. 

 Verification is carried out during the development process to check if 
the development activities are proceeding alright, whereas validation is 
carried out to check if the right as required by the customer has been 
developed. 

10.4.2 Testing Activities 

Testing involves performing the following main activities: 

Test suite design: The set of test cases using which a program is to be 
tested is designed possibly using several test case design techniques. We 
discuss a few important test case design techniques later in this Chapter. 

Running test cases and checking the results to detect failures: Each 
test case is run and the results are compared with the expected results. A 
mismatch between the actual result and expected results indicates a failure. 
The test cases for which the system fails are noted down for later debugging. 

Locate error: In this activity, the failure symptoms are analysed to locate 
the errors. For each failure observed during the previous activity, the 
statements that are in error are identified. 

Error correction: After the error is located during debugging, the code is 
appropriately changed to correct the error. 

The testing activities have been shown schematically in Figure 10.2. As can 
be seen, the test cases are first designed, the test cases are run to detect 
failures. The bugs causing the failure are identified through debugging, and 
the identified error is corrected.Of all the above mentioned testing activities, 
debugging often turns out to be the most time-consuming activity. 

 



 

 

 

 

Figure 10.2: Testing process. 

10.4.3 Why Design Test Cases? 

Before discussing the various test case design techniques, we need to 
convince ourselves on the following question. Would it not be sufficient to 
test a software using a large number of random input values? Why design 
test cases? The answer to this question—this would be very costly and at the 
same time very ineffective way of testing due to the following reasons: 

 

There are essentially two main approaches to systematically design test 
cases: 

 Black-box approach 
  White-box (or glass-box) approach 

In the black-box approach, test cases are designed using only the functional 
specification of the software. That is, test cases are designed solely based on 
an analysis of the input/out behaviour (that is, functional behaviour) and 
does not require any knowledge of the internal structure of a program. For 
this reason, black-box testing is also known as functional testing. On the 
other hand, designing white-box test cases requires a thorough knowledge of 
the internal structure of a program, and therefore white-box testing is also 
called structural testing. Black- box test cases are designed solely based on 
the input-output behaviour of a program. In contrast, white-box test cases 
are based on an analysis of the code. These two approaches to test case 
design are complementary. That is, a program has to be tested using the test 
cases designed by both the approaches, and one testing using one approach 
does not substitute testing using the other. 

10.4.4 Testing in the Large versus Testing in the Small 

A software product is normally tested in three levels or stages: 

 Unit testing 
 Integration testing 
 System testing 

During unit testing, the individual functions (or units) of a program are 
tested. 

 

After testing all the units individually, the units are slowly integrated and 
tested after each step of integration (integration testing). Finally, the fully 



 

 

 

 

integrated system is tested (system testing). Integration and system testing 
are known as testing in the large. 

Often beginners ask the question—“Why test each module (unit) in 
isolation first, then integrate these modules and test, and again test the 
integrated set of modules—why not just test the integrated set of modules 
once thoroughly?” The answer to this question is the following—There are 
two main reasons to it. First while testing a module, other modules with 
which this module needs to interface may not be ready. Moreover, it is 
always a good idea to first test the module in isolation before integration 
because it makes debugging easier. If a failure is detected when an 
integrated set of modules is being tested, it would be difficult to determine 
which module exactly has the error. 

10.5 BLACK-BOX TESTING 

In black-box testing, test cases are designed from an examination of the 
input/output values only and no knowledge of design or code is 
required. The following are the two main approaches available to 
design black box test cases: 

 Equivalence class partitioning 
 Boundary value analysis 

In the following subsections, we will elaborate these two test case 
design techniques. 

10.5.1 Equivalence Class Partitioning 

In the equivalence class partitioning approach, the domain of input values to 
the program under test is partitioned into a set of equivalence classes. The 
partitioning is done such that for every input data belonging to the same 
equivalence class, the program behaves similarly. 
 
 

Equivalence classes for a unit under test can be designed by examining the 
input data and output data. The following are two general guidelines for 
designing the equivalence classes: 

1. If the input data values to a system can be specified by a range of 
values, then one valid and two invalid equivalence classes need to be 
defined. For example, if the equivalence class is the set of integers in 



 

 

 

 

the range 1 to 10 (i.e., [1,10]), then the invalid equivalence classes 
are [−∞,0], [11,+∞]. 

2. If the input data assumes values from a set of discrete members of 
some domain, then one equivalence class for the valid input values 
and another equivalence class for the invalid input values should be 
defined. For example, if the valid equivalence classes are {A,B,C}, 
then the invalid equivalence class is □-{A,B,C}, where □ is the 
universe of possible input values. 

In the following, we illustrate equivalence class partitioning-based test case 
generation through four examples. 

 

Figure 10.4: Equivalence classes for Example 10.6. 

10.5.2 Boundary Value Analysis 

A type of programming error that is frequently committed by programmers is 
missing out on the special consideration that should be given to the values at 
the boundaries of different equivalence classes of inputs. The reason behind 
programmers committing such errors might purely be due to psychological 
factors. Programmers often fail to properly address the special processing 
required by the input values that lie at the boundary of the different 
equivalence classes. For example, programmers may improperly use < 
instead of <=, or conversely <= for <, etc. 

 

To design boundary value test cases, it is required to examine the 

Boundary value analysis-based test suite design involves designing test cases using 
the values at the boundaries of different equivalence classes. 



 

 

 

 

equivalence classes to check if any of the equivalence classes contains a 
range of values. For those equivalence classes that are not a range of 
values(i.e., consist of a discrete collection of values) no boundary value test 
cases can be defined. For an equivalence class that is a range of values, the 
boundary values need to be included in the test suite. For example, if an 
equivalence class contains the integers in the range 1 to 10, then the 
boundary value test suite is {0,1,10,11}. 

 

10.5.3 Summary of the Black-box Test Suite Design 
Approach 

We now summarise the important steps in the black-box test suite 
design approach: 

 Examine the input and output values of the program. 
 Identify the equivalence classes. 
  Design equivalence class test cases by picking one representative 

value from each equivalence class. 

 Design the boundary value test cases as follows. Examine if any 
equivalence class is a range of values. Include the values at the 
boundaries of such equivalence classes in the test suite. 

The strategy for black-box testing is intuitive and simple. For black-box 
testing, the most important step is the identification of the equivalence 
classes. Often, the identification of the equivalence classes is not 
straightforward. However, with little practice one would be able to identify all 
equivalence classes in the input data domain. Without practice, one may 
overlook many equivalence classes in the input data set. Once the 
equivalence classes are identified, the equivalence class and boundary value 
test cases can be selected almost mechanically. 

10.6 WHITE-BOX TESTING 

White-box testing is an important type of unit testing. A large number of 
white-box testing strategies exist. Each testing strategy essentially 
designs test cases based on analysis of some aspect of source code and 
is based on some heuristic. We first discuss some basic concepts 
associated with white-box testing, and follow it up with a discussion on 
specific testing strategies. 



 

 

 

 

10.6.1 Basic Concepts 

A white-box testing strategy can either be coverage-based or fault- 
based. 

Fault-based testing 

A fault-based testing strategy targets to detect certain types of faults. 
These faults that a test strategy focuses on constitutes the fault 
model of the strategy. An example of a fault-based strategy is 
mutation testing, which is discussed later in this section. 

Coverage-based testing 

A coverage-based testing strategy attempts to execute (or cover) certain 
elements of a program. Popular examples of coverage-based testing 
strategies are statement coverage, branch coverage, multiple condition 
coverage, and path coverage-based testing. 

Testing criterion for coverage-based testing 

A coverage-based testing strategy typically targets to execute (i.e., cover) 
certain program elements for discovering failures. 

 

For example, if a testing strategy requires all the statements of a program 
to be executed at least once, then we say that the testing criterion of the 
strategy is statement coverage. We say that a test suite is adequate with 
respect to a criterion, if it covers all elements of the domain defined by that 
criterion. 

Stronger versus weaker testing 

We have mentioned that a large number of white-box testing strategies have 
been proposed. It therefore becomes necessary to compare the effectiveness 
of different testing strategies in detecting faults. We can compare two testing 
strategies by determining whether one is stronger, weaker, or 
complementary to the other. 

 

The set of specific program elements that a testing strategy targets to execute is 
called the testing criterion of the strategy. 

A white-box testing strategy is said to be stronger than another strategy, if the 
stronger testing strategy covers all program elements covered by the weaker testing 
strategy, and the stronger strategy additionally covers at least one program element 
that is not covered by the weaker strategy. 



 

 

 

 

When none of two testing strategies fully covers the program elements 
exercised by the other, then the two are called complementary testing 
strategies. The concepts of stronger, weaker, and complementary testing are 
schematically illustrated in Figure 10.6. Observe in Figure 10.6(a) that testing 
strategy A is stronger than B since B covers only a proper subset of elements 
covered by B. On the other hand, Figure 10.6(b) shows A and B are 
complementary testing strategies since some elements of A are not covered 
by B and vice versa. 

 

 

 

10.6.2 Statement Coverage 

The statement coverage strategy aims to design test cases so as to execute 
every statement in a program at least once. 

 

It is obvious that without executing a statement, it is difficult to determine 
whether it causes a failure due to illegal memory access, wrong result 
computation due to improper arithmetic operation, etc. It can however be 
pointed out that a weakness of the statement- coverage strategy is that 
executing a statement once and observing that it behaves properly for one 
input value is no guarantee that it will behave correctly for all input values. 
Never the less, statement coverage is a very intuitive and appealing testing 
technique. In the following, we illustrate a test suite that achieves statement 
coverage. 

10.6.3 Branch Coverage 

A test suite satisfies branch coverage, if it makes each branch condition 
in the program to assume true and false values in turn. In other words, 
for branch coverage each branch in the CFG representation of the 
program must be taken at least once, when the test suite is executed. 
Branch testing is also known as edge testing, since in this testing 
scheme, each edge of a program’s control flow graph is traversed at 
least once. 

If a stronger testing has been performed, then a weaker testing need not be carried 
out. 



 

 

 

 

10.6.4 Multiple Condition Coverage 

In the multiple condition (MC) coverage-based testing, test cases are 
designed to make each component of a composite conditional 
expression to assume both true and false values. For example, consider 
the composite conditional expression ((c1 .and.c2 ).or.c3). A test suite 

would achieve MC coverage, if all the component conditions c1, c2 and 

c3 are each made to assume both true and false values. Branch testing 

can be considered to be a simplistic condition testing strategy where 
only the compound conditions appearing in the different branch 
statements are made to assume the true and false values. It is easy to 
prove that condition testing is a stronger testing strategy than branch 
testing. For a composite conditional expression of n components, 2n 
test cases are required for multiple condition coverage. Thus, for 
multiple condition coverage, the number of test cases increases 
exponentially with the number of component conditions. Therefore, 
multiple condition coverage-based testing technique is practical only if n 
(the number of conditions) is small. 

10.6.5 Path Coverage 

A test suite achieves path coverage if it exeutes each linearly 
independent paths ( o r basis paths ) at least once. A linearly 
independent path can be defined in terms of the control flow graph 
(CFG) of a program. Therefore, to understand path coverage-based 
testing strategy, we need to first understand how the CFG of a program 
can be drawn. 

Control flow graph (CFG) 

A control flow graph describes how the control flows through the program. 
We can define a control flow graph as the following: 

 

In order to draw the control flow graph of a program, we need to first 
number all the statements of a program. The different numbered statements 
serve as nodes of the control flow graph (see Figure 10.5). There exists an 
edge from one node to another, if the execution of the statement 
representing the first node can result in the transfer of control to the other 

A control flow graph describes the sequence in which the different instructions of a 
program get executed. 



 

 

 

 

node. 

More formally, we can define a CFG as follows. A CFG is a directed graph 
consisting of a set of nodes and edges (N, E), such that each node n ◻ N 

corresponds to a unique program statement and an edge exists between two 
nodes if control can transfer from one node to the other. 

 



 

 

 

 

 

10.6.6 McCabe’s Cyclomatic Complexity Metric 

McCabe obtained his results by applying graph-theoretic techniques to 
the control flow graph ofa program. McCabe’s cyclomatic complexity 
defines an upper bound on the number of independent paths in a 
program. We discuss three different ways to compute the cyclomatic 
complexity. For structured programs, the results computed by all the 
three methods are guaranteed to agree. 

How is path testing carried out by using computed 
McCabe’s cyclomatic metric value? 

Knowing the number of basis paths in a program does not make it any 
easier to design test cases for path coverage, only it gives an indication 
of the minimum number of test cases required for path coverage. For 
the CFG of a moderately complex program segment of say 20 nodes 
and 25 edges, you may need several days of effort to identify all the 
linearly independent paths in it and to design the test cases. It is 
therefore impractical to require the test designers to identify all the 
linearly independent paths in a code, and then design the test cases to 
force execution along each of the identified paths. In practice, for path 
testing, usually the tester keeps on forming test cases with random 
data and executes those until the required coverage is achieved. A 
testing tool such as a dynamic program analyser (see Section 10.8.2) is 
used to determine the percentage of linearly independent paths 
covered by the test cases that have been executed so far. If the 
percentage of linearly independent paths covered is below 90 per cent, 
more test cases (with random inputs) are added to increase the path 
coverage. Normally, it is not practical to target achievement of 100 per 
cent path coverage, since, the McCabe’s metric is only an upper bound 
and does not give the exact number of paths. 

Steps to carry out path coverage-based testing 

The following is the sequence of steps that need to be undertaken for 
deriving the path coverage-based test cases for a program: 

1. Draw control flow graph for the program. 
2. Determine the McCabe’s metric V(G). 



 

 

 

 

3. Determine the cyclomatic complexity. This gives the minimum number 
of test cases required to achieve path coverage. 

4. Repeat Test using a randomly designed set of test cases. 
Perform dynamic analysis to check the path coverage achieved. 
until at least 90 per cent path coverage is achieved. 

10.6.7 Data Flow-based Testing 

Data  flow  based  testing  method  selects  test  paths  of  a  program 

according to the definitions and uses of different variables in a program. 

Consider a program P . For a statement numbered S of P , let 

DEF(S) = {X /statement S contains a definition of X } and 

USES(S)= {X /statement S contains a use of X } 

For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}. The definition 
of variable X at statement S is said to be live at statement S1 , if there exists 
a path from statement S to statement S1 which does not contain any 
definition of X . 

All definitions criterion is a test coverage criterion that requires that an 
adequate test set should cover all definition occurrences in the sense that, for 
each definition occurrence, the testing paths should cover a path through 
which the definition reaches a use of the definition. All use criterion requires 
that all uses of a definition should be covered. Clearly, all-uses criterion is 
stronger than all-definitions criterion. An even stronger criterion is all 
definition-use-paths criterion, which requires the coverage of all possible 
definition-use paths that either are cycle-free or have only simple cycles. A 
simple cycle is a path in which only the end node and the start node are the 
same. 

10.6.8 Mutation Testing 

All white-box testing strategies that we have discussed so far, are 
coverage-based testing techniques. In contrast, mutation testing is a 
fault-based testing technique in the sense that mutation test cases are 
designed to help detect specific types of faults in a program. In 
mutation testing, a program is first tested by using an initial test suite 
designed by using various white box testing strategies that we have 
discussed. After the initial testing is complete, mutation testing can be 
taken up. 

The idea behind mutation testing is to make a few arbitrary changes to a 
program at a time. Each time the program is changed, it is called a mutated 



 

 

 

 

program and the change effected is called a mutant. An underlying 
assumption behind mutation testing is that all programming errors can be 

expressed as a combination of simple errors. A mutation operator makes 
specific changes to a program. For example, one mutation operator may 
randomly delete a program statement. A mutant may or may not cause an 
error in the program. If a mutant does not introduce any error in the program, 
then the original program and the mutated program are called equivalent 
programs. 

10.7 DEBUGGING 

After a failure has been detected, it is necessary to first identify the 
program statement(s) that are in error and are responsible for the 
failure, the error can then be fixed. In this Section, we shall summarise 
the important approaches that are available to identify the error 
locations. Each of these  approaches has its own advantages 
anddisadvantages and therefore each will be useful in appropriate 
circumstances. We also provide some guidelines for effective 
debugging. 

10.7.1 Debugging Approaches 

The following are some of the approaches that are popularly adopted by 
the programmers for debugging: 

Brute force method 

This is the most common method of debugging but is the least efficient 
method. In this approach, print statements are inserted throughout the 
program to print the intermediate values with the hope that some of 
the printed values will help to identify the statement in error. This 
approach becomes more systematic with the use of a symbolic 
debugger (also called a source code debugger ), because values of 
different variables can be easily checked and break points and watch 
points can be easily set to test the values of variables effortlessly. 
Single stepping using a symbolic debugger is another form of this 
approach, where the developer mentally computes the expected result 
after every source instruction and checks whether the same is 
computed by single stepping through the program. 

Backtracking 



 

 

 

 

This is also a fairly common approach. In this approach, starting from the 
statement at which an error symptom has been observed, the source 
code is traced backwards until the error is discovered. Unfortunately, as 
the number of source lines to be traced back increases, the number of 
potential backward paths increases and may become unmanageably 
large for complex programs, limiting the use of this approach. 

Cause elimination method 

In this approach, once a failure is observed, the symptoms of the failure 
(i.e., certain variable is having a negative value though it should be 
positive, etc.) are noted. Based on the failure symptoms, the causes 
which could possibly have contributed to the symptom is developed and 
tests are conducted to eliminate each. A related technique of 
identification of the error from the error symptom is the software fault 
tree analysis. 

Program slicing 

This technique is similar to back tracking. In the backtracking approach, 
one often has to examine a large number of statements. However, the 
search space is reduced by defining slices. A slice of a program for a 
particular variable and at a particular statement is the set of source 
lines preceding this statement that can influence the value of that 
variable [Mund2002]. Program slicing makes use of the fact that an 
error in the value of a variable can be caused by the statements on 
which it is data dependent. 

10.7.2 Debugging Guidelines 

Debugging is often carried out by programmers based on their ingenuity 
and experience. The following are some general guidelines for effective 
debugging: 

 Many times debugging requires a thorough understanding of the 
program design. Trying to debug based on a partial understanding of 
the program design may require an inordinate amount of effort to be 
put into debugging even for simple problems. 

 Debugging may sometimes even require full redesign of the system. In 
such cases, a common mistakes that novice programmers often make 
is attempting not to fix the error but its symptoms. 

 One must be beware of the possibility that an error correction may 



 

 

 

 

introduce new errors. Therefore after every round of error-fixing, 
regression testing (see Section 10.13) must be carried out. 

10.8 INTEGRATION TESTING 

Integration testing is carried out after all (or at least some of ) the modules 
have been unit tested. Successful completion of unit testing, to a large 
extent, ensures that the unit (or module) as a whole works satisfactorily. In 
this context, the objective of integration testing is to detect the errors at the 
module interfaces (call parameters). For example, it is checked that no 
parameter mismatch occurs when one module invokes the functionality of 
another module. Thus, the primary objective of integration testing is to test 
the module interfaces, i.e., there are no errors in parameter passing, when 
one module invokes the functionality of another module. During integration 
testing, different modules of a system are integrated in a planned manner 
using an integration plan. The integration plan specifies the steps and the 
order in which modules are combined to realise the full system. After each 
integration step, the partially integrated system is tested. 

An important factor that guides the integration plan is the module 
dependency graph. 

We have already discussed in Chapter 6 that a structure chart (or module 
dependency graph) specifies the order in which different modules call each 
other. Thus, by examining the structure chart, the integration plan can be 
developed. Any one (or a mixture) of the following approaches can be used to 
develop the test plan: 

  Big-bang approach to integration testing 
 Top-down approach to integration testing 
  Bottom-up approach to integration testing 
  Mixed (also called sandwiched ) approach to integration testing 

In the following subsections, we provide an overview of these approaches 
to integration testing. 

Big-bang approach to integration testing 

Big-bang testing is the most obvious approach to integration testing. In 
this approach, all the modules making up a system are integrated in a 
single step. In simple words, all the unit tested modules of the system 
are simply linked together and tested. However, this technique can 
meaningfully be used only for very small systems. The main problem 



 

 

 

 

with this approach is that once a failure has been detected during 
integration testing, it is very difficult to localise the error as the error 
may potentially lie in any of the modules. Therefore, debugging errors 
reported during big-bang integration testing are very expensive to fix. 
As a result, big-bang integration testing is almost never used for large 
programs. 

Bottom-up approach to integration testing 

Large software products are often made up of several subsystems. A 
subsystem might consist of many modules which communicate among 
each other through well-defined interfaces. In bottom-up integration 
testing, first the modules for the each subsystem are integrated. Thus, 
the subsystems can be integrated separately and independently. 

The primary purpose of carrying out the integration testing a subsystem is 
to test whether the interfaces among various modules making up the 
subsystem work satisfactorily. The test cases must be carefully chosen to 
exercise the interfaces in all possible manners. 

In a pure bottom-up testing no stubs are required, and only test-drivers are 
required. Large software systems normally require several levels of 
subsystem testing, lower-level subsystems are successively combined to form 
higher-level subsystems. The principal advantage of bottom- up integration 
testing is that several disjoint subsystems can be tested simultaneously. 
Another advantage of bottom-up testing is that the low-level modules get 
tested thoroughly, since they are exercised in each integration step. Since the 
low-level modules do I/O and other critical functions, testing the low-level 
modules thoroughly increases the reliability of the system. A disadvantage of 
bottom-up testing is the complexity that occurs when the system is made up 
of a large number of small subsystems that are at the same level. This 
extreme case corresponds to the big-bang approach. 

Top-down approach to integration testing 

Top-down integration testing starts with the root module in the structure 
chart and one or two subordinate modules of the root module. After the 
top-level ‘skeleton’ has been tested, the modules that are at the 
immediately lower layer of the ‘skeleton’ are combined with it and 
tested. Top-down integration testing approach requires the use of 
program stubs to simulate the effect of lower-level routines that are 
called by the routines under test. A pure top-down integration does not 



 

 

 

 

require any driver routines. An advantage of top-down integration 
testing is that it requires writing only stubs, and stubs are simpler to 
write compared to drivers. A disadvantage of the top-down integration 
testing approach is that in the absence of lower-level routines, it 
becomes difficult to exercise the top-level routines in the desired 
manner since the lower level routines usually perform input/output 
(I/O) operations. 

Mixed approach to integration testing 

The mixed (also called sandwiched ) integration testing follows a 
combination of top-down and bottom-up testing approaches. In top- 
down approach, testing can start only after the top-level modules have 
been coded and unit tested. Similarly, bottom-up testing can start only 

after the bottom level modules are ready. The mixed approach 
overcomes this shortcoming of the top-down and bottom-up 
approaches. In the mixed testing approach, testing can start as and 
when modules become available after unit testing. Therefore, this is 
one of the most commonly used integration testing approaches. In this 
approach, both stubs and drivers are required to be designed. 

10.8.1 Phased versus Incremental Integration Testing 

Big-bang integration testing is carried out in a single step of integration. 
In contrast, in the other strategies, integration is carried out over 
several steps. In these later strategies, modules can be integrated 
either in a phased or incremental manner. A comparison of these two 
strategies is as follows: 

 In incremental integration testing, only one new module is added to 
the partially integrated system each time. 

 In phased integration, a group of related modules are added to the 
partial system each time. 

Obviously, phased integration requires less number of integration steps 
compared to the incremental integration approach. However, when failures 
are detected, it is easier to debug the system while using the incremental 
testing approach since the errors can easily be traced to the interface of the 
recently integrated module. Please observe that a degenerate case of the 
phased integration testing approach is big-bang testing. 



 

 

 

 

10.9 TESTING OBJECT-ORIENTED PROGRAMS 

During the initial years of object-oriented programming, it was believed 
that object-orientation would, to a great extent, reduce the cost and 
effort incurred on testing. This thinking was based on the observation 
that object-orientation incorporates several good programming features 
such as encapsulation, abstraction, reuse through inheritance, 
polymorphism, etc., thereby chances of errors in the code is minimised. 
However, it was soon realised that satisfactory testing object-oriented 
programs is much more difficult and requires much more cost and effort 
as compared to testing similar procedural programs. The main reason 
behind this situation is that various object-oriented features introduce 
additional complications and scope of new types of bugs that 
arepresent in procedural programs. Therefore additional test cases are 
needed to be designed to detect these. We examine these issues as 
well as some other basic issues in testing object-oriented programs in 
the following subsections. 

10.9.1 What is a Suitable Unit for Testing 

Object-oriented Programs? 

For procedural programs, we had seen that procedures are the basic units of 
testing. That is, first all the procedures are unit tested. Then various tested 
procedures are integrated together and tested. Thus, as far as procedural 
programs are concerned, procedures are the basic units of testing. Since 
methods in an object-oriented program are analogous to procedures in a 
procedural program, can we then consider the methods of object-oriented 
programs as the basic unit of testing? Weyuker studied this issue and 
postulated his anticomposition axiom as follows: 

 

The main intuitive justification for the anticomposition axiom is the 
following. A method operates in the scope of the data and other methods of 
its object. That is, all the methods share the data of the class. Therefore, it is 
necessary to test a method in the context of these. Moreover, objects can 
have significant number of states. The behaviour of a method can be different 
based on the state of the corresponding object. Therefore, it is not enough to 
test all the methods and check whether they can be integrated satisfactorily. 
A method has to be tested with all the other methods and data of the 

Adequate testing of individual methods does not ensure that a class has been 
satisfactorily tested. 



 

 

 

 

corresponding object. Moreover, a method needs to be tested at all the 
states that the object can assume. As a result, it is improper to consider a 
method as the basic unit of testing an object-oriented program. 

 

Thus, in an object oriented program, unit testing would mean testing each 
object in isolation. During integration testing (called cluster testing in the 
object-oriented testing literature) various unit tested objects are integrated 
and tested. Finally, system-level testing is carried out. 

10.9.2 Do Various Object-orientation Features Make 
Testing Easy? 

In this section, we discuss the implications of different object-orientation 
features in testing. 

Encapsulation: We had discussed in Chapter 7 that the encapsulation 
feature helps in data abstraction, error isolation, and error prevention. 
However, as far as testing is concerned, encapsulation is not an obstacle to 
testing, but leads to difficulty during debugging. Encapsulation prevents the 
tester from accessing the data internal to an object. Of course, it is possible 
that one can require classes to support state reporting methods to print out 
all the data internal to an object. Thus, the encapsulation feature though 
makes testing difficult, the difficulty can be overcome to some extent through 
use of appropriate state reporting methods. 

Inheritance: The inheritance feature helps in code reuse and was expected 
to simplify testing. It was expected that if a class is tested thoroughly, then 
the classes that are derived from this class would need only incremental 
testing of the added features. However, this is not the case. 

 

The reason for this is that the inherited methods would work in a new 
context (new data and method definitions). As a result, correct behaviour of a 
method at an upper level, does not guarantee correct behaviour at a lower 
level. Therefore, retesting of inherited methods needs to be followed as a 
rule, rather as an exception. 

Dynamic binding: Dynamic binding was introduced to make the code 
compact, elegant, and easily extensible. However, as far as testing is 
concerned all possible bindings of a method call have to be identified and 
tested. This is not easy since the bindings take place at run-time. 

Object states: In contrast to the procedures in a procedural program, 

An object is the basic unit of testing of object-oriented programs. 



 

 

 

 

objects store data permanently. As a result, objects do have significant 
states. The behaviour of an object is usually different in different states. That 
is, some methods may not be active in some of its states. Also, a method 
may act differently in different states. For example, when a book has been 
issued out in a library information system, the book reaches the issuedOut 
state. In this state, if the issue method is invoked, then it may not exhibit its 
normal behaviour. 

In view of the discussions above, testing an object in only one of its states 
is not enough. The object has to be tested at all its possible states. Also, 

whether all the transitions between states (as specified in the object model) 
function properly or not should be tested. Additionally, it needs to be tested 
that no extra (sneak) transitions exist, neither are there extra states present 
other than those defined in the state model. For state-based testing, it is 
therefore beneficial to have the state model of the objects, so that the 
conformance of the object to its state model can be tested. 

10.9.3 Why are Traditional Techniques Considered Not 
Satisfactory for Testing Object-oriented Programs? 

We have already seen that in traditional procedural programs, 
procedures are the basic unit of testing. In contrast, objects are the 
basic unit of testing for object-oriented programs. Besides this, there 
are many other significant differences as well between testing 
procedural and object-oriented programs. For example, statement 
coverage-based testing which is popular for testing procedural programs 
is not meaningful for object-oriented programs. The reason is that 
inherited methods have to be retested in the derived class. In fact, the 
different object- oriented features (inheritance, polymorphism, dynamic 
binding, state-based behaviour, etc.) require special test cases to be 
designed compared to the traditional testing as discussed in Section 

10.11.4. The various object-orientation features are explicit in the 
design models, and it is usually difficult to extract from and analysis of 
the source code. As a result, the design model is a valuable artifact for 
testing object-oriented programs. Test cases are designed based on the 
design model. Therefore, this approach is considered to be intermediate 
between a fully white-box and a fully black-box approach, and is called 
a grey-box approach. Please note that grey-box testing is considered 
important for object-oriented programs. This is in contrast to testing 
procedural programs. 



 

 

 

 

10.9.4 Grey-Box Testing of Object-oriented Programs 

As we have already mentioned, model-based testing is important for object- 
oriented programs, as these test cases help detect bugs that are specific to 
the object-orientation constructs.The following are some important types of 
grey-box testing that can be carried on based on UML models: 

State-model-based testing 

State coverage: Each method of an object are tested at each state of 
the object. 

State transition coverage: It is tested whether all transitions depicted in 
the state model work satisfactorily. 

State transition path coverage: All transition paths in the state model are 
tested. 

Use case-based testing 

Scenario coverage: Each use case typically consists of a mainline 
scenario and several alternate scenarios. For each use case, the 
mainline and all alternate sequences are tested to check if any errors 
show up. 

Class diagram-based testing 

Testing derived classes: All derived classes of the base class have to 
be instantiated and tested. In addition to testing the new methods 
defined in the derivec. lass, the inherited methods must be retested. 

Association testing: All association relations are tested. 

Aggregation testing: Various aggregate objects are created and tested. 

Sequence diagram-based testing 

Method coverage: All methods depicted in the sequence diagrams are 
covered. Message path coverage: All message paths that can be 
constructed from the sequence diagrams are covered. 

10.9.5 Integration Testing of Object-oriented Programs 

There are two main approaches to integration testing of object-oriented 
programs: 

• Thread-based 

• Use based 



 

 

 

 

Thread-based approach: In this approach, all classes that need to 
collaborate to realise the behaviour of a single use case are integrated and 
tested. After all the required classes for a use case are integrated and tested, 

another use case is taken up and other classes (if any) necessary for 
execution of the second use case to run are integrated and tested. This is 
continued till all use cases have been considered. 

Use-based approach: Use-based integration begins by testing classes that 
either need no service from other classes or need services from at most a few 
other classes. After these classes have been integrated and tested, classes 
that use the services from the already integrated classes are integrated and 
tested. This is continued till all the classes have been integrated and tested. 

10.9.6 Smoke Testing 

Smoke testing is carried out before initiating system testing to ensure 
that system testing would be meaningful, or whether many parts of the 
software would fail. The idea behind smoke testing is that if the 
integrated program cannot pass even the basic tests, it is not ready for 
a vigorous testing. For smoke testing, a few test cases are designed to 
check whether the basic functionalities are working. For example, for a 
library automation system, the smoke tests may check whether books 
can be created and deleted, whether member records can be created 
and deleted, and whether books can be loaned and returned. 

10.10 SOME GENERAL ISSUES ASSOCIATED WITH TESTING 

In this section, we shall discuss two general issues associated with 
testing. These are—how to document the results of testing and how to 
perform regression testing. 

Test documentation 

A piece of documentation that is produced towards the end of testing is 
the test summary report. This report normally covers each subsystem 
and represents a summary of tests which have been applied to the 
subsystem and their outcome. It normally specifies the following: 

  What is the total number of tests that were applied to a subsystem. 
 Out of the total number of tests how many tests were successful. 
 How many were unsuccessful, and the degree to which they were 
unsuccessful, e.g., whether a test was an outright failure or whether 



 

 

USER INTERFACE DESIGN 

9.1 CHARACTERISTICS OF A GOOD USER INTERFACE 

Before we start discussing anything about how to develop user 
interfaces, it is important to identify the different characteristics that 
are usually desired of a good user interface. Unless we know what 
exactly is expected of a good user interface, we cannot possibly design 
one. In the following subsections, we identify a few important 
characteristics of a good user interface: 

Speed of learning: A good user interface should be easy to learn. Speed of 
learning is hampered by complex syntax and semantics of the command issue 
procedures. A good user interface should not require its users to memorise 
commands. Neither should the user be asked to remember information from 
one screen to another while performing various tasks using the interface. 
Besides, the following three issues are crucial to enhance the speed of 
learning: 

— U s e of metaphors1 and intuitive command names: Speed of 
learning an interface is greatly facilitated if these are based on some day- 
to-day real-life examples or some physical objects with which the users 
are familiar with. The abstractions of real-life objects or concepts used in 
user interface design are called metaphors. If the user interface of a text 
editor uses concepts similar to the tools used by a writer for text editing 
such as cutting lines and paragraphs and pasting it at other places, users 
can immediately relate to it. Another popular metaphor is a shopping cart.  

— Consistency: Once, a user learns about a command, he should be able 
to use the similar commands in different circumstances for carrying out 
similar actions. This makes it easier to learn the interface since the user 
can extend his knowledge about one part of the interface to the other 
parts. Thus, the different commands supported by an interface should be 
consistent. 

— Component-based interface: Users can learn an interface faster if the 
interaction style of the interface is very similar to the interface of other 
applications with which the user is already familiar with. This can be 
achieved if the interfaces of different applications are developed using 
some standard user interface components. This, in fact, is the theme of 
the component-based user interface discussed in Section 9.5. 



 

 

The speed of learning characteristic of a user interface can be determined 
by measuring the training time and practice that users require before they 
can effectively use the software. 

Speed of use: Speed of use of a user interface is determined by the time 
and user effort necessary to initiate and execute different commands. This 
characteristic of the interface is some times referred to as productivity 
support of the interface. It indicates how fast the users can perform their 
intended tasks. The time and user effort necessary to initiate and execute 
different commands should be minimal. This can be achieved through careful 
design of the interface.  

Speed of recall: Once users learn how to use an interface, the speed with 
which they can recall the command issue procedure should be maximised. 
This characteristic is very important for intermittent users. Speed of recall is 
improved if the interface is based on some metaphors, symbolic command 
issue procedures, and intuitive command names. 

Error prevention: A good user interface should minimise the scope of 
committing errors while initiating different commands. The error rate of an 
interface can be easily determined by monitoring the errors committed by an 

average users while using the interface. This monitoring can be automated by 
instrumenting the user interface code with monitoring code which can record 
the frequency and types of user error and later display the statistics of 
various kinds of errors committed by different users. Consistency of names, 
issue procedures, and behaviour of similar commands and the simplicity of 
the command issue procedures minimise error possibilities. Also, the interface 
should prevent the user from entering wrong values. 

Aesthetic and attractive: A good user interface should be attractive to use. 
An attractive user interface catches user attention and fancy. In this respect, 
graphics-based user interfaces have a definite advantage over text-based 
interfaces. 

Consistency: The commands supported by a user interface should be 
consistent. The basic purpose of consistency is to allow users to generalise 
the knowledge about aspects of the interface from one part to another. Thus, 
consistency facilitates speed of learning, speed of recall, and also helps in 
reduction of error rate 

Feedback: A good user interface must provide feedback to various user 
actions. Especially, if any user request takes more than few seconds to 
process, the user should be informed about the state of the processing of his 



 

 

request. In the absence of any response from the computer for a long time, a 
novice user might even start recovery/shutdown procedures in panic. If 
required, the user should be periodically informed about the progress made in 
processing his command. 

Support for multiple skill levels: A good user interface should support 
multiple levels of sophistication of command issue procedure for different 
categories of users. This is necessary because users with different levels of 
experience in using an application prefer different types of user interfaces. 
Experienced users are more concerned about the efficiency of the command 
issue procedure, whereas novice users pay importance to usability aspects. 
Very cryptic and complex commands discourage a novice, whereas elaborate 
command sequences make the command issue procedure very slow and 
therefore put off experienced users.  

Error recovery (undo facility): While issuing commands, even the expert 
users can commit errors. Therefore, a good user interface should allow a user 
to undo a mistake committed by him while using the interface. Users are 
inconvenienced if they cannot recover from the errors they commit while 
using a software. If the users cannot recover even from very simple types of 
errors, they feel irritated, helpless, and out of control. 

User guidance and on-line help: Users seek guidance and on-line help 
when they either forget a command or are unaware of some features of the 
software. Whenever users need guidance or seek help from the system, they 
should be provided with appropriate guidance and help. 

 

9.2 TYPES OF USER INTERFACES 

Broadly speaking, user interfaces can be classified into the following 
three categories: 

 Command language-based interfaces 

 Menu-based interfaces 

  Direct manipulation interfaces 

Each of these categories of interfaces has its own characteristic advantages 
and disadvantages. Therefore, most modern applications use a careful 
combination of all these three types of user interfaces for implementing the 
user command repertoire. It is very difficult to come up with a simple set of 



 

 

guidelines as to which parts of the interface should be implemented using 
what type of interface. This choice is to a large extent dependent on the 
experience and discretion of the designer of the interface. However, a study 
of the basic characteristics and the relative advantages of different types of 
interfaces would give a fair idea to the designer regarding which commands 
should be supported using what type of interface. In the following three 
subsections, we briefly discuss some important characteristics, advantages, 
and disadvantages of using each type of user interface. 

9.2.1 Command Language-based Interface 

A command language-based interface—as the name itself suggests, is 
based on designing a command language which the user can use to 
issue the commands. The user is expected to frame the appropriate 
commands in the language and type them appropriately whenever 
required. A simple command language-based interface might simply 
assign unique names to the different commands. However, a more 
sophisticated command language-based interface may allow users to 
compose complex commands by using a set of primitive commands. 
Such a facility to compose commands dramatically reduces the number 
of command names one would have to remember. Thus, a command 
language-based interface can be made concise requiring minimal typing 
by the user. Command language-based interfaces allow fast interaction 
with the computer and simplify the input of complex commands. 

Among the three categories of interfaces, the command language interface 
allows for most efficient command issue procedure requiring minimal typing. 
Further, a command language-based interface can be implemented even on 
cheap alphanumeric terminals. Also, a command language-based interface is 
easier to develop compared to a menu-based or a direct-manipulation 
interface because compiler writing techniques are well developed. One can 
systematically develop a command language interface by using the standard 
compiler writing tools Lex and Yacc. 

However, command language-based interfaces suffer from several 
drawbacks. Usually, command language-based interfaces are difficult to learn 
and require the user to memorise the set of primitive commands. Also, most 
users make errors while formulating commands in the command language 
and also while typing them. Further, in a command language-based interface, 
all interactions with the system is through a key-board and cannot take 
advantage of effective interaction devices such as a mouse. Obviously, for 



 

 

casual and inexperienced users, command language-based interfaces are not 
suitable. 

Issues in designing a command language-based interface 
Two overbearing command design issues are to reduce the number of 

primitive commands that a user has to remember and to minimise the 
total typing required. We elaborate these considerations in the 
following: 

 The designer has to decide what mnemonics (command names) to use 
for the different commands. The designer should try to develop 
meaningful mnemonics and yet be concise to minimise the amount of 
typing required. For example, the shortest mnemonic should be 
assigned to the most frequently used commands. 

 The designer has to decide whether the users will be allowed to 
redefine the command names to suit their own preferences. Letting a 
user define his own mnemonics for various commands is a useful 
feature, but it increases the complexity of user interface development. 

 The designer has to decide whether it should be possible to compose 
primitive commands to form more complex commands. A sophisticated 
command composition facility would require the syntax and semantics 
of the various command composition options to be clearly and 
unambiguously specified. The ability to combine commands is a 
powerful facility in the hands of experienced users, but quite 
unnecessary for inexperienced users. 

9.2.2 Menu-based Interface 

An important advantage of a menu-based interface over a command 
language-based interface is that a menu-based interface does not 
require the users to remember the exact syntax of the commands. A 
menu-based interface is based on recognition of the command names, 
rather than recollection. Humans are much better in recognising 
something than recollecting it. Further, in a menu-based interface the 
typing effort is minimal as most interactions are carried out through 
menu selections using a pointing device. This factor is an important 
consideration for the occasional user who cannot type fast. 

However, experienced users find a menu-based user interface to be slower 
than a command language-based interface because an experienced user can 



 

 

type fast and can get speed advantage by composing different primitive 
commands to express complex commands. Composing commands in a menu- 
based interface is not possible. This is because of the fact that actions 
involving logical connectives (and, or, etc.) are awkward to specify in a menu- 
based system. Also, if the number of choices is large, it is difficult to design a 
menu-based interfae. A moderate-sized software might need hundreds or 
thousands of different menu choices. In fact, a major challenge in the design 
of a menu-based interface is to structure large number of menu choices into 
manageable forms. In the following, we discuss some of the techniques 
available to structure a large number of menu items: 

Scrolling menu: Sometimes the full choice list is large and cannot be 
displayed within the menu area, scrolling of the menu items is required. This 
would enable the user to view and select the menu items that cannot be 
accommodated on the screen. However, in a scrolling menu all the 
commands should be highly correlated, so that the user can easily locate a 
command that he needs. This is important since the user cannot see all the 
commands at any one time. An example situation where a scrolling menu is 
frequently used is font size selection in a document processor (see Figure 
9.1). Here, the user knows that the command list contains only the font sizes 
that are arranged in some order and he can scroll up or down to find the size 
he is looking for. However, if the commands do not have any definite ordering 
relation, then the user would have to in the worst case, scroll through all the 
commands to find the exact command he is looking for, making this 
organisation inefficient. 

 

Figure 9.1: Font size selection using scro ling menu. 

Walking menu: Walking menu is very commonly used to structure a large 
collection of menu items. In this technique, when a menu item is selected, it 



 

 

causes further menu items to be displayed adjacent to it in a sub-menu. An 
example of a walking menu is shown in Figure 9.2. A walking menu can 
successfully be used to structure commands only if there are tens rather than 
hundreds of choices since each adjacently displayed menu does take up 
screen space and the total screen area is after all limited. 

 

Figure 9.2: Example of walking menu. 

Hierarchical menu: This type of menu is suitable for small screens with 
limited display area such as that in mobile phones. In a hierarchical menu, 
the menu items are organised in a hierarchy or tree structure. Selecting a 
menu item causes the current menu display to be replaced by an appropriate 
sub-menu. Thus in this case, one can consider the menu and its various sub- 
menu to form a hierarchical tree-like structure. Walking menu can be 
considered to be a form of hierarchical menu which is practicable when the 
tree is shallow. Hierarchical menu can be used to manage large number of 
choices, but the users are likely to face navigational problems because they 
might lose track of where they are in the menu tree. This probably is the 
main reason why this type of interface is very rarely used. 

9.2.3 Direct Manipulation Interfaces 

Direct manipulation interfaces present the interface to the user in the 

form of visual models (i.e., icons 2 or objects). For this reason, direct 
manipulation interfaces are sometimes called as iconic interfaces. In 
this type of interface, the user issues commands by performing actions 
on the  visual  representations  of the  objects,  e.g.,  pull  an icon 



 

 

representing a file into an icon representing a trash box, for deleting the 
file. 

Important advantages of iconic interfaces include the fact that the icons can 
be recognised by the users very easily, and that icons are language- 
independent. However, experienced users find direct manipulation interfaces 
very for too. Also, it is difficult to give complex commands using a direct 
manipulation interface. For example, if one has to drag an icon representing 
the file to a trash box icon for deleting a file, then in order to delete all the 
files in the directory one has to perform this operation individually for all files 

—which could be very easily done by issuing a command like delete *.*. 

9.3 A USER INTERFACE DESIGN METHODOLOGY 

At present, no step-by-step methodology is available which can be 
followed by rote to come up with a good user interface. What we 
present in this section is a set of recommendations which you can use 
to complement your ingenuity. Even though almost all popular GUI 
design methodologies are user-centered, this concept has to be clearly 
distinguished from a user interface design by users. Before we start 
discussing about the user interface design methodology, let us 
distinguish between a user-centered design and a design by users. 

 User-centered design is the theme of almost all modern user interface 
design techniques. However, user-centered design does not mean 
design by users. One should not get the users to design the interface, 
nor should one assume that the user’s opinion of which design 
alternative is superior is always right. Though users may have good 
knowledge of the tasks they have to perrform using a GUI, but they 
may not know the GUI design issues. 

 Users have good knowledge of the tasks they have to perform, they 
also know whether they find an interface easy to learn and use but 
they have less understanding and experience in GUI design than the 
GUI developers. 

9.3.1 Implications of Human Cognition Capabilities on User 
Interface Design 

An area of human-computer interaction where extensive research has 
been conducted is how human cognitive capabilities and limitations 
influence the way an interface should be designed. In the following 



 

 

subsections, we discuss some of the prominent issues that have been 
extensively reported in the literature. 

Limited memory: Humans can remember at most seven unrelated items of 
information for short periods of time. Therefore, the GUI designer should not 
require the user to remember too many items of information at a time. It is 
the GUI designer’s responsibility to anticipate what information the user will 
need at what point of each task and to ensure that the relevant information is 
displayed for the user to see. Showing the user some information at some 
point, and then asking him to recollect that information in a different screen 
where they no longer see the information, places a memory burden on the 

user and should be avoided wherever possible. 

Frequent task closure: Doing a task (except for very trivial tasks) requires 
doing several subtasks. When the system gives a clear feedback to the user 
that a task has been successfully completed, the user gets a sense of 
achievement and relief. The user can clear out information regarding the 
completed task from memory. This is known as ta sk closure. When the 
overall task is fairly big and complex, it should be divided into subtasks, each 
of which has a clear subgoal which can be a closure point. 

Recognition rather than recall. Information recall incurs a larger memory 
burden on the users and is to be avoided as far as possible. On the other 
hand, recognition of information from the alternatives shown to him is more 
acceptable. 

Procedural versus ob ject-oriented: Procedural designs focus on tasks, 
prompting the user in each step of the task, giving them very few options for 
anything else. This approach is best applied in situations where the tasks are 
narrow and well-defined or where the users are inexperienced, such as a 
bank ATM. An object-oriented interface on the other hand focuses on objects. 
This allows the users a wide range of options. 

9.3.2 A GUI Design Methodology 

The GUI design methodology we present here is based on the seminal 
work of Frank Ludolph [Frank1998]. Our user interface design 
methodology consists of the following important steps: 

• Examine the use case model of the software. Interview, discuss, and 
review the GUI issues with the end-users. 

 Task and object modelling. 



 

 

 Metaphor selection. 
  Interaction design and rough layout. 

 Detailed presentation and graphics design. 
 GUI construction. 
  Usability evaluation. 

Examining the use case model 

We now elaborate the above steps in GUI design. The starting point for 
GUI design is the use case model. This captures the important tasks the 
users need to perform using the software. As far as possible, a user 

interface should be developed using one or more metaphors. Metaphors 
help in interface development at lower effort and reduced costs for 
training the users. Over time, people have developed efficient methods 
of dealing with some commonly occurring situations. These solutions 
are the themes of the metaphors. Metaphors can also be based on 
physical objects such as a visitor’s book, a catalog, a pen, a brush, a 
scissor, etc. A solution based on metaphors is easily understood by the 
users, reducing learning time and training costs. Some commonly used 
metaphors are the following: 

 White board 
 Shopping cart 
 Desktop 
 Editor’s work bench 
 White page 
  Yellow page 
 Office cabinet 
 Post box 
 Bulletin board 
 Visitor’s Book 

Task and ob ject modelling 

A task is a human activity intended to achieve some goals. Examples of 
task goals can be as follows: 

 Reserve an airline seat 
 Buy an item 
 Transfer money from one account to another 



 

 

 Book a cargo for transmission to an address 

A task model is an abstract model of the structure of a task. A task model 
should show the structure of the subtasks that the user needs to perform to 
achieve the overall task goal. Each task can be modeled as a hierarchy of 
subtasks. A task model can be drawn using a graphical notation similar to the 
activity network model we discussed in Chapter 3. Tasks can be drawn as 
boxes with lines showing how a task is broken down into subtasks. An 
underlined task box would mean that no further decomposition of the task is 
required. An example of decomposition of a task into subtasks is shown 
inFigure 9.7. 

 

Figure 9.7: Decomposition of a task into subtasks. 

Identification of the user objects forms the basis of an object-based design. 
A user object model is a model of business objects which the end-users 
believe that they are interacting with. The objects in a library software may 
be books, journals, members, etc. The objects in the supermarket automation 
software may be items, bills, indents, shopping list, etc. The state diagram 
for an object can be drawn using a notation similar to that used by UML (see 
Section 7.8). The state diagram of an object model can be used to determine 
which menu items should be dimmed in a state. An example state chart 
diagram for an order object is shown in Figure 9.8. 



 

 

 

 

Figure 9.8: State chart diagram for an order object. 

Metaphor selection 

The first place one should look for while trying to identify the candidate 
metaphors is the set of parallels to objects, tasks, and terminologies of 
the use cases. If no obvious metaphors can be found, then the designer 
can fall back on the metaphors of the physical world of concrete 
objects. The appropriateness of each candidate metaphor should be 
tested by restating the objects and tasks of the user interface model in 
terms of the metaphor. Another criterion that can be used to judge 
metaphors is that the metaphor should be as simple as possible, the 
operations using the metaphor should be clear and coherent and it 
should fit with the users’ ‘common sense’ knowledge. For example, it 
would indeed be very awkward and a nuisance for the users if the 
scissor metaphor is used to glue different items. 

Interaction design and rough layout 

The interaction design involves mapping the subtasks into appropriate 
controls, and other widgets such as forms, text box, etc. This involves 
making a choice from a set of available components that would best 



 

 

suit the subtask. Rough layout concerns how the controls, an other 
widgets to be organised in windows. 

Detailed presentation and graphics design 

Each window should represent either an object or many objects that 
have a clear relationship to each other. At one extreme, each object 
view could be in its own window. But, this is likely to lead to too much 
window opening, closing, moving, and resizing. At the other extreme, 
all the views could be placed in one window side-by-side, resulting in a 
very large window. This would force the user to move the cursor around 
the window to look for different objects. 

GUI construction 

Some of the windows have to be defined as modal dialogs. When a 
window is a modal dialog, no other windows in the application is 
accessible until the current window is closed. When a modal dialog is 
closed, the user is returned to the window from which the modal dialog 
was invoked. Modal dialogs are commonly used when an explicit 
confirmation or authorisation step is required for an action (e.g., 
confirmation of delete). Though use of modal dialogs are essential in 
some situations, overuse of modal dialogs reduces user flexibility. In 
particular, sequences of modal dialogs should be avoided. 

User interface inspection 

Nielson [Niel94] studied common usability problems and built a check list 
of points which can be easily checked for an interface. The following 
check list is based on the work of Nielson [Niel94]: 

Visibility of the system status: The system should as far as possible keep 
the user informed about the status of the system and what is going on. For 
example, it should not be the case that a user gives a command and keeps 
waiting, wondering whether the system has crashed and he should reboot the 
system or that the results shall appear after some more time. 

Match between the system and the real world: The system should 
speak the user’s language with words, phrases, and concepts familiar to that 
used by the user, rather than using system-oriented terms. 

Undoing mistakes: The user should feel that he is in control rather than 
feeling helpless or to be at the control of the system. An important step 
toward this is that the users should be able to undo and redo operations. 



 

 

Consistency: The users should not have to wonder whether different words, 
concepts, and operations mean the same thing in different situations. 

Recognition rather than recall: The user should not have to recall 
information which was presented in another screen. All data and instructions 
should be visible on the screen for selection by the user. 

Support for multiple skill levels: Provision of accelerators for experienced 
users allows them to efficiently carry out the actions they most frequently 
require to perform. 

Aesthetic and minimalist design: Dialogs and screens should not contain 
information which are irrelevant and are rarely needed. Every extra unit of 
information in a dialog or screen competes with the relevant units and 
diminishes their visibility. 

Help and error messages: These should be expressed in plain language 
(no codes), precisely indicating the problem, and constructively suggesting a 
solution. 

Error prevention: Error possibilities should be minimised. A key principle in 
this regard is to prevent the user from entering wrong values. In situations 
where a choice has to be made from among a discrete set of values, the 
control should present only the valid values using a drop-down list, a set of 
option buttons or a similar multichoice control. When a specific format is 
required for attribute data, the entered data should be validated when the 
user attempts to submit the data. 



 

 

 

 

FUNCTION-ORIENTED SOFTWARE 

DESIGN 

6.1 OVERVIEW OF SA/SD METHODOLOGY 

As the name itself implies, SA/SD methodology involves carrying out two 
distinct activities: 

 Structured analysis (SA) 

 Structured design (SD) 

The roles of structured analysis (SA) and structured design (SD) have been 
shown schematically in Figure 6.1. Observe the following from the figure: 

 During structured analysis, the SRS document is transformed into a 
data flow diagram (DFD) model. 

 During structured design, the DFD model is transformed into a 
structure chart. 

 

Figure 6.1: Structured analysis and structured design methodology. 

As shown in Figure 6.1, the structured analysis activity transforms the SRS 
document into a graphic model called the DFD model. During structured 
analysis, functional decomposition of the system is achieved. That is, each 

function that the system needs to perform is analysed and hierarchically 
decomposed into more detailed functions. On the other hand, during 
structured design, all functions identified during structured analysis are 
mapped to a module structure. This module structure is also called the high- 
level design or the software architecture for the given problem. This is 
represented using a structure chart. 



 

 

 

 

The high-level design stage is normally followed by a detailed design stage. 
During the detailed design stage, the algorithms and data structures for the 
individual modules are designed. The detailed design can directly be 
implemented as a working system using a conventional programming 
language. 

 

The results of structured analysis can therefore, be easily understood by 
the user. In fact, the different functions and data in structured analysis are 
named using the user’s terminology. The user can therefore even review the 
results of the structured analysis to ensure that it captures all his 
requirements. 

In the following section, we first discuss how to carry out structured analysis 
to construct the DFD model. Subsequently, we discuss how the DFD model 
can be transformed into structured design. 

6.2 STRUCTURED ANALYSIS 

We have already mentioned that during structured analysis, the major 
processing tasks (high-level functions) of the system are analysed, and 
t h e data flow among these processing tasks are represented 
graphically. The structured analysis technique is based on the following 
underlying principles: 

  Top-down decomposition approach. 

 Application of divide and conquer principle. Through this each high- 
level function is independently decomposed into detailed functions. 

  Graphical representation of the analysis  results us i ng data flow 
diagrams (DFDs). 

DFD representation of a problem, as we shall see shortly, is very easy to 
construct. Though extremely simple, it is a very powerful tool to tackle the 
complexity of industry standard problems. 

 

Please note that a DFD model only represents the data flow aspects and 
does not show the sequence of execution of the different functions and the 
conditions based on which a function may or may not be executed. In fact, it 
completely ignores aspects such as control flow, the specific algorithms used 

It is important to understand that the purpose of structured analysis is to capture the 
detailed structure of the system as perceived by the user, whereas the purpose of 
structured design is to define the structure of the solution that is suitable for 
implementation in some programming language. 



 

 

 

 

by the functions, etc. In the DFD terminology, each function is called a 
process or a bubble. It is useful to consider each function as a processing 
station (or process) that consumes some input data and produces some 
output data. 

DFD is an elegant modelling technique that can be used not only to 
represent the results of structured analysis of a software problem, but also 
useful for several other applications such as showing the flow of documents 
or items in an organisation. 

6.2.1 Data Flow Diagrams (DFDs) 

The DFD (also known as the bubble chart) is a simple graphical 
formalism that can be used to represent a system in terms of the input 
data to the system, various processing carried out on those data, and 
the output data generated by the system. The main reason why the 
DFD technique is so popular is probably because of the fact that DFD is 
a very simple formalism— it is simple to understand and use. A DFD 
model uses a very limited number of primitive symbols (shown in Figure 
6.2) to represent the functions performed by a system and the data 
flow among these functions. 

Starting with a set of high-level functions that a system performs, a DFD 
model represents the subfunctions performed by the functions using a 
hierarchy of diagrams. We had pointed out while discussing the principle of 
abstraction  in  Section  1.3.2  that  any  hierarchical  representation  is  an 

effective means to tackle complexity. Human mind is such that it can easily 
understand any hierarchical model of a system—because in a hierarchical 
model, starting with a very abstract model of a system, various details of the 
system are slowly introduced through different levels of the hierarchy. The 
DFD technique is also based on a very simple set of intuitive concepts and 
rules. We now elaborate the different concepts associated with building a 
DFD model of a system. 

Primitive symbols used for constructing DFDs 

There are essentially five different types of symbols used for constructing 
DFDs. These primitive symbols are depicted in Figure 6.2. The meaning of 
these symbols are explained as follows: 



 

 

 

 

 

Figure 6.2: Symbols used for designing DFDs. 

Function symbol: A function is represented using a circle. This symbol is 

called a process or a bubble. Bubbles are annotated with the names of 

the corresponding functions (see Figure 6.3). 

External entity symbol: An external entity such as a librarian, a library 
member, etc. is represented by a rectangle. The external entities are 
essentially those physical entities external to the software system which 
interact with the system by inputting data to the system or by consuming the 
data produced by the system. In addition to the human users, the external 
entity symbols can be used to represent external hardware and software such 
as another application software that would interact with the software being 
modelled. 

Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol. 
A data flow symbol represents the data flow occurring between two processes 
or between an external entity and a process in the direction of the data flow 
arrow. Data flow symbols are usually annotated with the corresponding data 
names. For example the DFD in Figure 6.3(a) shows three data flows—the 

data item number flowing from the process read-number to validate-number, data- 

item flowing into read-number, and valid-number flowing out of validate-number. 

Data store symbol: A data store is represented using two parallel lines. It 
represents a logical file. That is, a data store symbol can represent either a 
data structure or a physical file on disk. Each data store is connected to a 
process by means of a data flow symbol. The direction of the data flow arrow 
shows whether data is being read from or written into a data store. An arrow 
flowing in or out of a data store implicitly represents the entire data of the 
data store and hence arrows connecting t o a data store need not be 
annotated with the name of the corresponding data items. As an example of 
a data store, number is a data store in Figure 6.3(b). 



 

 

 

 

Output symbol: The output symbol i s as shown in Figure 6.2. The output 

symbol is used when a hard copy is produced. 
The notations that we are following in this text are closer to the Yourdon’s 

notations than to the other notations. You may sometimes find notations in 
other books that are slightly different than those discussed here. For 
example, the data store may look like a box with one end open. That is 
because, they may be following notations such as those of Gane and Sarson 
[1979]. 

Important concepts associated with constructing DFD models 

Before we discuss how to construct the DFD model of a system, let us 
discuss some important concepts associated with DFDs: 

Synchronous and asynchronous operations 

If two bubbles are directly connected by a data flow arrow, then they are 
synchronous. This means that they operate at t he same speed. An 
example of such an arrangement is shown in Figure 6.3(a). Here, the 

validate-number bubble can start processing only after t h e read- 

number bubble has supplied data to it; and the read-number bubble 

has to wait until the validate-number bubble has consumed its 

data. 
However, if two bubbles are connected through a data store, as in Figure 

6.3(b) then the speed of operation of the bubbles are independent. This 
statement can be explained using the following reasoning. The data produced 
by a producer bubble gets stored in the data store. It is therefore possible 
that the producer bubble stores several pieces of data items, even before the 

consumer bubble consumes any of them. 
 

Figure 6.3: Synchronous and asynchronous data flow. 

Data dictionary 

Every DFD model of a system must be accompanied by a data dictionary. A 



 

 

 

 

data dictionary lists all data items that appear in a DFD model. The data 
items listed include all data flows and the contents of all data stores 
appearing on all the DFDs in a DFD model. Please remember that the DFD 
model of a system typically consists of several DFDs, viz., level 0 DFD, level 1 
DFD, level 2 DFDs, etc., as shown in Figure 6.4 discussed in new subsection. 
However, a single data dictionary should capture all the data appearing in all 
the DFDs constituting the DFD model of a system. 

 

For example, a data dictionary entry may represent that the data grossPay 
consists of the components regularPay and overtimePay. 

grossP ay = regularP ay + overtimeP ay 

For the smallest units of data items, the data dictionary simply lists their 
name and their type. Composite data items are expressed in terms of 
the component data items using certain operators. The operators using 
which a composite data item can be expressed in terms of its 
component data items are discussed subsequently. 

The dictionary plays a very important role in any software development 
process, especially for the following reasons: 

 A data dictionary provides a standard terminology for all relevant data 
for use by the developers working in a project. A consistent vocabulary 
for data items is very important, since in large projects different 
developers of the project have a tendency to use different terms to 
refer to the same data, which unnecessarily causes confusion. 

 

 The data dictionary helps the developers to determine the definition of 
different data structures in terms of their component elements while 
implementing the design. 

 The data dictionary helps to perform impact analysis. That is, it is 
possible to determine the effect of some data on various processing 
activities and vice versa. Such impact analysis is especially useful when 
one wants to check the impact of changing an input value type, or a 
bug in some functionality, etc. 

For large systems, the data dictionary can become extremely complex and 
voluminous. Even moderate-sized projects can have thousands of entries in 

A data dictionary lists the purpose of all data items and the definition of all composite 
data items in terms of their component data items. 



 

 

 

 

the data dictionary. It becomes extremely di fficult to maintain a voluminous 
dictionary manually. Computer-aided software engineering (CASE) tools come 
handy to overcome this problem. Most CASE tools usually capture the data 
items appearing in a DFD as the DFD is drawn, and automatically generate 
the data dictionary. As a result, the designers do not have to spend almost 
any effort in creating the data dictionary. These CASE tools also support some 
query language facility to query about the definition and usage of data items. 
For example, queries may be formulated to determine which data item 
affects which processes, or a process affects which data items, or the 
definition and usage of specific data items, etc. Query handling is facilitated 
by storing the data dictionary in a relational database management system 
(RDBMS). 

Data definition 

Composite data items can be defined in terms of primitive data items 
using the following data definition operators. 

+: denotes composition of two data items, e.g. a+b represents data a and b. 

[,,]: represents selection, i.e. any one of the data items listed inside the 

square bracket can occur For example, [a,b] represents either a occurs or b 

occurs. 

(): the contents inside the bracket represent optional data which may or may 

not appear. 

a+(b) represents either a or a+b occurs. 

{}: represents iterative data definition, e.g. {name}5 represents five name data. 

{name}* represents zero or more instances of name data. 

=: represents equivalence, e.g. a=b+c means that a is a composite data item 

comprising of both b and c. 

/* */: Anything appearing within /* and */ is considered as comment. 

6.3 DEVELOPING THE DFD MODEL OF A SYSTEM 

A DFD model of a system graphically represents how each input data is 
transformed to its corresponding output data through a hierarchy of DFDs. 

 

The DFD model of a system i s constructed by using a hierarchy of DFDs 
(see Figure 6.4). The top level DFD is called the level 0 DFD or the context 
diagram. This is the most abstract (simplest) representation of the system 

The DFD model of a problem consists of many of DFDs and a single data dictionary. 



 

 

 

 

(highest level). It is the easiest to draw and understand. At each successive 
lower level DFDs, more and more details are gradually introduced. To 
develop a higher-level DFD model, processes are decomposed into their 
subprocesses and the data flow among these subprocesses are identified. 

To develop the data flow model of a system, first the most abstract 
representation (highest level) of the problem is to be worked out. 
Subsequently, the lower level DFDs are developed. Level 0 and Level 1 
consist of only one DFD each. Level 2 may contain up to 7 separate DFDs, 
and level 3 up to 49 DFDs, and so on. However, there is only a single data 
dictionary for the entire DFD model. All the data names appearing in all DFDs 
are populated in the data dictionary and the data dictionary contains the 
definitions of all the data items. 

6.3.1 Context Diagram 

The context diagram is the most abstract (highest level) data flow 
representation of a system. It represents the entire system as a single 
bubble. The bubble in the context diagram is annotated with the name of the 
software system being developed (usually a noun). This is the only bubble in 
a DFD model, where a noun is used for naming the bubble. The bubbles at all 
other levels are annotated with verbs according to the main function 
performed by the bubble. This is expected since the purpose of the context 
diagram is to capture the context of the system rather than its functionality. 
As an example of a context diagram, consider the context diagram a software 
developed to automate the book keeping activities of a supermarket (see 
Figure 6.10). The context diagram has been labelled as ‘Supermarket 
software’. 
 



 

 

 

 

 

Figure 6.4: DFD model of a system consists of a hierarchy of DFDs and a single data dictionary. 
 

The name context diagram of the level 0 DFD is justified because it 
represents the context in which the system would exist; that is, the external 
entities who would interact with the system and the specific data items that 
they would be supplying the system and the data items they would be 
receiving from the system. The various external entities with which the 
system interacts and the data flow occurring between the system and the 
external entities are represented. The data input to the system and the data 
output from the system are represented as incoming and outgoing arrows. 
These data flow arrows should be annotated with the corresponding data 

The context diagram establishes the context in which the system operates; that is, 
who are the users, what data do they input to the system, and what data they 
received by the system. 



 

 

 

 

names. 

To develop the context diagram of the system, we have to analyse the SRS 
document to identify the different types o f users who would be using the 
system and the kinds of data they would be inputting to the system and the 
data they would be receiving from the system. Here, the term users of the 
system also includes any external systems which supply data to or receive 
data from the system. 

6.3.2 Level 1 DFD 

The level 1 DFD usually contains three to seven bubbles. That is, the 
system is represented as performing three to seven important functions. 
To develop the level 1 DFD, examine the high-level functional 
requirements in the SRS document. If there are three to seven high- 
level functional requirements, then each of these can be directly 
represented as a bubble in the level 1 DFD. Next, examine the input 
data to these functions and the data output by these functions as 
documented in the SRS document and represent them appropriately in 
the diagram. 

What if a system has more than seven high-level requirements identified in 
the SRS document? In this case, some of the related requirements have to be 
combined and represented as a single bubble in the level 1 DFD. These can 
be split appropriately in the lower DFD levels. If a system has less than three 
high-level functional requirements, then some of the high-level requirements 
need to be split into their subfunctions so that we have roughly about five to 
seven bubbles represented on the diagram. We illustrate construction of level 
1 DFDs in Examples 6.1 to 6.4. 

Decomposition 

Each bubble in the DFD represents a function performed by the system. 
The bubbles are decomposed into subfunctions at the successive levels 
of the DFD model. Decomposition of a bubble is also known as factoring 
o r exploding a bubble. Each bubble at any level of DFD is usually 
decomposed to anything three to seven bubbles. A few bubbles at any 
level m a k e that level superfluous. For example, if a bubble is 
decomposed to just one bubble or two bubbles, then this decomposition 
becomes trivial and redundant. On the other hand, too many bubbles 
(i.e. more than seven bubbles) at any level o f a DFD makes the DFD 
model hard to understand. Decomposition of a bubble should be carried 



 

 

 

 

on until a level is reached at which the function of the bubble can be 
described using a simple algorithm. 

We can now describe how to go about developing the DFD model of a 
system more systematically. 

1.  Construction of context diagram: Examine the SRS document to 

determine: 

• Different high-level functions that the system needs to perform. 

• Data input to every high-level function. 

• Data output from every high-level function. 

• Interactions (data flow) among the identified high-level functions. 

Represent these aspects of the high-level functions in a diagrammatic 

form. This would form the top-level data flow diagram (DFD), usually 

called the DFD 0. 

Construction of level 1 diagram: Examine the high-level functions 

described in the SRS document. If there are three to seven high-level 
requirements in the SRS document, then represent each of the high-level 
function in the form of a bubble. If there are more than seven bubbles, 
then some of them have to be combined. If there are less than three 
bubbles, then some of these have to be split. 

Construction of lower-level diagrams: Decompose each high-level function 

into its constituent subfunctions through the following set of activities: 

• Identify the different subfunctions of the high-level function. 

• Identify the data input to each of these subfunctions. 

• Identify the data output from each of these subfunctions. 

• Identify the interactions (data flow) among these subfunctions. 

Represent these aspects in a diagrammatic form using a DFD. 

Recursively repeat Step 3 for each subfunction until a subfunction can be 
represented by using a simple algorithm. 

Numbering of bubbles 

It is necessary to number the different bubbles occurring in the DFD. 
These numbers help in uniquely identifying any bubble in the DFD from 
its bubble number. The bubble at the context level is usually assigned 
the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1 
are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is 



 

 

 

 

decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this 
numbering scheme, by looking at the number of a bubble we can 
unambiguously determine its level, its ancestors, and its successors. 

Balancing DFDs 

The DFD model of a system usually consists of many DFDs that are organised 
in a hierarchy. In this context, a DFD is required to be balanced with respect 
to the corresponding bubble of the parent DFD. 

 

We illustrate the concept of balancing a DFD in Figure 6.5. In the level 1 
DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2 
flows into the bubble 0.1 (shown by the dotted circle). In the next level, 
bubble 0.1 is decomposed into three DFDs (0.1.1,0.1.2,0.1.3). The 
decomposition is balanced, as d1 and d3 flow out of the level 2 diagram and 
d 2 flows in. Please note that dangling arrows (d1,d2,d3) represent the data 
flows into or out of a diagram. 

How far to decompose? 

A bubble should not be decomposed any further once a bubble is found to 
represent a simple set of instructions. For simple problems, decomposition up 
to level 1 should suffice. However, large industry standard problems may 
need decomposition up to level 3 or level 4. Rarely, if ever, decomposition 
beyond level 4 is needed. 

The data that flow into or out of a bubble must match the data flow at the next level 
of DFD. This is known as balancing a DFD. 



 

 

 

 

 

Figure 6.5: An example showing balanced decomposition. 

Commonly made errors while constructing a DFD model 

Although DFDs are simple to understand and draw, students and 
practitioners alike encounter similar types of problems while modelling 
software problems using DFDs. While learning from experience is a 
powerful thing, it is an expensive pedagogical technique in the business 
world. It is therefore useful to understand the different types of 
mistakes that beginners usually make while constructing the DFD model 

of systems, so that you can consciously try to avoid them.The errors are 
as follows: 

 Many beginners commit the mistake of drawing more than one bubble 
in the context diagram. Context diagram should depict the system as a 
single bubble. 

 Many beginners create DFD models in which external entities 
appearing at all levels of DFDs. All external entities interacting with the 
system should be represented only in the context diagram. The 
external entities should not appear in the DFDs at any other level. 



 

 

 

 

  It is a common oversight to have either too few or too many bubbles in 
a DFD. Only three to seven bubbles per diagram should be allowed. 
This also means that each bubble in a DFD should be decomposed 
three to seven bubbles in the next level. 

 Many beginners leave the DFDs at the different levels of a DFD model 
unbalanced. 

 A common mistake committed by many beginners while developing a 
DFD model is attempting to represent control information in a DFD. 

 

The following are some illustrative mistakes of trying to represent control 
aspects such as: 

Illustration 1. A book can be searched in the library catalog by inputting its 

name. If the book is available in the library, then the details of the book are 
displayed. If the book is not listed in the catalog, then an error message is 
generated. While developing the DFD model for this simple problem, many 
beginners commit the mistake of drawing an arrow (as shown in Figure 6.6) 
to indicate that the error function is invoked after the search book. But, this is 
a control information and should not be shown on the DFD. 
 

 

 

Figure 6.6: It is incorrect to show control information on a DFD. 

Illustration 2. Another type of error occurs when one tries to represent 

when or in what order different functions (processes) are invoked. A 
DFD similarly should not represent the conditions under which different 

functions are invoked. 

Illustration 3. If a bubble A invokes either the bubble B or the bubble C 

It is important to realise that a DFD represents only data flow, and it does not 
represent any control information. 



 

 

 

 

depending upon some conditions, we need only to represent the data that 

flows between bubbles A and B or bubbles A and C and not the conditions 
depending on which the two modules are invoked. 

 A data flow arrow should not connect two data stores or even a data 
store with an external entity. Thus, data cannot flow from a data store 
to another data store or to an external entity without any intervening 
processing. As a result, a data store should be connected only to 
bubbles through data flow arrows. 

 All the functionalities of the system must be captured by the DFD 
model. No function of the system specified in the SRS document of the 
system should be overlooked. 

 Only those functions of the system specified in the SRS document 
should be represented. That is, the designer should not assume 
functionality of the system not specified by the SRS document and then 
try to represent them in the DFD. 

 Incomplete data dictionary and data dictionary showing incorrect 
composition of data items are other frequently committed mistakes. 

 The data and function names must be intuitive. Some students and 
even practicing developers use meaningless symbolic data names such 
as a,b,c, etc. Such names hinder understanding the DFD model. 

 Novices usually clutter their DFDs with too many data flow arrow. It 
becomes difficult to understand a DFD if any bubble is associated with 
more than seven data flows. When there are too many data flowing in 
or out of a DFD, it is better to combine these data items into a high- 
level data item. Figure 6.7 shows an example concerning how a DFD 
can be simplified by combining several data flows into a single high- 
level data flow. 

 



 

 

 

 

Figure 6.7: Illustration of how to avoid data cluttering. 
 

 

Figure 6.16: Level 1 DFD for Example 6.5. 

The level 2 DFD for the manageOwnBook bubble is shown in Figure 6.17. 
 

Figure 6.17: Level 2 DFD for Example 6.5. 

 

 



 

 

 

 

6.3.3 Extending DFD Technique to Make it Applicable to Real-time 

Systems 

In a real-time system, some of the high-level functions are associated 
with deadlines. Therefore, a function must not only produce correct 
results but also should produce them by some prespecified time. For 
real-time systems, execution time is an important consideration for 
arriving at a correct design. Therefore, explicit representation of control 
and event flow aspects are essential. One of the widely accepted 
techniques for extending the DFD technique to real-time system 
analysis is the Ward and Mellor technique [1985]. In the Ward and 
Mellor notation, a type of process that handles only control flows is 
introduced. These processes representing control processing are 
denoted using dashed bubbles. Control flows are shown using dashed 
lines/arrows. 

Unlike Ward and Mellor, Hatley and Pirbhai [1987] show the dashed and 
solid representations on separate diagrams. To be able to separate the data 
processing and the control processing aspects, a control flow diagram (CFD) 
is defined. This reduces the complexity of the diagrams. In order to link the 
data processing and control processing diagrams, a notational reference 
(solid bar) to a control specification is used. The CSPEC describes the 
following: 

  The effect of an external event or control signal. 

  The processes that are invoked as a consequence of an event. 

Control specifications represents the behavior of the system in two 
different ways: 

 It contains a state transition diagram (STD). The STD is a sequential 
specification of behaviour. 

 It contains a progra m activation table (PAT). The PAT is a 
combinatorial specification of behaviour. PAT represents  invocation 

sequence of bubbles in a DFD. 

6.4 STRUCTURED DESIGN 

The aim of structured design is to transform the results of the structured 
analysis (that i s, the DFD model) into a structure chart. A structure 



 

 

 

 

chart represents the software architecture. The various modules making 
up the system, the module dependency (i.e. which module calls which 
other modules), and the parameters that are passed among the 
different modules. The structure chart representation can be easily 
implemented using some programming language. Since the main focus 
in a structure chart representation is on module structure of a software 
and the interaction among the different modules, the procedural 
aspects (e.g. how a particular functionality is achieved) are not 
represented. 

The basic building blocks using which structure charts are designed are as 
following: 

Rectangular boxes: A rectangular box represents a module. Usually, every 

rectangular box is annotated with the name of the module it represents. 

Module invocation arrows: An arrow connecting two modules implies that 

during program execution control is passed from one module to the other in 
the direction of the connecting arrow. However, just by looking at the 
structure chart, we cannot say whether a modules calls another module just 
once or many times. Also, just by looking at the structure chart, we cannot 
tell the order in which the different modules are invoked. 

Data flow arrows: These are small arrows appearing alongside the module 

invocation arrows. The data flow arrows are annotated with the 
corresponding data name. Data flo w arrows represent the fact that the 
named data passes from one module to the other in the direction of the 
arrow. 

Library modules: A library module is usually represented by a rectangle with 

double edges. Libraries comprise the frequently called modules. Usually, 

when a module is invoked by many other modules, it is made into a library 
module. 

Selection: The diamond symbol represents the fact that one module of several 

modules connected with the diamond symbol i s invoked depending on the 

outcome of the condition attached with the diamond symbol. 

Repetition: A loop around the control flow arrows denotes that the respective 

modules are invoked repeatedly. 
In any structure chart, there should be one and only one module at the top, 

called the root. There should be at most one control relationship between any 
two modules in the structure chart. This means that if module A invokes 
module B, module B cannot invoke module A. The main reason behind this 



 

 

 

 

restriction is that we can consider the different modules of a structure chart 
to be arranged in layers or levels. The principle of abstraction does not allow 
lower-level modules to be aware of the existence of the high-level modules. 
However, it is possible for t wo higher-level modules to invoke the same 
lower-level module. An example of a properly layered design and another of a 
poorly layered design are shown in Figure 6.18. 

 

Figure 6.18: Examples of properly and poorly layered designs. 

Flow chart versus structure chart 

We are all familiar with the flow chart representation of a program. Flow 
chart is a convenient technique to represent the flo w of control in a 
program. A structure chart differs from a flow chart in three principal 
ways: 

 It is usually difficult to identify the different modules of a program from 
its flow chart representation. 

 Data interchange among different modules is not represented in a flow 
chart. 

 Sequential ordering of tasks that i s inherent to a flow chart is 
suppressed in a structure chart. 



 

 

 

 

6.4.1 Transformation of a DFD Model into Structure Chart 

Systematic techniques are available to transform the DFD representation 
of a problem into a module structure represented by as a structure 
chart. Structured design provides two strategies to guide transformation 
of a DFD into a structure chart: 

  Transform analysis 
 Transaction analysis 

 

At each level of transformation, it is important to first determine whether 
the transform or the transaction analysis is applicable to a particular DFD. 

Transform analysis 

Transform analysis identifies the primary functional components 
(modules) and the input and output data for these components. The 
first step in transform analysis is to divide the DFD into three types of 
parts: 

• Input. 

• Processing. 

• Output. 

The input portion in the DFD includes processes that transform input data 
from physical (e.g, character from terminal) to logical form (e.g. internal 
tables, lists, etc.). Each input portion is called an afferent branch. 

The output portion of a DFD transforms output data from logical form to 
physical form. Each output portion is called an efferent branch. The remaining 
portion of a DFD is called central transform. 

In the next step of transform analysis, the structure chart is derived by 
drawing one functional component each for the central transform, the 
afferent and efferent branches. These are drawn below a root module, which 
would invoke these modules. 

Identifying the input and output parts requires experience and skill. One 
possible approach is to trace the input data until a bubble is found whose 
output data cannot be deduced from its inputs alone. Processes which 
validate input are not central transforms. Processes which sort input or filter 
data from it are central tansforms. T h e first level o f structure chart is 
produced by representing each input and output unit as a box and each 
central transform as a single box. 



 

 

 

 

In the third step of transform analysis, the structure chart is refined by 
adding subfunctions required by each of the high-level functional components. 
Many levels of functional components may be added. This process of breaking 
functional components into subcomponents is called factoring. Factoring 
includes adding read and write modules, error-handling modules, initialisation 
and termination process, identifying consumer modules etc. The factoring 
process is continued until all bubbles in the DFD are represented in the 
structure chart. 

 

 

Figure 6.19: Structure chart for Example 6.6. 

Transaction analysis 

Transaction analysis is an alternative to transform analysis and is useful while 
designing transaction processing programs. A transaction allows the user to 
perform some specific type of work by using the software. For example, ‘issue 
book’, ‘return book’, ‘query book’, etc., are transactions. 

 

 



 

 

 

 

Figure 6.20: Structure chart for Example 6.7. 

As in transform analysis, first all data entering into the DFD need to be 
identified. In a transaction-driven system, different data items may pass 
through different computation paths through the DFD. This is in contrast to a 
transform centered system where each data item entering the DFD goes 
through the same processing steps. Each different way in which input data is 
processed is a transaction. A simple way to identify a transaction is the 
following. Check the input data. The number of bubbles on which the input 
data to the DFD are incident defines the number of transactions. However, 
some transactions may not require any input data. These transactions can be 
identified based on the experience gained from solving a large number of 
examples. 

For each identified transaction, trace the input data to the output. All the 
traversed bubbles belong to the transaction. These bubbles should be 
mapped to the same module on the structure chart. In the structure chart, 
draw a root module and below this module draw each identified transaction 
as a module. Every transaction carries a tag identifying its type. Transaction 
analysis uses this tag to divide the system into transaction modules a nd a 
transaction-center module. 

 

6.5 DETAILED DESIGN 

During detailed design the pseudo code description of the processing and 
the different data structures are designed for the different modules of 
the structure chart. These are usually described in the form of module 
specifications (MSPEC). MSPEC is usually written using structured 
English. The MSPEC for the non-leaf modules describe the different 
conditions under which the responsibilities are delegated to the lower- 
level modules. The MSPEC for the leaf-level modules should describe in 
algorithmic form how the primitive processing steps are carried out. To 
develop the MSPEC of a module, it is usually necessary to refer to the 
DFD model and the SRS document to determine the functionality of the 
module. 

6.6 DESIGN REVIEW 

After a design is complete, the design is required to be reviewed. The 
review team usually consists of members with design, implementation, 
testing, and maintenance perspectives, who may or may not be the 
members of the development team. Normally, members of the team 



 

 

 

 

who would code the design, and test the code, the analysts, and the 
maintainers attend the review meeting. The review team checks the 
design documents especially for the following aspects: 

Traceability: Whether each bubble of the DFD can be traced to some module 

in the structure chart a nd vice versa. They check whether each functional 

requirement in the SRS document can be traced to some bubble in the DFD 
model and vice versa. 

Correctness: Whether all the algorithms and data structures of the detailed 

design are correct. 

Maintainability: Whether the design can be easily maintained in future. 

Implementation: Whether the design can be easily and efficiently be 

implemented. 
After the points raised by the reviewers is addressed by the designers, the 

design document becomes ready for implementation. 

 

 

 

 

 

 

 

 

 



 

 

 

 

CODING AND TESTING 

 

10.1 CODING 

The input to the coding phase is the design document produced at the end of 
the design phase. Please recollect that the design document contains not only 
the high-level design of the system in the form of a module structure (e.g., a 
structure chart), but also the detailed design. The detailed design is usually 
documented in the form of module specifications where the data structures 
and algorithms for each module are specified. During the coding phase, 
different modules identified in the design document are coded according to 
their respective module specifications. We can describe the overall objective 
of the coding phase to be the following. 

 

Normally, good software development organisations require their 
programmers to adhere to some well-defined and standard style of coding 
which is called their coding standard. These software development 
organisations formulate their own coding standards that suit them the most, 
and require their developers to follow the standards rigorously because of the 
significant business advantages it offers. The main advantages of adhering to 
a standard style of coding are the following: 

 A coding standard gives a uniform appearance to the codes written by 
different engineers. 

 It facilitates code understanding and code reuse. 

 It promotes good programming practices. 

A coding standard lists several rules to be followed during coding, such as 
the way variables are to be named, the way the code is to be laid out, the 
error return conventions, etc. Besides the coding standards, several coding 
guidelines are also prescribed by software companies. But, what is the 
difference between a coding guideline and a coding standard? 

 

After a module has been coded, usually code review is carried out to ensure 
that the coding standards are followed and also to detect as many errors as 
possible before testing. It is important to detect as many errors as possible 

The objective of the coding phase is to transform the design of a system into code in 
a high-level language, and then to unit test this code. 



 

 

 

 

during code reviews, because reviews are an efficient way of removing errors 
from code as compared to defect elimination using testing. We first discuss a 
few representative coding standards and guidelines.  

10.2 CODE REVIEW 

Testing is an effective defect removal mechanism. However, testing is 
applicable to only executable code. Review is a very effective technique 
to remove defects from source code. In fact, review has been 
acknowledged to be more cost-effective in removing defects as 
compared to testing. Over the years, review techniques have become 
extremely popular and have been generalised for use with other work 
products. 

Code review for a module is undertaken after the module successfully 
compiles. That is, all the syntax errors have been eliminated from the 
module. Obviously, code review does not target to design syntax errors in a 
program, but is designed to detect logical, algorithmic, and programming 
errors. Code review has been recognised as an extremely cost-effective 
strategy for eliminating coding errors and for producing high quality code. 

The reason behind why code review is a much more cost-effective strategy 
to eliminate errors from code compared to testing is that reviews directly 
detect errors. On the other hand, testing only helps detect failures and 
significant effort is needed to locate the error during debugging. 

The rationale behind the above statement  is explained as follows. 
Eliminating an error from code  involves three  main activities—testing, 
debugging, and then correcting the errors. Testing is carried out to detect if 

the system fails to work satisfactorily for certain types of inputs and under 
certain circumstances. Once a failure is detected, debugging is carried out to 
locate the error that is causing the failure and to remove it. Of the three 

testing  activities, debugging  is possibly the most laborious  and time 
consuming activity. In code inspection, errors are directly detected, thereby 

saving the significant effort that would have been required to locate the error. 

Normally, the following two types of reviews are carried out on the code of 
a module: 

 Code inspection. 

 Code walkthrough. 

The procedures for conduction and the final objectives of these two review 
techniques are very different. In the following two subsections, we discuss 



 

 

 

 

these two code review techniques. 

10.2.1 Code Walkthrough 

Code walkthrough is an informal code analysis technique. In this technique, 
a module is taken up for review after the module has been coded, 
successfully compiled, and all syntax errors have been eliminated. A few 
members of the development team are given the code a couple of days 
before the walkthrough meeting. Each member selects some test cases and 
simulates execution of the code by hand (i.e., traces the execution through 
different statements and functions of the code). 

 

The members note down their findings of their walkthrough and discuss 
those in a walkthrough meeting where the coder of the module is present. 

Even though code walkthrough is an informal analysis technique, several 
guidelines have evolved over the years for making this naive but useful 
analysis technique more effective. These guidelines are based on personal 
experience, common sense, several other subjective factors. Therefore, these 
guidelines should be considered as examples rather than as accepted rules to 
be applied dogmatically. Some of these guidelines are following: 

 The team performing code walkthrough should not be either too big or 
too small. Ideally, it should consist of between three to seven 
members. 

 Discussions should focus on discovery of errors and avoid deliberations 
on how to fix the discovered errors. 

 In order to foster co-operation and to avoid the feeling among the 
engineers that they are being watched and evaluated in the code 
walkthrough meetings, managers should not attend the walkthrough 
meetings. 

10.2.2 Code Inspection 

During code inspection, the code is examined for the presence of some 
common programming errors. This is in contrast to the hand simulation of 
code execution carried out during code walkthroughs. We can state the 
principal aim of the code inspection to be the following: 



 

 

 

 

 

 

The inspection process has several beneficial side effects, other than 
finding errors. The programmer usually receives feedback on programming 
style, choice of algorithm, and programming techniques. The other 
participants gain by being exposed to another programmer’s errors. 

As an example of the type of errors detected during code inspection, 
consider the classic error of writing a procedure that modifies a formal 
parameter and then calls it with a constant actual parameter. It is more lik ely 
that such an error can be discovered by specifically looking for this kinds of 
mistakes in the code, rather than by simply hand simulating execution of the 
code. In addition to the commonly made errors, adherence to coding 
standards is also checked during code inspection. 

Good software development companies collect statistics regarding different 
types of errors that are commonly committed by their engineers and identify 
the types of errors most frequently committed. Such a list of commonly 
committed errors can be used as a checklist during code inspection to look 
out for possible errors. 

Following is a list of some classical programming errors which can be 
checked during code inspection: 

 Use of uninitialised variables. 
 Jumps into loops. 
 Non-terminating loops. 

 Incompatible assignments. 
 Array indices out of bounds. 
  Improper storage allocation and deallocation. 
  Mismatch between actual and formal parameter in procedure calls. 

  Use of incorrect logical operators or incorrect precedence among 
operators. 

  Improper modification of loop variables. 
  Comparison of equality of floating point values. 

 Dangling reference caused when the referenced memory has not been 
allocated. 

10.2.3 Clean Room Testing 

Clean room testing was pioneered at IBM. This type of testing relies 



 

 

 

 

heavily on walkthroughs, inspection, and formal verification. The 
programmers are not allowed to test any of their code by executing the 
code other than doing some syntax testing using a compiler. It is 
interesting to note that the term cleanroom was first coined at IBM by 
drawing analogy to the semiconductor fabrication units where defects 
are avoided by manufacturing in an ultra-clean atmosphere. 

This technique reportedly produces documentation and code that is more 
reliable and maintainable than other development methods relying heavily on 
code execution-based testing. The main problem with this approach is that 
testing effort is increased as walkthroughs, inspection, and verification are 
time consuming for detecting all simple errors. Also testing- based error 
detection is efficient for detecting certain errors that escape manual 
inspection. 

10.3 SOFTWARE DOCUMENTATION 

When a software is developed, in addition to the executable files and the 
source code, several kinds of documents such as users’ manual, 
software requirements specification (SRS) document, design document, 
test document, installation manual, etc., are developed as part of the 
software engineering process. All these documents are considered a 
vital part of any good software development practice. Good documents 
are helpful in the following ways: 

 Good documents help enhance understandability of code. As a result, 
the availability of good documents help to reduce the effort and time 
required for maintenance. 

 Documents help the users to understand and effectively use the 
system. 

 Good documents help to effectively tackle the manpower turnover1 

problem. Even when an engineer leaves the organisation, and a new 
engineer comes in, he can build up the required knowledge easily by 
referring to the documents. 

 Production of good documents helps the manager to effectively track 
the progress of the project. The project manager would know that 
some measurable progress has been achieved, if the results of some 
pieces of work has been documented and the same has been 
reviewed. 



 

 

 

 

Different types of software documents can broadly be classified into the 
following: 

 

We discuss these two types of documentation in the next section. 

10.3.1 Internal Documentation 

Internal documentation is the code comprehension features provided in 
the source code itself. Internal documentation can be provided in the 
code in several forms. The important types of internal documentation 
are the following: 

 Comments embedded in the source code. 
 Use of meaningful variable names. 
 Module and function headers. 
 Code indentation. 
 Code structuring (i.e., code decomposed into modules and functions). 
 Use of enumerated types. 
  Use of constant identifiers. 
  Use of user-defined data types. 

Out of these different types of internal documentation, which one is the 
most valuable for understanding a piece of code? 

 

The above assertion, of course, is in contrast to the common expectation 
that code commenting would be the most useful. The research finding is 
obviously true when comments are written without much thought. For 
example, the following style of code commenting is not much of a help in 
understanding the code. 

a=10; /* a made 10 */ 

A good style of code commenting is to write to clarify certain non-obvious 
aspects of the working of the code, rather than cluttering the code with trivial 
comments. Good software development organisations usually ensure good 
internal documentation by appropriately formulating their coding standards 

Internal documentation: These are provided in the source code itself. 

External documentation: These are the supporting documents such as SRS 
document, installation document, user manual, design document, and test document. 



 

 

 

 

and coding guidelines. Even when a piece of code is carefully commented, 
meaningful variable names has been found to be the most helpful in 
understanding the code. 

10.3.2 External Documentation 

External documentation is provided through various types of supporting 
documents such as users’ manual, software requirements specification 
document, design document, test document, etc. A systematic software 
development style ensures that all these documents are of good quality 
and are produced in an orderly fashion. 

An important feature that is requierd of any good external documentation is 
consistency with the code. If the different documents are not consistent, a lot 
of confusion is created for somebody trying to understand the software. In 
other words, all the documents developed for a product should be up-to-date 
and every change made to the code should be reflected in the relevant 
external documents. Even if only a few documents are not up-to-date, they 
create inconsistency and lead to confusion. Another important feature 
required for external documents is proper understandability by the category 
of users for whom the document is designed. For achieving this, Gunning’s fog 
index is very useful. We discuss this next. 

Gunning’s fog index 

Gunning’s fog index (developed by Robert Gunning in 1952) is a metric 
that has been designed to measure the readability of a document. The 
computed metric value (fog index) of a document indicates the number 
of years of formal education that a person should have, in order to be 
able to comfortably understand that document. That is, if a certain 
document has a fog index of 12, any one who has completed his 12th 
class would not have much difficulty in understanding that document. 

The Gunning’s fog index of a document D can be computed as follows: 

 

Observe that the fog index is computed as the sum of two different factors. 
The first factor computes the average number of words per sentence (total 
number of words in the document divided by the total number of sentences). 
This factor therefore accounts for the common observation that long 
sentences are difficult to understand. The second factor measures the 
percentage of complex words in the document. Note that a syllable is a group 



 

 

 

 

o f words that can be independently pronounced. For example, the word 
“sentence” has three syllables (“sen”, “ten”, and “ce”). Words having more 
than three syllables are complex words and presence of many such words 
hamper readability of a document. 

10.4 TESTING 

The aim of program testing is to help realize identify all defects in a 
program. However, in practice, even after satisfactory completion of the 
testing phase, it is not possible to guarantee that a program is error 
free. This is because the input data domain of most programs is very 
large, and it is not practical to test the program exhaustively with 
respect to each value that the input can assume. Consider a function 
taking a floating point number as argument. If a tester takes 1sec to 
type in a value, then even a million testers would not be able to 
exhaustively test it after trying for a million number of years. Even with 
this obvious limitation of the testing process, we should not 
underestimate the importance of testing. We must remember that 
careful testing can expose a large percentage of the defects existing in 
a program, and therefore provides a practical way of reducing defects in 
a system. 

10.4.1 Basic Concepts and Terminologies 

In this section, we will discuss a few basic concepts in program testing 
on which our subsequent discussions on program testing would be 
based. 

How to test a program? 

Testing a program involves executing the program with a set of test 
inputs and observing if the program behaves as expected. If the 
program fails to behave as expected, then the input data and the 
conditions under which it fails are noted for later debugging and error 
correction. A highly simplified view of program testing is schematically 
shown in Figure 10.1. The tester has been shown as a stick icon, who 
inputs several test data to the system and observes the outputs 
produced by it to check if the system fails on some specific inputs. 
Unless the conditions under which a software fails are noted down, it 
becomes difficult for the developers to reproduce a failure observed by 
the testers. For examples, a software might fail for a test case only 



 

 

 

 

when a network connection is enabled. 
 

 

 
Terminologies 

Figure 10.1: A simplified view of program testing. 

As is true for any specialised domain, the area of software testing has 
come to be associated with its own set of terminologies. In the 
following, we discuss a few important terminologies that have been 
standardised by the IEEE Standard Glossary of Software Engineering 
Terminology [IEEE90]: 

 A mistake is essentially any programmer action that later shows up as 
an incorrect result during program execution. A programmer may 
commit a mistake in almost any development activity. For example, 
during coding a programmer might commit the mistake of not 
initializing a certain variable, or might overlook the errors that might 
arise in some exceptional situations such as division by zero in an 
arithmetic operation. Both these mistakes can lead to an incorrect 
result. 

 An error is the result of a mistake committed by a developer in any of 
the development activities. Among the extremely large variety of 
errors that can exist in a program. One example of an error is a call 
made to a wrong function. 



 

 

 

 

 

 

Though the terms error, fault, bug, and defect are all used interchangeably 
by the program testing community. Please note that in the domain of 
hardware testing, the term fault is used with a slightly different connotation 
[IEEE90] as compared to the terms error and bug. 

Verification versus validation 

The objectives of both verification and validation techniques are very 
similar since both these techniques are designed to help remove errors 
in a software. In spite of the apparent similarity between their 
objectives, the underlying principles of these two bug detection 
techniques and their applicability are very different. We summarise the 
main differences between these two techniques in the following: 

 Verification is the process of determining whether the output of one 
phase of software development conforms to that of its previous phase; 
whereas validation is the process of determining whether a fully 
developed software conforms to its requirements specification. Thus, 
the objective of verification is to check if the work products produced 
after a phase conform to that which was input to the phase. For 
example, a verification step can be to check if the design documents 
produced after the design step conform to the requirements 
specification. On the other hand, validation is applied to the fully 
developed and integrated software to check if it satisfies the 
customer’s requirements. 

 The primary techniques used for verification include review, simulation, 
formal verification, and testing. Review, simulation, and testing are 
usually considered as informal verification techniques. Formal 
verification usually involves use of theorem proving techniques or use 
of automated tools such as a model checker. On the other hand, 
validation techniques are primarily based on product testing. Note that 
we have categorised testing both under program verification and 
validation. The reason being that unit and integration testing can be 
considered as verification steps where it is verified whether the code is 
a s per the module and module interface specifications. On the other 
hand, system testing can be considered as a validation step where it is 
determined whether the fully developed code is as per its requirements 
specification. 

 Verification does not require execution of the software, whereas 



 

 

 

 

validation requires execution of the software. 

 Verification is carried out during the development process to check if 
the development activities are proceeding alright, whereas validation is 
carried out to check if the right as required by the customer has been 
developed. 

10.4.2 Testing Activities 

Testing involves performing the following main activities: 

Test suite design: The set of test cases using which a program is to be 
tested is designed possibly using several test case design techniques. We 
discuss a few important test case design techniques later in this Chapter. 

Running test cases and checking the results to detect failures: Each 
test case is run and the results are compared with the expected results. A 
mismatch between the actual result and expected results indicates a failure. 
The test cases for which the system fails are noted down for later debugging. 

Locate error: In this activity, the failure symptoms are analysed to locate 
the errors. For each failure observed during the previous activity, the 
statements that are in error are identified. 

Error correction: After the error is located during debugging, the code is 
appropriately changed to correct the error. 

The testing activities have been shown schematically in Figure 10.2. As can 
be seen, the test cases are first designed, the test cases are run to detect 
failures. The bugs causing the failure are identified through debugging, and 
the identified error is corrected.Of all the above mentioned testing activities, 
debugging often turns out to be the most time-consuming activity. 

 



 

 

 

 

Figure 10.2: Testing process. 

10.4.3 Why Design Test Cases? 

Before discussing the various test case design techniques, we need to 
convince ourselves on the following question. Would it not be sufficient to 
test a software using a large number of random input values? Why design 
test cases? The answer to this question—this would be very costly and at the 
same time very ineffective way of testing due to the following reasons: 

 

There are essentially two main approaches to systematically design test 
cases: 

 Black-box approach 
  White-box (or glass-box) approach 

In the black-box approach, test cases are designed using only the functional 
specification of the software. That is, test cases are designed solely based on 
an analysis of the input/out behaviour (that is, functional behaviour) and 
does not require any knowledge of the internal structure of a program. For 
this reason, black-box testing is also known as functional testing. On the 
other hand, designing white-box test cases requires a thorough knowledge of 
the internal structure of a program, and therefore white-box testing is also 
called structural testing. Black- box test cases are designed solely based on 
the input-output behaviour of a program. In contrast, white-box test cases 
are based on an analysis of the code. These two approaches to test case 
design are complementary. That is, a program has to be tested using the test 
cases designed by both the approaches, and one testing using one approach 
does not substitute testing using the other. 

10.4.4 Testing in the Large versus Testing in the Small 

A software product is normally tested in three levels or stages: 

 Unit testing 
 Integration testing 
 System testing 

During unit testing, the individual functions (or units) of a program are 
tested. 

 

After testing all the units individually, the units are slowly integrated and 
tested after each step of integration (integration testing). Finally, the fully 



 

 

 

 

integrated system is tested (system testing). Integration and system testing 
are known as testing in the large. 

Often beginners ask the question—“Why test each module (unit) in 
isolation first, then integrate these modules and test, and again test the 
integrated set of modules—why not just test the integrated set of modules 
once thoroughly?” The answer to this question is the following—There are 
two main reasons to it. First while testing a module, other modules with 
which this module needs to interface may not be ready. Moreover, it is 
always a good idea to first test the module in isolation before integration 
because it makes debugging easier. If a failure is detected when an 
integrated set of modules is being tested, it would be difficult to determine 
which module exactly has the error. 

10.5 BLACK-BOX TESTING 

In black-box testing, test cases are designed from an examination of the 
input/output values only and no knowledge of design or code is 
required. The following are the two main approaches available to 
design black box test cases: 

 Equivalence class partitioning 
 Boundary value analysis 

In the following subsections, we will elaborate these two test case 
design techniques. 

10.5.1 Equivalence Class Partitioning 

In the equivalence class partitioning approach, the domain of input values to 
the program under test is partitioned into a set of equivalence classes. The 
partitioning is done such that for every input data belonging to the same 
equivalence class, the program behaves similarly. 
 
 

Equivalence classes for a unit under test can be designed by examining the 
input data and output data. The following are two general guidelines for 
designing the equivalence classes: 

1. If the input data values to a system can be specified by a range of 
values, then one valid and two invalid equivalence classes need to be 
defined. For example, if the equivalence class is the set of integers in 



 

 

 

 

the range 1 to 10 (i.e., [1,10]), then the invalid equivalence classes 
are [−∞,0], [11,+∞]. 

2. If the input data assumes values from a set of discrete members of 
some domain, then one equivalence class for the valid input values 
and another equivalence class for the invalid input values should be 
defined. For example, if the valid equivalence classes are {A,B,C}, 
then the invalid equivalence class is □-{A,B,C}, where □ is the 
universe of possible input values. 

In the following, we illustrate equivalence class partitioning-based test case 
generation through four examples. 

 

Figure 10.4: Equivalence classes for Example 10.6. 

10.5.2 Boundary Value Analysis 

A type of programming error that is frequently committed by programmers is 
missing out on the special consideration that should be given to the values at 
the boundaries of different equivalence classes of inputs. The reason behind 
programmers committing such errors might purely be due to psychological 
factors. Programmers often fail to properly address the special processing 
required by the input values that lie at the boundary of the different 
equivalence classes. For example, programmers may improperly use < 
instead of <=, or conversely <= for <, etc. 

 

To design boundary value test cases, it is required to examine the 

Boundary value analysis-based test suite design involves designing test cases using 
the values at the boundaries of different equivalence classes. 



 

 

 

 

equivalence classes to check if any of the equivalence classes contains a 
range of values. For those equivalence classes that are not a range of 
values(i.e., consist of a discrete collection of values) no boundary value test 
cases can be defined. For an equivalence class that is a range of values, the 
boundary values need to be included in the test suite. For example, if an 
equivalence class contains the integers in the range 1 to 10, then the 
boundary value test suite is {0,1,10,11}. 

 

10.5.3 Summary of the Black-box Test Suite Design 
Approach 

We now summarise the important steps in the black-box test suite 
design approach: 

 Examine the input and output values of the program. 
 Identify the equivalence classes. 
  Design equivalence class test cases by picking one representative 

value from each equivalence class. 

 Design the boundary value test cases as follows. Examine if any 
equivalence class is a range of values. Include the values at the 
boundaries of such equivalence classes in the test suite. 

The strategy for black-box testing is intuitive and simple. For black-box 
testing, the most important step is the identification of the equivalence 
classes. Often, the identification of the equivalence classes is not 
straightforward. However, with little practice one would be able to identify all 
equivalence classes in the input data domain. Without practice, one may 
overlook many equivalence classes in the input data set. Once the 
equivalence classes are identified, the equivalence class and boundary value 
test cases can be selected almost mechanically. 

10.6 WHITE-BOX TESTING 

White-box testing is an important type of unit testing. A large number of 
white-box testing strategies exist. Each testing strategy essentially 
designs test cases based on analysis of some aspect of source code and 
is based on some heuristic. We first discuss some basic concepts 
associated with white-box testing, and follow it up with a discussion on 
specific testing strategies. 



 

 

 

 

10.6.1 Basic Concepts 

A white-box testing strategy can either be coverage-based or fault- 
based. 

Fault-based testing 

A fault-based testing strategy targets to detect certain types of faults. 
These faults that a test strategy focuses on constitutes the fault 
model of the strategy. An example of a fault-based strategy is 
mutation testing, which is discussed later in this section. 

Coverage-based testing 

A coverage-based testing strategy attempts to execute (or cover) certain 
elements of a program. Popular examples of coverage-based testing 
strategies are statement coverage, branch coverage, multiple condition 
coverage, and path coverage-based testing. 

Testing criterion for coverage-based testing 

A coverage-based testing strategy typically targets to execute (i.e., cover) 
certain program elements for discovering failures. 

 

For example, if a testing strategy requires all the statements of a program 
to be executed at least once, then we say that the testing criterion of the 
strategy is statement coverage. We say that a test suite is adequate with 
respect to a criterion, if it covers all elements of the domain defined by that 
criterion. 

Stronger versus weaker testing 

We have mentioned that a large number of white-box testing strategies have 
been proposed. It therefore becomes necessary to compare the effectiveness 
of different testing strategies in detecting faults. We can compare two testing 
strategies by determining whether one is stronger, weaker, or 
complementary to the other. 

 

The set of specific program elements that a testing strategy targets to execute is 
called the testing criterion of the strategy. 

A white-box testing strategy is said to be stronger than another strategy, if the 
stronger testing strategy covers all program elements covered by the weaker testing 
strategy, and the stronger strategy additionally covers at least one program element 
that is not covered by the weaker strategy. 



 

 

 

 

When none of two testing strategies fully covers the program elements 
exercised by the other, then the two are called complementary testing 
strategies. The concepts of stronger, weaker, and complementary testing are 
schematically illustrated in Figure 10.6. Observe in Figure 10.6(a) that testing 
strategy A is stronger than B since B covers only a proper subset of elements 
covered by B. On the other hand, Figure 10.6(b) shows A and B are 
complementary testing strategies since some elements of A are not covered 
by B and vice versa. 

 

 

 

10.6.2 Statement Coverage 

The statement coverage strategy aims to design test cases so as to execute 
every statement in a program at least once. 

 

It is obvious that without executing a statement, it is difficult to determine 
whether it causes a failure due to illegal memory access, wrong result 
computation due to improper arithmetic operation, etc. It can however be 
pointed out that a weakness of the statement- coverage strategy is that 
executing a statement once and observing that it behaves properly for one 
input value is no guarantee that it will behave correctly for all input values. 
Never the less, statement coverage is a very intuitive and appealing testing 
technique. In the following, we illustrate a test suite that achieves statement 
coverage. 

10.6.3 Branch Coverage 

A test suite satisfies branch coverage, if it makes each branch condition 
in the program to assume true and false values in turn. In other words, 
for branch coverage each branch in the CFG representation of the 
program must be taken at least once, when the test suite is executed. 
Branch testing is also known as edge testing, since in this testing 
scheme, each edge of a program’s control flow graph is traversed at 
least once. 

If a stronger testing has been performed, then a weaker testing need not be carried 
out. 



 

 

 

 

10.6.4 Multiple Condition Coverage 

In the multiple condition (MC) coverage-based testing, test cases are 
designed to make each component of a composite conditional 
expression to assume both true and false values. For example, consider 
the composite conditional expression ((c1 .and.c2 ).or.c3). A test suite 

would achieve MC coverage, if all the component conditions c1, c2 and 

c3 are each made to assume both true and false values. Branch testing 

can be considered to be a simplistic condition testing strategy where 
only the compound conditions appearing in the different branch 
statements are made to assume the true and false values. It is easy to 
prove that condition testing is a stronger testing strategy than branch 
testing. For a composite conditional expression of n components, 2n 
test cases are required for multiple condition coverage. Thus, for 
multiple condition coverage, the number of test cases increases 
exponentially with the number of component conditions. Therefore, 
multiple condition coverage-based testing technique is practical only if n 
(the number of conditions) is small. 

10.6.5 Path Coverage 

A test suite achieves path coverage if it exeutes each linearly 
independent paths ( o r basis paths ) at least once. A linearly 
independent path can be defined in terms of the control flow graph 
(CFG) of a program. Therefore, to understand path coverage-based 
testing strategy, we need to first understand how the CFG of a program 
can be drawn. 

Control flow graph (CFG) 

A control flow graph describes how the control flows through the program. 
We can define a control flow graph as the following: 

 

In order to draw the control flow graph of a program, we need to first 
number all the statements of a program. The different numbered statements 
serve as nodes of the control flow graph (see Figure 10.5). There exists an 
edge from one node to another, if the execution of the statement 
representing the first node can result in the transfer of control to the other 

A control flow graph describes the sequence in which the different instructions of a 
program get executed. 



 

 

 

 

node. 

More formally, we can define a CFG as follows. A CFG is a directed graph 
consisting of a set of nodes and edges (N, E), such that each node n ◻ N 

corresponds to a unique program statement and an edge exists between two 
nodes if control can transfer from one node to the other. 

 



 

 

 

 

 

10.6.6 McCabe’s Cyclomatic Complexity Metric 

McCabe obtained his results by applying graph-theoretic techniques to 
the control flow graph ofa program. McCabe’s cyclomatic complexity 
defines an upper bound on the number of independent paths in a 
program. We discuss three different ways to compute the cyclomatic 
complexity. For structured programs, the results computed by all the 
three methods are guaranteed to agree. 

How is path testing carried out by using computed 
McCabe’s cyclomatic metric value? 

Knowing the number of basis paths in a program does not make it any 
easier to design test cases for path coverage, only it gives an indication 
of the minimum number of test cases required for path coverage. For 
the CFG of a moderately complex program segment of say 20 nodes 
and 25 edges, you may need several days of effort to identify all the 
linearly independent paths in it and to design the test cases. It is 
therefore impractical to require the test designers to identify all the 
linearly independent paths in a code, and then design the test cases to 
force execution along each of the identified paths. In practice, for path 
testing, usually the tester keeps on forming test cases with random 
data and executes those until the required coverage is achieved. A 
testing tool such as a dynamic program analyser (see Section 10.8.2) is 
used to determine the percentage of linearly independent paths 
covered by the test cases that have been executed so far. If the 
percentage of linearly independent paths covered is below 90 per cent, 
more test cases (with random inputs) are added to increase the path 
coverage. Normally, it is not practical to target achievement of 100 per 
cent path coverage, since, the McCabe’s metric is only an upper bound 
and does not give the exact number of paths. 

Steps to carry out path coverage-based testing 

The following is the sequence of steps that need to be undertaken for 
deriving the path coverage-based test cases for a program: 

1. Draw control flow graph for the program. 
2. Determine the McCabe’s metric V(G). 



 

 

 

 

3. Determine the cyclomatic complexity. This gives the minimum number 
of test cases required to achieve path coverage. 

4. Repeat Test using a randomly designed set of test cases. 
Perform dynamic analysis to check the path coverage achieved. 
until at least 90 per cent path coverage is achieved. 

10.6.7 Data Flow-based Testing 

Data  flow  based  testing  method  selects  test  paths  of  a  program 

according to the definitions and uses of different variables in a program. 

Consider a program P . For a statement numbered S of P , let 

DEF(S) = {X /statement S contains a definition of X } and 

USES(S)= {X /statement S contains a use of X } 

For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}. The definition 
of variable X at statement S is said to be live at statement S1 , if there exists 
a path from statement S to statement S1 which does not contain any 
definition of X . 

All definitions criterion is a test coverage criterion that requires that an 
adequate test set should cover all definition occurrences in the sense that, for 
each definition occurrence, the testing paths should cover a path through 
which the definition reaches a use of the definition. All use criterion requires 
that all uses of a definition should be covered. Clearly, all-uses criterion is 
stronger than all-definitions criterion. An even stronger criterion is all 
definition-use-paths criterion, which requires the coverage of all possible 
definition-use paths that either are cycle-free or have only simple cycles. A 
simple cycle is a path in which only the end node and the start node are the 
same. 

10.6.8 Mutation Testing 

All white-box testing strategies that we have discussed so far, are 
coverage-based testing techniques. In contrast, mutation testing is a 
fault-based testing technique in the sense that mutation test cases are 
designed to help detect specific types of faults in a program. In 
mutation testing, a program is first tested by using an initial test suite 
designed by using various white box testing strategies that we have 
discussed. After the initial testing is complete, mutation testing can be 
taken up. 

The idea behind mutation testing is to make a few arbitrary changes to a 
program at a time. Each time the program is changed, it is called a mutated 



 

 

 

 

program and the change effected is called a mutant. An underlying 
assumption behind mutation testing is that all programming errors can be 

expressed as a combination of simple errors. A mutation operator makes 
specific changes to a program. For example, one mutation operator may 
randomly delete a program statement. A mutant may or may not cause an 
error in the program. If a mutant does not introduce any error in the program, 
then the original program and the mutated program are called equivalent 
programs. 

10.7 DEBUGGING 

After a failure has been detected, it is necessary to first identify the 
program statement(s) that are in error and are responsible for the 
failure, the error can then be fixed. In this Section, we shall summarise 
the important approaches that are available to identify the error 
locations. Each of these  approaches has its own advantages 
anddisadvantages and therefore each will be useful in appropriate 
circumstances. We also provide some guidelines for effective 
debugging. 

10.7.1 Debugging Approaches 

The following are some of the approaches that are popularly adopted by 
the programmers for debugging: 

Brute force method 

This is the most common method of debugging but is the least efficient 
method. In this approach, print statements are inserted throughout the 
program to print the intermediate values with the hope that some of 
the printed values will help to identify the statement in error. This 
approach becomes more systematic with the use of a symbolic 
debugger (also called a source code debugger ), because values of 
different variables can be easily checked and break points and watch 
points can be easily set to test the values of variables effortlessly. 
Single stepping using a symbolic debugger is another form of this 
approach, where the developer mentally computes the expected result 
after every source instruction and checks whether the same is 
computed by single stepping through the program. 

Backtracking 



 

 

 

 

This is also a fairly common approach. In this approach, starting from the 
statement at which an error symptom has been observed, the source 
code is traced backwards until the error is discovered. Unfortunately, as 
the number of source lines to be traced back increases, the number of 
potential backward paths increases and may become unmanageably 
large for complex programs, limiting the use of this approach. 

Cause elimination method 

In this approach, once a failure is observed, the symptoms of the failure 
(i.e., certain variable is having a negative value though it should be 
positive, etc.) are noted. Based on the failure symptoms, the causes 
which could possibly have contributed to the symptom is developed and 
tests are conducted to eliminate each. A related technique of 
identification of the error from the error symptom is the software fault 
tree analysis. 

Program slicing 

This technique is similar to back tracking. In the backtracking approach, 
one often has to examine a large number of statements. However, the 
search space is reduced by defining slices. A slice of a program for a 
particular variable and at a particular statement is the set of source 
lines preceding this statement that can influence the value of that 
variable [Mund2002]. Program slicing makes use of the fact that an 
error in the value of a variable can be caused by the statements on 
which it is data dependent. 

10.7.2 Debugging Guidelines 

Debugging is often carried out by programmers based on their ingenuity 
and experience. The following are some general guidelines for effective 
debugging: 

 Many times debugging requires a thorough understanding of the 
program design. Trying to debug based on a partial understanding of 
the program design may require an inordinate amount of effort to be 
put into debugging even for simple problems. 

 Debugging may sometimes even require full redesign of the system. In 
such cases, a common mistakes that novice programmers often make 
is attempting not to fix the error but its symptoms. 

 One must be beware of the possibility that an error correction may 



 

 

 

 

introduce new errors. Therefore after every round of error-fixing, 
regression testing (see Section 10.13) must be carried out. 

10.8 INTEGRATION TESTING 

Integration testing is carried out after all (or at least some of ) the modules 
have been unit tested. Successful completion of unit testing, to a large 
extent, ensures that the unit (or module) as a whole works satisfactorily. In 
this context, the objective of integration testing is to detect the errors at the 
module interfaces (call parameters). For example, it is checked that no 
parameter mismatch occurs when one module invokes the functionality of 
another module. Thus, the primary objective of integration testing is to test 
the module interfaces, i.e., there are no errors in parameter passing, when 
one module invokes the functionality of another module. During integration 
testing, different modules of a system are integrated in a planned manner 
using an integration plan. The integration plan specifies the steps and the 
order in which modules are combined to realise the full system. After each 
integration step, the partially integrated system is tested. 

An important factor that guides the integration plan is the module 
dependency graph. 

We have already discussed in Chapter 6 that a structure chart (or module 
dependency graph) specifies the order in which different modules call each 
other. Thus, by examining the structure chart, the integration plan can be 
developed. Any one (or a mixture) of the following approaches can be used to 
develop the test plan: 

  Big-bang approach to integration testing 
 Top-down approach to integration testing 
  Bottom-up approach to integration testing 
  Mixed (also called sandwiched ) approach to integration testing 

In the following subsections, we provide an overview of these approaches 
to integration testing. 

Big-bang approach to integration testing 

Big-bang testing is the most obvious approach to integration testing. In 
this approach, all the modules making up a system are integrated in a 
single step. In simple words, all the unit tested modules of the system 
are simply linked together and tested. However, this technique can 
meaningfully be used only for very small systems. The main problem 



 

 

 

 

with this approach is that once a failure has been detected during 
integration testing, it is very difficult to localise the error as the error 
may potentially lie in any of the modules. Therefore, debugging errors 
reported during big-bang integration testing are very expensive to fix. 
As a result, big-bang integration testing is almost never used for large 
programs. 

Bottom-up approach to integration testing 

Large software products are often made up of several subsystems. A 
subsystem might consist of many modules which communicate among 
each other through well-defined interfaces. In bottom-up integration 
testing, first the modules for the each subsystem are integrated. Thus, 
the subsystems can be integrated separately and independently. 

The primary purpose of carrying out the integration testing a subsystem is 
to test whether the interfaces among various modules making up the 
subsystem work satisfactorily. The test cases must be carefully chosen to 
exercise the interfaces in all possible manners. 

In a pure bottom-up testing no stubs are required, and only test-drivers are 
required. Large software systems normally require several levels of 
subsystem testing, lower-level subsystems are successively combined to form 
higher-level subsystems. The principal advantage of bottom- up integration 
testing is that several disjoint subsystems can be tested simultaneously. 
Another advantage of bottom-up testing is that the low-level modules get 
tested thoroughly, since they are exercised in each integration step. Since the 
low-level modules do I/O and other critical functions, testing the low-level 
modules thoroughly increases the reliability of the system. A disadvantage of 
bottom-up testing is the complexity that occurs when the system is made up 
of a large number of small subsystems that are at the same level. This 
extreme case corresponds to the big-bang approach. 

Top-down approach to integration testing 

Top-down integration testing starts with the root module in the structure 
chart and one or two subordinate modules of the root module. After the 
top-level ‘skeleton’ has been tested, the modules that are at the 
immediately lower layer of the ‘skeleton’ are combined with it and 
tested. Top-down integration testing approach requires the use of 
program stubs to simulate the effect of lower-level routines that are 
called by the routines under test. A pure top-down integration does not 



 

 

 

 

require any driver routines. An advantage of top-down integration 
testing is that it requires writing only stubs, and stubs are simpler to 
write compared to drivers. A disadvantage of the top-down integration 
testing approach is that in the absence of lower-level routines, it 
becomes difficult to exercise the top-level routines in the desired 
manner since the lower level routines usually perform input/output 
(I/O) operations. 

Mixed approach to integration testing 

The mixed (also called sandwiched ) integration testing follows a 
combination of top-down and bottom-up testing approaches. In top- 
down approach, testing can start only after the top-level modules have 
been coded and unit tested. Similarly, bottom-up testing can start only 

after the bottom level modules are ready. The mixed approach 
overcomes this shortcoming of the top-down and bottom-up 
approaches. In the mixed testing approach, testing can start as and 
when modules become available after unit testing. Therefore, this is 
one of the most commonly used integration testing approaches. In this 
approach, both stubs and drivers are required to be designed. 

10.8.1 Phased versus Incremental Integration Testing 

Big-bang integration testing is carried out in a single step of integration. 
In contrast, in the other strategies, integration is carried out over 
several steps. In these later strategies, modules can be integrated 
either in a phased or incremental manner. A comparison of these two 
strategies is as follows: 

 In incremental integration testing, only one new module is added to 
the partially integrated system each time. 

 In phased integration, a group of related modules are added to the 
partial system each time. 

Obviously, phased integration requires less number of integration steps 
compared to the incremental integration approach. However, when failures 
are detected, it is easier to debug the system while using the incremental 
testing approach since the errors can easily be traced to the interface of the 
recently integrated module. Please observe that a degenerate case of the 
phased integration testing approach is big-bang testing. 



 

 

 

 

10.9 TESTING OBJECT-ORIENTED PROGRAMS 

During the initial years of object-oriented programming, it was believed 
that object-orientation would, to a great extent, reduce the cost and 
effort incurred on testing. This thinking was based on the observation 
that object-orientation incorporates several good programming features 
such as encapsulation, abstraction, reuse through inheritance, 
polymorphism, etc., thereby chances of errors in the code is minimised. 
However, it was soon realised that satisfactory testing object-oriented 
programs is much more difficult and requires much more cost and effort 
as compared to testing similar procedural programs. The main reason 
behind this situation is that various object-oriented features introduce 
additional complications and scope of new types of bugs that 
arepresent in procedural programs. Therefore additional test cases are 
needed to be designed to detect these. We examine these issues as 
well as some other basic issues in testing object-oriented programs in 
the following subsections. 

10.9.1 What is a Suitable Unit for Testing 

Object-oriented Programs? 

For procedural programs, we had seen that procedures are the basic units of 
testing. That is, first all the procedures are unit tested. Then various tested 
procedures are integrated together and tested. Thus, as far as procedural 
programs are concerned, procedures are the basic units of testing. Since 
methods in an object-oriented program are analogous to procedures in a 
procedural program, can we then consider the methods of object-oriented 
programs as the basic unit of testing? Weyuker studied this issue and 
postulated his anticomposition axiom as follows: 

 

The main intuitive justification for the anticomposition axiom is the 
following. A method operates in the scope of the data and other methods of 
its object. That is, all the methods share the data of the class. Therefore, it is 
necessary to test a method in the context of these. Moreover, objects can 
have significant number of states. The behaviour of a method can be different 
based on the state of the corresponding object. Therefore, it is not enough to 
test all the methods and check whether they can be integrated satisfactorily. 
A method has to be tested with all the other methods and data of the 

Adequate testing of individual methods does not ensure that a class has been 
satisfactorily tested. 



 

 

 

 

corresponding object. Moreover, a method needs to be tested at all the 
states that the object can assume. As a result, it is improper to consider a 
method as the basic unit of testing an object-oriented program. 

 

Thus, in an object oriented program, unit testing would mean testing each 
object in isolation. During integration testing (called cluster testing in the 
object-oriented testing literature) various unit tested objects are integrated 
and tested. Finally, system-level testing is carried out. 

10.9.2 Do Various Object-orientation Features Make 
Testing Easy? 

In this section, we discuss the implications of different object-orientation 
features in testing. 

Encapsulation: We had discussed in Chapter 7 that the encapsulation 
feature helps in data abstraction, error isolation, and error prevention. 
However, as far as testing is concerned, encapsulation is not an obstacle to 
testing, but leads to difficulty during debugging. Encapsulation prevents the 
tester from accessing the data internal to an object. Of course, it is possible 
that one can require classes to support state reporting methods to print out 
all the data internal to an object. Thus, the encapsulation feature though 
makes testing difficult, the difficulty can be overcome to some extent through 
use of appropriate state reporting methods. 

Inheritance: The inheritance feature helps in code reuse and was expected 
to simplify testing. It was expected that if a class is tested thoroughly, then 
the classes that are derived from this class would need only incremental 
testing of the added features. However, this is not the case. 

 

The reason for this is that the inherited methods would work in a new 
context (new data and method definitions). As a result, correct behaviour of a 
method at an upper level, does not guarantee correct behaviour at a lower 
level. Therefore, retesting of inherited methods needs to be followed as a 
rule, rather as an exception. 

Dynamic binding: Dynamic binding was introduced to make the code 
compact, elegant, and easily extensible. However, as far as testing is 
concerned all possible bindings of a method call have to be identified and 
tested. This is not easy since the bindings take place at run-time. 

Object states: In contrast to the procedures in a procedural program, 

An object is the basic unit of testing of object-oriented programs. 



 

 

 

 

objects store data permanently. As a result, objects do have significant 
states. The behaviour of an object is usually different in different states. That 
is, some methods may not be active in some of its states. Also, a method 
may act differently in different states. For example, when a book has been 
issued out in a library information system, the book reaches the issuedOut 
state. In this state, if the issue method is invoked, then it may not exhibit its 
normal behaviour. 

In view of the discussions above, testing an object in only one of its states 
is not enough. The object has to be tested at all its possible states. Also, 

whether all the transitions between states (as specified in the object model) 
function properly or not should be tested. Additionally, it needs to be tested 
that no extra (sneak) transitions exist, neither are there extra states present 
other than those defined in the state model. For state-based testing, it is 
therefore beneficial to have the state model of the objects, so that the 
conformance of the object to its state model can be tested. 

10.9.3 Why are Traditional Techniques Considered Not 
Satisfactory for Testing Object-oriented Programs? 

We have already seen that in traditional procedural programs, 
procedures are the basic unit of testing. In contrast, objects are the 
basic unit of testing for object-oriented programs. Besides this, there 
are many other significant differences as well between testing 
procedural and object-oriented programs. For example, statement 
coverage-based testing which is popular for testing procedural programs 
is not meaningful for object-oriented programs. The reason is that 
inherited methods have to be retested in the derived class. In fact, the 
different object- oriented features (inheritance, polymorphism, dynamic 
binding, state-based behaviour, etc.) require special test cases to be 
designed compared to the traditional testing as discussed in Section 

10.11.4. The various object-orientation features are explicit in the 
design models, and it is usually difficult to extract from and analysis of 
the source code. As a result, the design model is a valuable artifact for 
testing object-oriented programs. Test cases are designed based on the 
design model. Therefore, this approach is considered to be intermediate 
between a fully white-box and a fully black-box approach, and is called 
a grey-box approach. Please note that grey-box testing is considered 
important for object-oriented programs. This is in contrast to testing 
procedural programs. 



 

 

 

 

10.9.4 Grey-Box Testing of Object-oriented Programs 

As we have already mentioned, model-based testing is important for object- 
oriented programs, as these test cases help detect bugs that are specific to 
the object-orientation constructs.The following are some important types of 
grey-box testing that can be carried on based on UML models: 

State-model-based testing 

State coverage: Each method of an object are tested at each state of 
the object. 

State transition coverage: It is tested whether all transitions depicted in 
the state model work satisfactorily. 

State transition path coverage: All transition paths in the state model are 
tested. 

Use case-based testing 

Scenario coverage: Each use case typically consists of a mainline 
scenario and several alternate scenarios. For each use case, the 
mainline and all alternate sequences are tested to check if any errors 
show up. 

Class diagram-based testing 

Testing derived classes: All derived classes of the base class have to 
be instantiated and tested. In addition to testing the new methods 
defined in the derivec. lass, the inherited methods must be retested. 

Association testing: All association relations are tested. 

Aggregation testing: Various aggregate objects are created and tested. 

Sequence diagram-based testing 

Method coverage: All methods depicted in the sequence diagrams are 
covered. Message path coverage: All message paths that can be 
constructed from the sequence diagrams are covered. 

10.9.5 Integration Testing of Object-oriented Programs 

There are two main approaches to integration testing of object-oriented 
programs: 

• Thread-based 

• Use based 



 

 

 

 

Thread-based approach: In this approach, all classes that need to 
collaborate to realise the behaviour of a single use case are integrated and 
tested. After all the required classes for a use case are integrated and tested, 

another use case is taken up and other classes (if any) necessary for 
execution of the second use case to run are integrated and tested. This is 
continued till all use cases have been considered. 

Use-based approach: Use-based integration begins by testing classes that 
either need no service from other classes or need services from at most a few 
other classes. After these classes have been integrated and tested, classes 
that use the services from the already integrated classes are integrated and 
tested. This is continued till all the classes have been integrated and tested. 

10.9.6 Smoke Testing 

Smoke testing is carried out before initiating system testing to ensure 
that system testing would be meaningful, or whether many parts of the 
software would fail. The idea behind smoke testing is that if the 
integrated program cannot pass even the basic tests, it is not ready for 
a vigorous testing. For smoke testing, a few test cases are designed to 
check whether the basic functionalities are working. For example, for a 
library automation system, the smoke tests may check whether books 
can be created and deleted, whether member records can be created 
and deleted, and whether books can be loaned and returned. 

10.10 SOME GENERAL ISSUES ASSOCIATED WITH TESTING 

In this section, we shall discuss two general issues associated with 
testing. These are—how to document the results of testing and how to 
perform regression testing. 

Test documentation 

A piece of documentation that is produced towards the end of testing is 
the test summary report. This report normally covers each subsystem 
and represents a summary of tests which have been applied to the 
subsystem and their outcome. It normally specifies the following: 

  What is the total number of tests that were applied to a subsystem. 
 Out of the total number of tests how many tests were successful. 
 How many were unsuccessful, and the degree to which they were 
unsuccessful, e.g., whether a test was an outright failure or whether 



 

 

 

 

some of the expected results of the test were actually observed. 

Regression testing 

Regression testing spans unit, integration, and system testing. Instead, it 
is a separate dimension to these three forms of testing. Regression 
testing is the practice of running an old test suite after each change to 
the system or after each bug fix to ensure that no new bug has been 
introduced due to the change or the bug fix. However, if only a few 
statements are changed, then the entire test suite need not be run — 
only those test cases that test the functions and are likely to be 
affected by the change need to be run. Whenever a software is changed 
to either fix a bug, or enhance or remove a feature, regression testing is 
carried out. 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 



 

 

 

 

SOFTWARE RELIABILITY AND 

QUALITY MANAGEMENT 

 

 

11.1 SOFTWARE RELIABILITY 

The reliability of a software product essentially denotes its trustworthiness 

or dependability. Alternatively, the reliability of a software product can 

also be defined as the probability of the product working “correctly” 

over a given period of time. 

Intuitively, it is obvious that a software product having a large number of 
defects is unreliable. It is also very reasonable to assume that the reliability 
of a system improves, as the number of defects in it is reduced. It would have 
been very nice if we could mathematically characterise this relationship 
between reliability and the number of bugs present in the system using a 
simple closed form expression. Unfortunately, it is very difficult to 
characterise the observed reliability of a system in terms of the number of 
latent defects in the system using a simple mathematical expression. To get 
an insight into this issue, consider the following. Removing errors from those 
parts of a software product that are very infrequently executed, makes little 
difference to the perceived reliability of the product. It has been 
experimentally observed by analysing the behaviour of a large number of 
programs that 90 per cent of the execution time of a typical program is spent 
in executing only 10 per cent of the instructions in the program. The most used 

10 per cent instructions are often called the core1 of a program. The rest 90 

per cent of the program statements are called non-core and are on the 

average executed only for 10 per cent of the total execution time. It therefore 
may not be very surprising to note that removing 60 per cent product defects 
from the least used parts of a system would typically result in only 3 per cent 
improvement to the product reliability. It is clear that the qua ntity by which 
the overall reliability of a program improves due to the correction of a single 
error depends on how frequently the instruction having the error is executed. 
If an error is removed from an instruction that is frequently executed (i.e., 



 

 

 

 

belonging to the core of the program), then this would show up as a large 
improvement to the reliability figure. On the other hand, removing errors 
from parts of the program that are rarely used, may not cause any 
appreciable change to the reliability of the product. 

Based on the above discussion we can say that reliability of a product 
depends not only on the number of latent errors but also on the the exact 
location of the errors. Apart from this, reliability also depends upon how the 
product is used, or on its execution profile. If the users execute only those 

features of a program that are “correctly” implemented, none of the errors 
will be exposed and the perceived reliability of the product will be high.  

On the other hand, if only those functions of the software which contain 
errors are invoked, then a large number of failures will be observed and the 
perceived reliability of the system will be very low. Different categories of 
users of a software product typically execute different functions of a software 
product.  

Based on the above discussions, we can summarise the main reasons that 
make software reliability more difficult to measure than hardware reliability: 

  The reliability improvement due to fixing a single bug depends on 
where the bug is located in the code. 

  The perceived reliability of a software product is observer-dependent. 

 The reliability of a product keeps changing as errors are detected and 
fixed. 

In the following subsection, we shall discuss why software reliability 
measurement is a harder problem than hardware reliability measurement. 

11.1.1 Hardware versus Software Reliability 

An important characteristic feature that sets hardware and software reliability 
issues apart is the difference between their failure patterns. 



 

 

 

 

 

 

A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To fix a 
hardware fault, one has to either replace or repair the failed part. In contrast, 
a software product would continue to fail until the error is tracked down and 
either the design or the code is changed to fix the bug.  

A comparison of the changes in failure rate over the product life time for a 
typical hardware product as well as a software product are sketched in Figure 
11.1. Observe that the plot of change of reliability with time for a hardware 
component (Figure 11.1(a)) appears like a “bath tub”. For a software 
component the failure rate is initially high, but decreases as the faulty 
components identified are either repaired or replaced.  
The system then enters its useful life, where the rate of failure is almost 
constant. After some time (called product life time ) the major components 
wear out, and the failure rate increases. The initial failures are usually covered 
through manufacturer’s warranty.  
In contrast to the hardware products, the software product show the highest 
failure rate just after purchase and installation (see the initial portion of the 
plot in Figure 11.1 (b)). As the system is used, more and more errors are 
identified and removed resulting in reduced failure rate. This error removal 
continues at a slower pace during the useful life of the product. As the 
software becomes obsolete no more error correction occurs and the failure 
rate remains unchanged. 

 

 

Figure 11.1: Change in failure rate of a product. 

11.1.2 Reliability Metrics of Software Products 

The reliability requirements for different categories of software products 
may be different. For this reason, it is necessary that the level of 
reliability required for a software product should be specified in the 



 

 

 

 

software requirements specification (SRS) document. In order to be 
able to do this, we need some metrics to quantitatively express the 
reliability of a software product. A good reliability measure should be 
observer-independent, so that different people can agree on the degree 
of reliability a system has. However, in practice, it is very difficult to 
formulate a metric using which precise reliability measurement would 
be possible. In the absence of such measures, we discuss six metrics 
that correlate with reliability as follows: 

Rate of occurrence of failure (ROCOF): ROCOF measures the frequency 
of occurrence of failures. ROCOF measure of a software product can be 
obtained by observing the behaviour of a software product in operation over 
a specified time interval and then calculating the ROCOF value as the ratio of 
the total number of failures observed and the duration of observation.  

Mean time to failure (MTTF): MTTF is the time between two successive 
failures, averaged over a large number of failures. To measure MTTF, we can 
record the failure data for n failures. Let the failures occur at the time 

instants t1, t2, ..., tn. Then, MTTF can be calculated as 

. 

It is important to note that only run time is considered in the time 
measurements. That is, the time for which the system is down to fix the 
error, the boot time, etc. are not taken into account in the time 
measurements and the clock is stopped at these times. 

Mean time to repair (MTTR): Once failure occurs, some time is required to 
fix the error. MTTR measures the average time it takes to track the errors 
causing the failure and to fix them. 

Mean time between failure (MTBF): The MTTF and MTTR metrics can be 
combined to get the MTBF metric: MTBF=MTTF+MTTR. Thus, MTBF of 300 
hours indicates that once a failure occurs, the next failure is expected after 
300 hours. In this case, the time measurements are real time and not the 
execution time as in MTTF 

Probability of failure on demand (POFOD): Unlike the other metrics 
discussed, this metric does not explicitly involve time measurements. POFOD 
measures the likelihood of the system failing when a service request is made.  

Availability: Availability of a system is a measure of how likely would the 
system be available for use over a given period of time. This metric not only 
considers the number of failures occurring during a time interval, but also 



 

 

 

 

takes into account the repair time (down time) of a system when a failure 
occurs. This metric is important for systems such as telecommunication 
systems, and operating systems, and embedded controllers, etc.  

11.1.3 Reliability Growth Modelling 

A reliability growth model is a mathematical model of how software reliability 
improves as errors are detected and repaired. 

 

Although several different reliability growth models have been proposed, in 
this text we will discuss only two very simple reliability growth models. 
 

Jelinski and Moranda model 

The simplest reliability growth model is a step function model where it is 
assumed that the reliability increases by a constant increment each 
time an error is detected and repaired. Such a model is shown in Figure 
11.2. However, this simple model of reliability which implicitly assumes 
that all errors contribute equally to reliability growth, is highly 
unrealistic since we already know that correction of different errors 
contribute differently to reliability growth. 

 

Figure 11.2: Step function model of reliability growth. 

Littlewood and Verall’s model 

This model allows for negative reliability growth to reflect the fact that 
when a repair is carried out, it may introduce additional errors. It also 
models the fact that as errors are repaired, the average improvement 
to the product reliability per repair decreases. It treats an error’s 
contribution to reliability improvement to be an independent random 
variable having Gamma distribution. This distribution models the fact 



 

 

 

 

that error corrections with large contributions to reliability growth are 
removed first. This represents diminishing return as test continues. 

There are more complex reliability growth models, which give more 
accurate approximations to the reliability growth. However, these models are 
out of scope of this text. 

11.2 SOFTWARE QUALITY 

Traditionally, the quality of a product is defined in terms of its fitness of 
purpose. That is, a good quality product does exactly what the users 
want it to do, since for almost every product, fitness of purpose is 
interpreted in terms of satisfaction of the requirements laid down in the 
SRS document.  

Although “fitness of purpose” is a satisfactory definition of quality for 
many products such as a car, a table fan, a grinding machine, etc.—
“fitness of purpose” is not a wholly satisfactory definition of quality for 
software products.  

Unlike hardware products, software lasts a long time, in the sense that it 
keeps evolving to accommodate changed circumstances. The modern view of 
a quality associates with a software product several quality factors (or 
attributes) such as the following: 

Portability: A software product is said to be portable, if it can be easily 

made to work in different hardware and operating system environments, and 
easily interface with external hardware devices and software products. 

Usability: A software product has good usability, if different categories of 
users (i.e., both expert and novice users) can easily invoke the functions of 
the product. 

Reusability: A software product has good reusability, if different modules of 
the product can easily be reused to develop new products. 

Correctness: A software product is correct, if different requirements as 
specified in the SRS document have been correctly implemented. 

Maintainability: A software product is maintainable, if errors can be easily 
corrected as and when they show up, new functions can be easily added to 
the product, and the functionalities of the product can be easily modified, etc. 

 



 

 

 

 

11.3 SOFTWARE QUALITY MANAGEMENT SYSTEM 

A quality management system (often referred to as quality system) is 
the principal methodology used by organisations to ensure that the 
products they develop have the desired quality. In the following 
subsections, we briefly discuss some of the important issues associated 
with a quality system: 

Managerial structure and individual responsibilities 

A quality system is the responsibility of the organisation as a whole. 
However, every organisation has a separate quality department to 
perform several quality system activities. The quality system of an 
organisation should have the full support of the top management. 
Without support for the quality system at a high level in a company, few 
members of staff will take the quality system seriously. 

Quality system activities 

The quality system activities encompass the following: 

  Auditing of projects to check if the processes are being followed. 

  Collect process and product metrics and analyse them to check if 
quality goals are being met. 

  Review of the quality system to make it more effective. 
 Development of standards, procedures, and guidelines. 
 Produce reports for the top management summarising the 

effectiveness of the quality system in the organisation. 

A good quality system must be well documented. Without a properly 
documented quality system, the application of quality controls and 
procedures become ad hoc, resulting in large variations in the quality of the 
products delivered. Also, an undocumented quality system sends clear 
messages to the staff about the attitude of the organisation towards quality 
assurance. International standards such as ISO 9000 provide guidance on 
how to organise a quality system. 

11.3.1 Evolution of Quality Systems 

Quality systems have rapidly evolved over the last six decades. Prior to World 
War II, the usual method to produce quality products was to inspect the 
finished products to eliminate defective products. Since that time, quality 



 

 

 

 

systems of organisations have undergone four stages of evolution as shown in 
Figure 11.3. The initial product inspection method gave way to quality control 
(QC) principles. 

 
 

 

 

Figure 11.3: Evolution of quality system and corresponding shift in the quality paradigm. 

Thus, quality control aims at correcting the causes of errors and not just 
rejecting the defective products. The next breakthrough in quality systems, 
was the development of the quality assurance (QA) principles. 

 

The modern quality assurance paradigm includes guidance for recognising, 
defining, analysing, and improving the production process. Total quality 
management (TQM) advocates that the process followed by an organisation 
must continuously be improved through process measurements. TQM goes a 
step further than quality assurance and aims at continuous process 
improvement. TQM goes beyond documenting processes to optimising them 
through redesign.  

A term related to TQM is business process re-engineering (BPR), which is 
aims at re-engineering the way business is carried out in an organisation, 
whereas our focus in this text is re-engineering of the software development 
process. From the above discussion, we can say that over the l a st six 
decades or so, the quality paradigm has shifted from product assurance to 
process assurance (see Figure 11.3). 



 

 

 

 

11.3.2 Product Metrics versus Process Metrics 

All modern quality systems lay emphasis on collection of certain product and 
process metrics during product development. Let us first understand the basic 
differences between product and process metrics. 

 

Examples of product metrics are LOC and function point to measure size, 
PM (person- month) to measure the effort required to develop it, months to 
measure the time required to develop the product, time complexity of the 
algorithms, etc. Examples of process metrics are review effectiveness, 
average number of defects found per hour of inspection, average defect 
correction time, productivity, average number of failures detected during 
testing per LOC, number of latent defects per line of code in the developed 
product. 

11.4 ISO 9000 

International standards organisation (ISO) is a consortium of 63 
countries established to formulate and foster standardisation. ISO 
published its 9000 series of standards in 1987. 

11.4.1 What is ISO 9000 Certification? 

ISO 9000 certification serves as a reference for contract between 
independent parties. In particular, a company awarding a development 
contract can form his opinion about the possible vendor performance 
based on whether the vendor has obtained ISO 9000 certification or 
not. In this context, the ISO 9000 standard specifies the guidelines for 
maintaining a quality system.  

We have already seen that the quality system of an organisation applies 
to all its activities related to its products or services. The ISO standard 
addresses both operational aspects (that is, the process) and 
organisational aspects such as responsibilities, reporting, etc.  

ISO 9000 is a series of three standards—ISO 9001, ISO 9002, and ISO 

9003. 
 

The types of software companies to which the different ISO standards apply 
are as follows: 

ISO 9001: This standard applies to the organisations engaged in design, 
development, production, and servicing of goods. This is the standard that is 
applicable to most software development organisations. 



 

 

 

 

ISO 9002: This standard applies to those organisations which do not design 
products but are only involved in production. Examples of this category of 
industries include steel and car manufacturing industries who buy the product 
and plant designs from external sources and are involved in only 
manufacturing those products. Therefore, ISO 9002 is not applicable to 
software development organisations. 

ISO 9003: This standard applies to organisations involved only in 
installation and testing of products. 

11.4.2 ISO 9000 for Software Industry 

ISO 9000 is a generic standard that is applicable to a large gamut of 
industries, starting from a steel manufacturing industry to a service 
rendering company. Therefore, many of the clauses of the ISO 9000 
documents are written using generic terminologies and it is very difficult 
to interpret them in the context of software development organisations. 
An important reason behind such a situation is the fact that software 
development is in many respects radically different from the 
development of other types of products. Two major differences between 
software development and development of other kinds of products are 
as follows: 

 Software is intangible and therefore difficult to control. It means that 
software would not be visible to the user until the development is 
complete and the software is up and running. It is difficult to control 
and manage anything that you cannot see and feel. In contrast, in any 
other type of product manufacturing such as car manufacturing, you 
can see a product being developed through various stages such as 
fitting  engine,  fitting  doors,  etc.  Therefore,  it  becomes  easy  to 



 

 

 

 

accurately determine how much work has been completed and to 
estimate how much more time will it take. 

 During software development, the only raw material consumed is data. 
In contrast, large quantities of raw materials are consumed during the 
development of any other product. As an example, consider a steel 
making company. The company would consume large amounts of raw 
material such as iron-ore, coal, lime, manganese, etc. Not surprisingly 
then, many clauses of ISO 9000 standards are concerned with raw 
material control. These clauses are obviously not relevant for software 
development organisations. 

11.4.3 Why Get ISO 9000 Certification? 

There is a mad scramble among software development organisations for 
obtaining ISO certification due to the benefits it offers. Let us examine 
some of the benefits that accrue to organisations obtaining ISO 
certification: 

 Confidence of customers in an organisation increases when the 
organisation qualifies for ISO 9001 certification. This is especially true 
in the international market. In fact, many organisations awarding 
international software development contracts insist that the 
development organisation have ISO 9000 certification. For this reason, 
it is vital for software organisations involved in software export to 
obtain ISO 9000 certification. 

 ISO 9000 requires a well-documented software production process to 
be in place. A well- documented software production process 
contributes to repeatable and higher quality of the developed software. 

 ISO 9000 makes the development process focused, efficient, and cost- 
effective. 



 

 

 

 

 ISO 9000 certification points out the weak points of an organisations 
and recommends remedial action. 

 ISO 9000 sets the basic framework for the development of an optimal 
process and TQM. 

11.4.4 How to Get ISO 9000 Certification? 

An organisation intending to obtain ISO 9000 certification applies to a 
ISO 9000 registrar for registration. The ISO 9000 registration process 
consists of the following stages: 

Application stage: Once an organisation decides to go for ISO 9000 
certification, it applies to a registrar for registration. 

Pre-assessment: During this stage the registrar makes a rough assessment 
of the organisation. 

Document review and adequacy audit: During this stage, the registrar 
reviews the documents submitted by the organisation and makes suggestions 
for possible improvements. 

Compliance audit: During this stage, the registrar checks whether the 
suggestions made by it during review have been complied to by the 
organisation or not. 

Registration: The registrar awards the ISO 9000 certificate after successful 
completion of all previous phases. 

Continued surveillance: The registrar continues monitoring the 
organisation periodically. 

 

This is probably due to the fact that the ISO 9000 certificate is issued for an 
organisation’s process and not to any specific product of the organisation. An 
organisation using ISO certificate for product advertisements faces the risk of 
withdrawal of the certificate. In India, ISO 9000 certification is offered by BIS 
(Bureau of Indian Standards), STQC (Standardisation, testing, and quality 
control), and IRQS (Indian Register Quality System). IRQS has been 
accredited by the Dutch council of certifying bodies (RVC). 

11.4.5 Summary of ISO 9001 Requirements 

A summary of the main requirements of ISO 9001 as they relate of 



 

 

 

 

software development are as follows: 
Section numbers in brackets correspond to those in the standard itself: 

Management responsibility (4.1) 

  The management must have an effective quality policy. 

 The responsibility and authority of all those whose work affects quality 
must be defined and documented. 

 A management representative, independent of the development 
process, must be responsible for the quality system. This requirement 
probably has been put down so that the person responsible for the 
quality system can work in an unbiased manner. 

 The effectiveness of the quality system must be periodically reviewed 
by audits. 

Quality system (4.2) 

A quality system must be maintained and documented. 

Contract reviews (4.3) 

Before entering into a contract, an organisation must review the contract 
to ensure that it is understood, and that the organisation has the 
necessary capability for carrying out its obligations. 

Design control (4.4) 

 The design process must be properly controlled, this includes 
controlling coding also. This requirement means that a good 
configuration control system must be in place. 

 Design inputs must be verified as adequate. 
 Design must be verified. 
 Design output must be of required quality. 
 Design changes must be controlled. 

Document control (4.5) 

 There must be proper procedures for document approval, issue and 
removal. 

 Document changes must be controlled. Thus, use of some 
configuration management tools is necessary. 



 

 

 

 

Purchasing (4.6) 

Purchased material, including bought-in software must be checked for 
conforming to requirements. 

Purchaser supplied product (4.7) 

Material supplied by a purchaser, for example, client-provided software 
must be properly managed and checked. 

Product identification (4.8) 

The product must be identifiable at all stages of the process. In software 
terms this means configuration management. 

Process control (4.9) 

  The development must be properly managed. 
  Quality requirement must be identified in a quality plan. 

Inspection and testing (4.10) 

In software terms this requires effective testing i.e., unit testing, 
integration testing and system testing. Test records must be 
maintained. 

Inspection, measuring and test equipment (4.11) 

If integration, measuring, and test equipments are used, they must be 
properly maintained and calibrated. 

Inspection and test status (4.12) 

The status of an item must be identified. In software terms this implies 
configuration management and release control. 

Control of non-conforming product (4.13) 

In software terms, this means keeping untested or faulty software out of 
the released product, or other places whether it might cause damage. 

Corrective action (4.14) 

This requirement is both about correcting errors when found, and also 
investigating why the errors occurred and improving the process to 
prevent occurrences. If an error occurs despite the quality system, the 



 

 

 

 

system needs improvement. 

Handling (4.15) 

This clause deals with the storage, packing, and delivery of the software 
product. 

Quality records (4.16) 

Recording the steps taken to control the quality of the process is 
essential in order to be able to confirm that they have actually taken 
place. 

Quality audits (4.17) 

Audits of the quality system must be carried out to ensure that it is 
effective. 

Training (4.18) 

Training needs must be identified and met. 

Various ISO 9001 requirements are largely common sense. Official guidance 
on the 

interpretation of ISO 9001 is inadequate at the present time, and taking 
expert advice is usually worthwhile. 

11.4.6 Salient Features of ISO 9001 Requirements 

In subsection 11.5.5 we pointed out the various requirements for the ISO 
9001 certification. We can summarise the salient features all the the 
requirements as follows: 

Document control: All documents concerned with the development of a 
software product should be properly managed, authorised, and controlled. 
This requires a configuration management system to be in place. 

Planning: Proper plans should be prepared and then progress against these 
plans should be monitored. 

Review: Important documents across all phases should be independently 
checked and reviewed for effectiveness and correctness. 

Testing: The product should be tested against specification. 

Organisational aspects: Several organisational aspects should be 
addressed e.g., management reporting of the quality team. 



 

 

 

 

11.4.7 ISO 9000-2000 

ISO revised the quality standards in the year 2000 to fine tune the 
standards. The major changes include a mechanism for continuous 
process improvement. There is also an increased emphasis on the role 
of the top management, including establishing a measurable objectives 
for various roles and levels of the organisation. The new standard 
recognises that there can be many processes in an organisation. 

11.5 SEI CAPABILITY MATURITY MODEL 

SEI capability maturity model (SEI CMM) was proposed by Software 
Engineering Institute of the Carnegie Mellon University, USA. CMM is 
patterned after the pioneering work of Philip Crosby who published his 
maturity grid of five evolutionary stages in adopting quality practices in 
his book “Quality is Free”  

In simple words, CMM is a reference model for apprising the software 
process maturity into different levels. This can be used to predict the most 
likely outcome to be expected from the next project that the organisation 
undertakes. It must be remembered that SEI CMM can be used in two ways— 
capability evaluation and software process assessment.  

Capability evaluation and software process assessment differ in motivation, 
objective, and the final use of the result. Capability evaluation provides a way 
to assess the software process capability of an organisation. On the other 
hand, software process assessment is used by an organisation with the 
objective to improve its own process capability. Thus, the latter type of 
assessment is for purely internal use by a company. 

The different levels of SEI CMM have been designed so that it is easy for an 
organisation to slowly build its quality system starting from scratch. SEI CMM 
classifies software development industries into the following five maturity 
levels: 

Level 1: Initial 

A software development organisation at this level is characterised by ad 

hoc activities. Very few or no processes are defined and followed. Since 
software production processes are not defined, different engineers 
follow their own process and as a result development efforts become 
chaotic. Therefore, it is also called chaotic level. The success of projects 
depend on individual efforts and heroics. When a developer leaves the 
organisation, the successor would have great difficulty in understanding 



 

 

 

 

the process that was followed and the work completed. Also, no formal 
project management practices are followed. As a result, time pressure 
builds up towards the end of the delivery time, as a result short-cuts are 
tried out leading to low quality products. 

Level 2: Repeatable 

At this level, the basic project management practices such as tracking 
cost and schedule are established. Configuration management tools are 
used on items identified for configuration control. Size and cost 
estimation techniques such as function point analysis, COCOMO, etc., 
are used. The necessary process discipline is in place to repeat earlier 
success on projects with similar applications. Though there is a rough 
understanding among the developers about the process being followed, 
the process is not documented. Since the products are very similar, the 
success story on development of one product can repeated for another.      

Level 3: Defined 

At this level, the processes for both management and development 
activities are defined and documented. There is a common 
organisation-wide understanding of activities, roles, and 
responsibilities.The processes though defined, the process and product 
qualities are not measured. At this level, the organisation builds up the 
capabilities of its employees through periodic training programs. Also, 
review techniques are emphasized and documented to achieve phase 
containment of errors.  

Level 4: Managed 

At this level, the focus is on software metrics. Both process and product 
metrics are collected. Quantitative quality goals are set for the products 
and at the time of completion of development it was checked whether 
the quantitative quality goals for the product are met. Various tools like 
Pareto charts, fishbone diagrams, etc. are used to measure the product 
and process quality. The process metrics are used to check if a project 
performed satisfactorily. Thus, the results of process measurements are 
used to evaluate project performance rather than improve the process. 

Level 5: Optimising 

At this stage, process and product metrics are collected. Process and 
product measurement data are analysed for continuous process 



 

 

 

 

improvement. At CMM level 5, an organisation would identify the best 
software engineering practices and innovations (which may be tools, 
methods, or processes) and would transfer these organisation- wide. 
Level 5 organisations usually have a department whose sole 
responsibility is to assimilate latest tools and technologies and 
propagate them organisation-wide. Since the process changes 
continuously, it becomes necessary to effectively manage a changing 
process. Therefore, level 5 organisations use configuration management 
techniques to manage process changes. 

The focus of each level and the corresponding key process areas are shown 
in the Table 11.1: 

 

Table 11.1 Focus areas of CMM levels and Key Process Areas 

CMM Level Focus Key Process Areas (KPAs) 

Initial Competent people  

Repeatable Project management Software project planning 
Software configuration management 

Defined 
Definition of 
processes 

Process definition 
Training program 
Peer reviews 

Managed 
Product and 
process quality 

Quantitative process metrics 
Software quality management 

 

Optimising 
Continuous process 
improvement 

Defect prevention 

Process change management 
Technology change management 

SEI CMM provides a list of key areas on which to focus to take an 
organisation from one level of maturity to the next. Thus, it provides a way 
for gradual quality improvement over several stages. Each stage has been 
carefully designed such that one stage enhances the capability already built 
up.  

However, the organisations trying out the CMM frequently face a problem 
that stems from the characteristic of the CMM itself. 

CMM Shortcomings: CMM does suffer from several shortcomings. The 
important among these are the following: 

 The most frequent complaint by organisations while trying out the 
CMM-based process improvement initiative is that they understand 
what is needed to be improved, but they need more guidance about 
how to improve it. 

 Another shortcoming (that is common to ISO 9000) is that thicker 
documents, more detailed information, and longer meetings are 



 

 

 

 

considered to be better. This is in contrast to the principles of software 
economics—reducing complexity and keeping the documentation to 
theminimum without sacrificing the relevant details. 

 Getting an accurate measure of an organisation’s current maturity level 
is also an issue. The CMM takes an activity-based approach to 
measuring maturity; if you do the prescribed set of activities then you 
are at a certain level. There is nothing that characterises or quantifies 
whether you do these activities well enough to deliver the intended 
results. 

11.5.1 Comparison Between ISO 9000 Certification and 
SEI/CMM 

Let us compare some of the key characteristics of ISO 9000 certification 
and the SEI CMM model for quality appraisal: 

 ISO 9000 is awarded by an international standards body. Therefore, 
ISO 9000 certification can be quoted by an organisation in official 
documents, communication with external parties, and in tender 
quotations. However, SEI CMM assessment is purely for internal use. 

 SEI CMM was developed specifically for software industry and therefore 
addresses many issues which are specific to software industry alone. 

 SEI CMM goes beyond quality assurance and prepares an organisation 
to ultimately achieve TQM. In fact, ISO 9001 aims at level 3 of SEI 
CMM model. 

 SEI CMM model provides a list of key process areas (KPAs) on which an 
organisation at any maturity level needs to concentrate to take it from 
one maturity level to the next. Thus, it provides a way for achieving 
gradual quality improvement. In contrast, an organisation adopting ISO 
9000 either qualifies for it or does not qualify. 

11.5.2 Is SEI CMM Applicable to Small Organisations? 

Highly systematic and measured approach to software development suits 
large organisations dealing with negotiated software, safety-critical 
software, etc. But, what about small organisations? These organisations 
typically handle applications such as small Internet, e-commerce 
applications, and often are without an established product range, 
revenue base, and experience on past projects, etc. For such 
organisations, a CMM-based appraisal is probably excessive. These 



 

 

 

 

organisations need to operate more efficiently at the lower levels of 

maturity. For example, they need to practise effective project 
management, reviews, configuration management, etc. 

11.5.3 Capability Maturity Model Integration (CMMI) 

Capability maturity model integration (CMMI) is the successor of the 
capability maturity model (CMM). The CMM was developed from 1987 
until 1997. CMMI aimed to improve the usability of maturity models by 
integrating many different models into one framework. 

After CMMI was first released in 1990, it was adopted and used in many 
domains. For example, CMMs were developed for disciplines such as systems 
engineering (SE-CMM), people management (PCMM), software acquisition 
(SA-CMM), and others.  

Although many organisations found these models to be useful, they also 
struggled with problems caused by overlap, inconsistencies, and integrating 
the models. In this context, CMMI is generalised to be applicable to many 
domains.  

 
11.6 SIX SIGMA 

 

General Electric (GE) corporation first began Six Sigma in 1995 after 
Motorola and Allied Signal blazed the Six Sigma trail. Since them, 
thousands of companies around the world have discovered the far 
reaching benefits of Six Sigma.  

   The purpose of Six Sigma is to improve processes to do things better, 
faster, and at lower cost. It can be used to improve every facet of 
business, from production, to human resources, to order entry, to 
technical support. Six Sigma can be used for any activity that is 
concerned with cost, timeliness, and quality of results. Therefore, it is 
applicable to virtually every industry. 

Six Sigma at many organisations simply means striving for near perfection. 
Six Sigma is a disciplined, data-driven approach to eliminate defects in any 
process – from manufacturing to transactional and from product to service. 

The statistical representation of Six Sigma describes quantitatively how a 
process is performing. To achieve Six Sigma, a process must not produce 
more than 3.4 defects per million opportunities. A Six Sigma defect is defined 



 

 

 

 

as any system behaviour that is not as per customer specifications. Total 
number of Six Sigma opportunities is then the total number of chances for a 
defect. Process sigma can easily be calculated using a Six Sigma calculator. 

The fundamental objective of the Six Sigma methodology is the 
implementation of a measurement-based strategy that focuses on process 
improvement and variation reduction through the application of Six Sigma 
improvement projects. This is accomplished through the use of two Six Sigma 
sub-methodologies—DMAIC and DMADV.  

The Six Sigma DMAIC process (define, measure, analyse, improve, control) 
is an improvement system for existing processes falling below specification 
and looking for incremental improvement. The Six Sigma DMADV process 
(define, measure, analyse, design, verify) is an improvement system used to 
develop new processes or products at Six Sigma quality levels. It can also be 
employed if a current process requires more than just incremental 
improvement. Both Six Sigma processes are executed by Six Sigma Green 
Belts and Six Sigma Black Belts, and are overseen by Six Sigma Master Black 
Belts. 

Many frameworks exist for implementing the Six Sigma methodology. Six 
Sigma Consultants all over the world have also developed proprietary 
methodologies for implementing Six Sigma quality, based on the similar 
change management philosophies and applications of tools. 

 

 

 

 

 

 

 



 

 

 

 

COMPUTER AIDED SOFTWARE 

ENGINEERING 

12.1 CASE AND ITS SCOPE 

We first need to define what is a CASE tool and what is a CASE 
environment. A CASE tool is a generic term used to denote any form of 
automated support for software engineering, In a more restrictive sense 
a CASE tool can mean any tool used to automate some activity 
associated with software development. Many CASE tools are now 
available. Some of these tools assist in phase-related tasks such 
asspecification, structured analysis, design, coding, testing, etc. and 
others to non-phase activities such as project management and 
configuration management. The primary objectives in using any CASE 
tool are: 

  To increase productivity. 
  To help produce better quality software at lower cost. 

12.2 CASE ENVIRONMENT 

Although individual CASE tools are useful, the true power of a tool set 
can be realised only when these set of tools are integrated into a 
common framework or environment. If the different CASE tools are not 
integrated, then the data generated by one tool would have to input to 
the other tools. This may also involve format conversions as the tools 
developed by different vendors are likely to use different formats. This 
results in additional effort of exporting data from one tool and importing 
to another. Also, many tools do not allow exporting data and maintain 
the data in proprietary formats. 

CASE   tools are  characterised by  the stage   or stages  of software 
development life cycle on which they focus. Since different tools covering 
different stages share common information, it is required that they integrate 
through some central repository to have a consistent view of information 
associated with the software. This central repository is usually a data 
dictionary containing the definition of all composite and elementary data 
items.   Through the  central repository  all  the  CASE tools   in  a CASE 
environment share common information among themselves.  



 

 

 

 

Thus a CASE environment facilitates the automation of the step-by-step 
methodologies for software development. In contrast to a CASE 
environment, a programming environment is an integrated collection of tools 
to support only the coding phase  of software   development. The 
 tools  commonly integrated in a programming environment are a 
text editor, a compiler, and a debugger.  

The different tools are integrated to the extent that once the compiler 
detects an error, the editor takes automatically goes to the statements in 
error and the error statements  are highlighted. Examples  of  popular
 programming environments are Turbo C environment, Visual Basic, 
Visual C++, etc. A schematic representation of a CASE environment is 
shown in Figure 12.1. 

 

Figure 12.1: A CASE environment. 

The standard programming environments such as Turbo C, Visual C++, etc. 
come equipped with a program editor, compiler, debugger, linker, etc., All 
these tools are integrated. If you click on an error reported by the compiler, 
not only does it take you into the editor, but also takes the cursor to the 
specific line or statement causing the error. 



 

 

 

 

 

12.2.1 Benefits of CASE 

Several benefits accrue from the use of a CASE environment or even 
isolated CASE tools. Let us examine some of these benefits: 

 A key benefit arising out of the use of a CASE environment is cost 
saving through all developmental phases. Different studies carry out to 
measure the impact of CASE, put the effort reduction between 30 per 
cent and 40 per cent. 

  Use of CASE tools leads to considerable improvements in quality. This 
is mainly due to the facts that one can effortlessly iterate through the 
different phases of software development, and the chances of human 
error is considerably reduced. 

 CASE tools help produce high quality and consistent documents. Since 
the important data relating to a software product are maintained in a 
central repository, redundancy in the stored data is reduced, and 
therefore, chances of inconsistent documentation is reduced to a great 
extent. 

 CASE tools take out most of the drudgery in a software engineers work. 
For example, they need not check meticulously the balancing of the 
DFDs, but can do it effortlessly through the press of a button. 

 CASE tools have led to revolutionary cost saving in software 
maintenance efforts. This arises not only due to the tremendous value 
of a CASE environment in traceability and consistency checks, but also 
due to the systematic information capture during the various phases of 
software development as a result of adhering to a CASE environment. 

 Introduction of a CASE environment has an impact on the style of 
working of a company, and makes it oriented towards the structured 
and orderly approach. 

12.3 CASE SUPPORT IN SOFTWARE LIFE CYCLE 

Let us examine the various types of support that CASE provides during 
the different phases of a software life cycle. CASE tools should support a 
development methodology, help enforce the same, and provide certain 
amount of consistency checking between different phases. Some of the 
possible support that CASE tools usually provide in the software 
development life cycle are discussed below. 



 

 

 

 

12.3.1 Prototyping Support 

We have already seen that prototyping is useful to understand the 
requirements of complex software products, to demonstrate a concept, 
to market new ideas, and so on. The prototyping CASE tool’s 
requirements are as follows: 

  Define user interaction. 
  Define the system control flow. 

 Store and retrieve data required by the system. 
 Incorporate some processing logic. 

There are several stand alone prototyping tools. But a tool that integrates 
with the data dictionary can make use of the entries in the data 
dictionary,help in populating the data dictionary and ensure the consistency 
between the design data and the prototype. 

A good prototyping tool should support the following features: 

 Since one of the main uses of a prototyping CASE tool is graphical user 
interface (GUI) development, a prototyping CASE tool should support 
the user to create a GUI using a graphics editor. The user should be 
allowed to define all data entry forms, menus and controls. 

  It should integrate with the data dictionary of a CASE environment. 

 If possible, it should be able to integrate with external user defined 
modules written in C or some popular high level programming 
languages. 

 The user should be able to define the sequence of states through 
which a created prototype can run. The user should also be allowed to 
control the running of the prototype. 

 The run time system of prototype should support mock up run of the 
actual system and management of the input and output data. 

12.3.2 Structured Analysis and Design 

Several diagramming techniques are used for structured analysis and 
structured design. A CASE tool should support one or more of the 
structured analysis and design technique. The CASE tool should support 
effortlessly drawing analysis and design diagrams. The CASE tool should 
support drawing fairly complex diagrams and preferably through a 
hierarchy of levels. It should provide easy navigation through different 



 

 

 

 

levels and through design and analysis. The tool must support 
completeness and consistency checking across the design and analysis 
and through all levels of analysis hierarchy. Wherever it is possible, the 
system should disallow any inconsistent operation, but it may be very 
difficult to implement such a feature. Whenever there is heavy 
computational load while consistency checking, it should be possible to 
temporarily disable consistency checking. 

12.3.3 Code Generation 

As far as code generation is concerned, the general expectation from a 
CASE tool is quite low. A reasonable requirement is traceability from 
source file to design data. More pragmatic support expected from a 
CASE tool during code generation phase are the following: 

 The CASE tool should support generation of module skeletons or 
templates in one or more popular languages. It should be possible to 
include copyright message, brief description of the module, author 
name and the date of creation in some selectable format. 

 The tool should generate records, structures, class definition 
automatically from the contents of the data dictionary in one or more 
popular programming languages. 

 It should generate database tables for relational database 
management systems. 

 The tool should generate code for user interface from prototype 
definition for X window and MS window based applications. 

12.3.4 Test Case Generator 

The CASE tool for test case generation should have the following 
features: 

  It should support both design and requirement testing 

 It should generate test set reports in ASCII format which can be 
directly imported into the test plan document. 

12.4 ARCHITECTURE OF A CASE ENVIRONMENT 

The architecture of a typical modern CASE environment is shown 
diagrammatically in Figure 12.2. The important components of a 
modern CASE environment are user interface, tool set, object 
management system (OMS), and a repository. We have already seen 



 

 

 

 

the characteristics of the tool set. Let us examine the other components 
of a CASE environment. 

 

Figure 12.2: Architecture of a modern CASE environment. 

User interface 

The user interface provides a consistent framework for accessing the 
different tools thus making it easier for the users to interact with the 
different tools and reducing the overhead of learning how the different 
tools are used. 

Object management system and repository 

Different case tools represent the software product as a set of entities 
such as specification, design, text data, project plan, etc. The object 
management system maps these logical entities into the underlying 
storage management system (repository). The commercial relational 
database management systems are geared towards supporting large 
volumes of information structured as simple relatively short records. 
There are a few types of entities but large number of instances. By 
contrast, CASE tools create a large number of entity and relation types 
with perhaps a few instances of each. Thus the object management 
system takes care of appropriately mapping these entities into the 
underlying storage management system. 



 

 

 

 

SOFTWARE MAINTENANCE 

13.1 CHARACTERISTICS OF SOFTWARE MAINTENANCE 
Software maintenance is becoming an important activity of a large number 

of organisations. This is no surprise, given the rate of hardware obsolescence, 
the immortality of a software product per se, and the demand of the user 
community to see the existing software products run on newer platforms, run 
in newer environments, and/or with enhanced features. When the hardware 
platform changes, and a software product performs some low-level functions, 
maintenance is necessary. Also, whenever the support environment of a 
software product changes, the software product requires rework to cope up 
with the newer interface. For instance, a software product may need to be 
maintained when the operating system changes. Thus, every software 
product continues to evolve after its development through maintenance 
efforts. 

Types of Software Maintenance 

There are three types of software maintenance, which are described as 
follows: 

Corrective: Corrective maintenance of a software product is necessary either 
to rectify the bugs observed while the system is in use. 

Adaptive: A software product might need maintenance when the customers 
need the product to run on new platforms, on new operating systems, or 
when they need the product to interface with new hardware or software. 

Perfective: A software product needs maintenance to support the new 
features that users want it to support, to change different functionalities of 
the system according to customer demands, or to enhance the performance 
of the system. 

13.1.1 Characteristics of Software Evolution 

Lehman’s first law: A software product must change continually or become 
progressively less useful. Every software product continues to evolve after its 
development through maintenance efforts. Larger products stay in operation 
for longer times because of higher replacement costs and therefore tend to 
incur higher maintenance efforts. This law clearly shows that every product 



 

 

 

 

irrespective of how well designed must undergo maintenance. In fact, when a 
product does not need any more maintenance, it is a sign that the product is 
about to be retired/discarded. This is in contrast to the common intuition that 
only badly designed products need maintenance. In fact, good products are 
maintained and bad products are thrown away. 

Lehman’s second law: The structure of a program tends to degrade as 
more and more maintenance is carried out on it. The reason for the degraded 
structure is that when you add a function during maintenance, you build on 
top of an existing program, often in a way that the existing program was not 
intended to support. If you do not redesign the system, the additions will be 
more complex that they should be. Due to quick-fix solutions, in addition to 
degradation of structure, the documentations become inconsistent and 
become less helpful as more and more maintenance is carried out. 

Lehman’s third law: Over a program’s lifetime, its rate of development is 
approximately constant. The rate of development can be quantified in terms 
of the lines of code written or modified. Therefore this law states that the 
rate at which code is written or modified is approximately the same during 
development and maintenance. 

13.1.2 Special Problems Associated with Software 
Maintenance 

Software maintenance work currently is typically much more expensive 
than what it should be and takes more time than required. The reasons 
for this situation are the following: 

Software maintenance work in organisations is mostly carried out using ad 
hoc techniques. The primary reason being that software maintenance is one 
of the most neglected areas of software engineering. Even though software 
maintenance is fast becoming an important area of work for many companies 
as the software products of yester years age, still software maintenance is 
mostly being carried out as fire-fighting operations, rather than through 
systematic and planned activities. 

Software maintenance has a very poor image in industry. Therefore, an 
organisation often cannot employ bright engineers to carry out maintenance 
work. Even though maintenance suffers from a poor image, the work involved 
is often more challenging than development work. During maintenance it is 
necessary to thoroughly understand someone else’s work, and then carry out 
the required modifications and extensions. 

Another problem associated with maintenance work is that the majority of 



 

 

 

 

software products needing maintenance are legacy products. Though the 
word legacy implies “aged” software, but there is no agreement on what 
exactly is a legacy system. It is prudent to define a legacy system as any 
software system that is hard to maintain. The typical problems associated 
with legacy systems are poor documentation, unstructured (spaghetti code 
with ugly control structure), and lack of personnel knowledgeable in the 
product. Many of the legacy systems were developed long time back. But, it is 
possible that a recently developed system having poor design and 
documentation can be considered to be a legacy system. 

13.2 SOFTWARE REVERSE ENGINEERING 

Software reverse engineering is the process of recovering the design and 
the requirements specification of a product from an analysis of its code. 
The purpose of reverse engineering is to facilitate maintenance work by 
improving the understandability of a system and to produce the 
necessary documents for a legacy system. Reverse engineering is 
becoming important, since legacy software products lack proper 
documentation, and are highly unstructured. Even well-designed 
products become legacy software as their structure degrades through a 
series of maintenance efforts. 

The first stage of reverse engineering usually focuses on carrying out 
cosmetic changes to the code to improve its readability, structure, and 
understandability, without changing any of its functionalities. A way to carry 
out these cosmetic changes is shown schematically in Figure 13.1. A program 
can be reformatted using any of the several available prettyprinter programs 
which layout the program neatly. Many legacy software products are difficult 
to comprehend with complex control structure and unthoughtful variable 
names. All variables, data structures, and functions should be assigned 
meaningful names wherever possible. Complex nested conditionals in the 
program can be replaced by simpler conditional statements or whenever 
appropriate by case statements. 



 

 

 

 

 

 

Figure 13.1: A process model for reverse engineering. 

After the cosmetic changes have been carried out on a legacy software, the 
proces of extracting the code, design, and the requirements specification can 
begin. These activities are schematically shown in Figure 13.2. In order to 
extract the design, a full understanding of the code is needed. Some 
automatic tools can be used to derive the data flow and control flow diagram 
from the code. The structure chart (module invocation sequence and data 
interchange among modules) should also be extracted. The SRS document 
can be written once the full code has been thoroughly understood and the 
design extracted. 

 

Figure 13.2: Cosmetic changes carried out before reverse engineering. 

 

 



 

 

 

 

13.3 SOFTWARE MAINTENANCE PROCESS MODELS 
 

Before discussing process models for software maintenance, we need to 
analyse various activities involved in a typical software maintenance 
project. The activities involved in a software maintenance project are 
not unique and depend on several factors such as: 

(i) the extent of modification to the product required,  

(ii) the resources available to the maintenance team,  

(iii) the conditions of the existing product (e.g., how structured it 
is, how well documented it is, etc.),  

(iv) the expected project risks, etc. When the changes needed to a 
software product are minor and straightforward, the code can be 
directly modified and the changes appropriately reflected in all the 
documents. 

However, more elaborate activities are required when the required changes 
are not so trivial. Usually, for complex maintenance projects for legacy 
systems, the software process can be represented by a reverse engineering 
cycle followed by a forward engineering cycle with an emphasis on as much 
reuse as possible from the existing code and other documents. 

Since the scope (activities required) for different maintenance projects vary 
widely, no single maintenance process model can be developed to suit every 
kind of maintenance project. However, two broad categories of process 
models can be proposed. 

First model 

The first model is preferred for projects involving small reworks where 
the code is changed directly and the changes are reflected in the 
relevant documents later. This maintenance process is graphically 
presented in Figure 13.3. In this approach, the project starts by 
gathering the requirements for changes. The requirements are next 
analysed to formulate the strategies to be adopted for code change. At 
this stage, the association of at least a few members of the original 
development team goes a long way in reducing the cycle time, 
especially for projects involving unstructured and inadequately 
documented code. The availability of a working old system to the 
maintenance engineers at the maintenance site greatly facilitates the 



 

 

 

 

task of the maintenance team as they get a good insight into the 
working of the old system and also can compare the working of their 
modified system with the old system. Also, debugging of the re- 
engineered system becomes easier as the program traces of both the 
systems can be compared to localise the bugs. 

 

 

 
Second model 

Figure 13.3: Maintenance process model 1. 

The second model is preferred for projects where the amount of rework 
required is significant. This approach can be represented by a reverse 
engineering cycle followed by a forward engineering cycle. Such an 
approach is also known as software re-engineering. This process model 
is depicted in Figure 13.4. 



 

 

 

 

 

 

Figure 13.4: Maintenance process model 2. 

The reverse engineering cycle is required for legacy products. During the 
reverse engineering, the old code is analysed (abstracted) to extract the 
module specifications. The module specifications are then analysed to 
produce the design. The design is analysed (abstracted) to produce the 
original requirements specification. The change requests are then applied to 
this requirements specification to arrive at the new requirements 
specification. At this point a forward engineering is carried out to produce the 
new code. At the design, module specification, and coding a substantial reuse 
is made from the reverse engineered products.  

An important advantage of this approach is that it produces a more 
structured design compared to what the original product had, produces good 
documentation, and very often results in increased efficiency. The efficiency 
improvements are brought about by a more efficient design. However, this 
approach is more costly than the first approach. An empirical study indicates 
that process 1 is preferable when the amount of rework is no more than 15 
per cent (see Figure 13.5). 



 

 

 

 

 

 

Figure 13.5: Empirical estimation of maintenance cost versus percentage rework. 

Besides the amount of rework, several other factors might affect the 
decision regarding using process model 1 over process model 2 as follows: 

 Re-engineering might be preferable for products which exhibit a high 
failure rate. 

 Re-engineering might also be preferable for legacy products having 
poor design and code structure. 

 

 

 

 

 

 

 



 

 

 

 

SOFTWARE REUSE 

 

 

14.1 REUSE DEFINITION? 

In software engineering, reuse refers to the practice of using existing 
software components, modules, or code to build new applications or 
systems, rather than creating everything from scratch. This approach can 
significantly reduce development time, cost, and effort. Reuse can occur at 
various levels, such as: 

Code Reuse: Reusing pre-written code modules, functions, or libraries 
that have been tested and optimized. 

Component Reuse: Using established software components, such as 
pre-built classes or services, which are integrated into new applications. 

Design Reuse: Reusing design patterns, architectures, or frameworks to 
solve common problems in new contexts. 

System Reuse: Leveraging entire subsystems or platforms, like an 
existing content management system (CMS) or customer relationship 
management (CRM) system, in a new project. 

The goal of software reuse is to increase productivity, improve software 
quality, and reduce the effort involved in the development and 
maintenance of software systems. 

14.2 BASIC ISSUES IN ANY REUSE PROGRAM 

The following are some of the basic issues that must be clearly 
understood for starting any reuse program: 

 Component creation. 

 Component indexing and storing. 
 Component search. 



 

 

 

 

 Component understanding. 
 Component adaptation. 
 Repository maintenance. 

Component creation: For component creation, the reusable components have 

to be first identified. Selection of the right kind of components having 

potential for reuse is important. In Section 14.4, we discuss domain analysis 

as a promising technique which can be used to create reusable components. 

Component indexing and storing 

Indexing requires classification of the reusable components so that they 

can be easily searched when we look for a component for reuse. The 

components need to be stored in a relational database management system 

(RDBMS) or an object-oriented database system (ODBMS) for efficient 

access when the number of components becomes large. 

Component searching 

The programmers need to search for right components matching their 
requirements in a database of components. To be able to search 
components efficiently, the programmers require a proper method to 
describe the components that they are looking for. 

Component understanding 

The programmers need a precise and sufficiently complete 
understanding of what the component does to be able to decide whether 
they can reuse the component. To facilitate understanding, the 
components should be well documented and should do something simple. 

Component adaptation 

Often, the components may need adaptation before they can be reused, 
since a selected component may not exactly fit the problem at hand. 
However, tinkering with the code is also not a satisfactory solution 
because this is very likely to be a source of bugs. 

Repository maintenance 

A component repository once is created requires continuous 
maintenance. New components, as and when created have to be 
entered into the repository. The faulty components have to be tracked. 
Further, when new applications emerge, the older applications become 



 

 

 

 

obsolete. In this case, the obsolete components might have to be 
removed from the repository. 

14.3 A REUSE APPROACH 

A promising approach that is being adopted by many organisations is to 
introduce a building block approach into the software development 
process. For this, the reusable components need to be identified after 
every development project is completed. The reusability of the 
identified components has to be enhanced and these have to be 
cataloged into a component library. It must be clearly understood that 
an issue crucial to every reuse effort is the identification of reusable 
components. Domain analysis is a promising approach to identify 
reusable components. In the following subsections, we discuss the 
domain analysis approach to create reusable components. 

14.3.1 Domain Analysis 

The aim of domain analysis is to identify the reusable components for a 
problem domain. 

Reuse domain 

A reuse domain is a technically related set of application areas. A body 
of information is considered to be a problem domain for reuse, if a deep 
and comprehensive relationship exists among the information items as 
characterised by patterns of similarity among the development 
components of the software product. A reuse domain is a shared 
understanding of some community, characterised by concepts, 
techniques, and terminologies that show some coherence.  

Examples of domains are accounting software domain, banking software 
domain, business software domain, manufacturing automation software 
domain, telecommunication software domain, etc. 

Just to become familiar with the vocabulary of a domain requires months of 
interaction with the experts. Often, one needs to be familiar with a network 
of related domains for successfully carrying out domain analysis. Domain 
analysis identifies the objects, operations, and the relationships among them.  

During domain analysis, a specific community of software developers get 

together to discuss community-wide solutions. Analysis of the application 

domain is required to identify the reusable components. The actual 
construction of the reusable components for a domain is called domain 



 

 

 

 

engineering. 

Evolution of a reuse domain 

The ultimate results of domain analysis is development of problem- 

oriented languages. The problem-oriented languages are also known as 
application generators. These application generators, once developed 

form application development standards. The domains slowly develop. 

A s a domain develops, we may distinguish the various stages it 

undergoes: 

Stage 1 : There is no clear and consistent set of notations. Obviously, no 

reusable components are available. All software is written from scratch. 

Stage 2 : H e re , only experience from similar projects are used in a 

development effort. This means that there is only knowledge reuse. 

Stage 3 : At this stage, the domain is ripe for reuse. The set of concepts are 

stabilised and the notations standardised. Standard solutions to standard 

problems are available. There is both knowledge and component reuse. 

Stage 4 : The domain has been fully explored. The software development for 

the domain can largely be automated. Programs are not written in the 

traditional sense any more. Programs are written using a domain specific 
language, which is also known as an application generator. 

14.3.2 Component Classification 

Components need to be properly classified in order to develop an 
effective indexing and storage scheme. We have already remarked that 
hardware reuse has been very successful. If we look at the classification 
of hardware components for clue, then we can observe that hardware 
components are classified using a multilevel hierarchy. At the lowest 
level, the components are described in several forms—natural language 
description, logic schema, timing information, etc. The higher the level 
at which a component is described, the more is the ambiguity. This has 
motivated the Prieto-Diaz’s classification scheme. 

Prieto-Diaz’s classification scheme 

Each component is best described using a number of different 
characteristics or facets. For example, objects can be classified using 
the following: 



 

 

 

 

  Actions they embody. 

 Objects they manipulate. 
 Data structures used. 
  Systems they are part of, etc. 

Prieto-Diaz’s faceted classification scheme requires choosing an n-tuple that 

best fits a component. Faceted classification has advantages over 

enumerative classification. Strictly enumerative schemes use a pre-defined 

hierarchy. Therefore, these force you to search for an item that best fits the 

component to be classified. This makes it very difficult to search a required 

component. Though cross referencing to other items can be included, the 

resulting network becomes complicated. 

14.3.3 Searching 

The domain repository may contain thousands of reuse items. In such 
large domains, what is the most efficient way to search an item that 

one is looking for? A popular search technique that has proved to be 
very effective is one that provides a web interface to the repository. 
Using such a web interface, one would search an item using an 
approximate automated search using key words, and then from these 
results would do a browsing using the links provided to look up related 
items. The approximate automated search locates products that appear 
to fulfill some of the specified requirements. The items located through 
the approximate search serve as a starting point for browsing the 
repository. These serve as the starting point for browsing the 
repository.  

The developer may follow links to other products until a sufficiently good 
match is found. Browsing is done using the keyword- to-keyword, 
keyword-to-product, and product- to-product links. These links help to 
locate additional products and compare their detailed attributes. Finding 
a satisfactory item from the repository may require several iterations of 
approximate search followed by browsing. With each iteration, the 
developer would get a better understanding of the available products 
and their differences. However, we must remember that the items to be 
searched may be components, designs, models, requirements, and even 
knowledge. 

14.3.4 Repository Maintenance 



 

 

 

 

Repository maintenance involves entering new items, retiring those 
items which are no more necessary, and modifying the search attributes 
of items to improve the effectiveness of search. Also, the links relating 
the different items may need to be modified to improve the 
effectiveness of search. The software industry is always trying to 
implement something that has not been quite done before. As patterns 
requirements emerge, new reusable components are identified, which 
may ultimately become more or less the standards. However, as 
technology advances, some components which are still reusable, do not 
fully address the current requirements. On the other hand, restricting 
reuse to highly mature components,can sacrifice potential reuse 
opportunity. Making a product available before it has been thoroughly 
assessed can be counter productive. Negative experiences tend to 
dissolve the trust in the entire reuse framework. 

14.3.5 Reuse without Modifications 

.Once standard solutions emerge, no modifications to the program parts 
may be necessary. One can directly plug in the parts to develop his 
application. Reuse without modification is much more useful than the 
classical program libraries. These can be supported by compilers through 
linkage to run-time support routines (application generators). 

Application generators translate specifications into application programs. 
The specification usually is written using 4GL. The specification might also be 
in a visual form. The programmer would create a graphical drawing using 
some standard available symbols. Defining what is variant and what is 
invariant corresponds to parameterising a subroutine to make it reusable. A 
subroutine’s parameters are variants because the programmer can specify 
them while calling the subroutine. Parts of a subroutine that are not 
parameterised, cannot be changed. 

Application generators have been applied successfully to data processing 
application, user interface, and compiler development. Application generators 
are less successful with the development of applications with close interaction 
with hardware such as real-time systems. 

14.4 REUSE AT ORGANISATION LEVEL 

Reusability should be a standard part in all software development 
activities including specification, design, implementation, test, etc. 
Ideally, there should be a steady flow of reusable components. In 



 

 

 

 

practice, however, things are not so simple. 
Extracting reusable components from projects that were completed in the 

past presents an important difficulty not encountered while extracting a 
reusable component from an ongoing project—typically, the original 
developers are no longer available for consultation. Development of new 
systems leads to an assortment of products, since reusability ranges from 
items whose reusability is immediate to those items whose reusability is 
highly improbable. 

Achieving organisation-level reuse requires adoption of the following steps: 

 Assess of an item’s potential for reuse. 
 Refine the item for greater reusability. 
  Enter the product in the reuse repository. 

In the following subsections, we elaborate these three steps required to 
achieve organisation- level reuse. 

Assessing a product’s potential for reuse 

Assessment of a components reuse potential can be obtained from an 
analysis of a questionnaire circulated among the developers. The 
questionnaire can be devised to assess a component’s reusability. The 
programmers working in similar application domain can be used to 
answer the questionnaire about the product’s reusability. Depending on 
the answers given by the programmers, either the component be taken 
up for reuse as it is, it is modified and refined before it is entered into 
the reuse repository, or it is ignored. A sample questionnaire to assess 
a component’s reusability is the following: 

 Is the component’s functionality required for implementation of 
systems in the future? 

  How common is the component’s function within its domain? 

  Would there be a duplication of functions within the domain if the 
component is taken up? 

  Is the component hardware dependent? 
  Is the design of the component optimised enough? 

 If the component is non-reusable, then can it be decomposed to yield 
some reusable components? 

  Can we parametrise a non-reusable component so that it becomes 
reusable? 



 

 

 

 

Refining products for greater reusability 

For a product to be reusable, it must be relatively easy to adapt it to 
different contexts. Machine dependency must be abstracted out or 
localised  using  data  encapsulation  techniques.  The  following 
refinements may be carried out: 

Name generalisation: The names should be general, rather than being directly 

related to a specific application. 

Operation generalisation: Operations should be added to make the component 

more general. Also, operations that are too specific to an application can be 

removed. 

Exception generalisation: This involves checking each component to see which 

exceptions it might generate. For a general component, several types of 

exceptions might have to be handled. 

Handling portability problems: Programs typically make some assumption 

regarding the representation of information in the underlying machine. These 
assumptions are in general not true for all machines. The programs also often 
need to call some operating system functionality and these calls may not be 
the same on all machines. Also, programs use some function libraries, which 
may not be available on all host machines. A portability solution to overcome 
these problems is shown in Figure 14.1. The portability solution suggests that 
rather than call the operating system and I/O procedures directly, abstract 
versions of these should be called by the application program. Also, all 
platform-related calls should be routed through the portability interface. One 
problem with this solution is the significant overhead incurred, which makes it 
inapplicable to many real-time systems and applications requiring very fast 
response. 

 



 

 

 

 

Figure 14.1: Improving reusability of a component by using a portability interface. 

14.4.1 Current State of Reuse 

In spite of all the shortcomings of the state-of-the-art reuse techniques, 
it is the experience of several organisations that most of the factors 
inhibiting an effective reuse program are non-technical. Some of these 
factors are the following: 

 Need for commitment from the top management. 
 Adequate documentation to support reuse. 
 Adequate incentive to reward those who reuse. Both the people 

contributing new reusable components and those reusing the existing 
components should be rewarded to start a reuse program and keep it 
going. 

 Providing access to and information about reusable components. 
Organisations are often hesitant to provide an open access to the 
reuse repository for the fear of the reuse components finding a way to 
their competitors. 
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