

UNIT-I

1. INTRODUCTION

1.1 Evolution—From an Art Form to an Engineering Discipline
1.1.1 Evolution of an Art into an Engineering Discipline
1.1.2 Evolution Pattern for Engineering Disciplines
1.1.3 A Solution to the Software Crisis

1.2 Software Development Projects
1.2.1 Types of Software Development Projects
1.2.2 Software Projects Being Undertaken by Indian Companies

1.3 Exploratory Style of Software Development

1.3.1 Perceived Problem Complexity: An Interpretation Based on
Human Cognition Mechanism
1.3.2 Principles Deployed by Software Engineering to Overcome
Human Cognitive Limitations

1.4 Emergence of Software Engineering
1.4.1 Early Computer Programming
1.4.2 High-level Language Programming
1.4.3 Control Flow-based Design
1.4.4 Data Structure-oriented Design
1.4.5 Data Flow-oriented Design
1.4.6 Object-oriented Design
1.4.7 What Next?
1.4.8 Other Developments

1.5 Notable Changes in Software Development Practices
1.6 Computer Systems Engineering

2. Software Life Cycle Models

2.1 Waterfall Model and its Extensions
2.1.1 Classical Waterfall Model
2.1.2 Iterative Waterfall Model
2.1.3 V-Model
2.1.4 Prototyping Model
2.1.5 Incremental Development Model

2.2 Rapid Application Development (RAD)
2.2.1 Working of RAD

2.2.2 Applicability of RAD Model
2.2.3 Comparison of RAD with Other Models

2.3 Agile Development Models
2.3.1 Essential Idea behind Agile Models
2.3.2 Agile versus Other Models
2.3.3 Extreme Programming Model
2.3.4 Scrum Model

2.4 Spiral Model
2.4.1 Phases of the Spiral Model

 UNIT-I

2.5 SOFTWARE PROJECT MANAGEMENT.

2.6 Software Project Management Complexities
2.7 Responsibilities of a Software Project Manager

2.7.1 Job Responsibilities for Managing Software Projects
2.7.2 Skills Necessary for Managing Software Projects

2.8 Metrics for Project Size Estimation
2.8.1 Lines of Code (LOC)
2.8.2 Function Point (FP) Metric

2.9 Project Estimation Techniques
2.9.1 Empirical Estimation Techniques
2.9.2 Heuristic Techniques
2.9.3 Analytical Estimation Techniques

2.10 Empirical Estimation Techniques
2.10.1 Expert Judgement
2.10.2 Delphi Cost Estimation

2.11 COCOMO—A Heuristic Estimation Technique
2.11.1 Basic COCOMO Model
2.11.2 Intermediate COCOMO
2.11.3 Complete COCOMO

2.11.4 COCOMO 2
2.12 Halstead’s Software Science—An Analytical Technique

2.12.1 Length and Vocabulary
2.12.2 Program Volume
2.12.3 Potential Minimum Volume
2.12.4 Effort and Time
2.12.5 Length Estimation

2.13 Risk Management
2.13.1 Risk Identification
2.13.2 Risk Assessment
2.13.3 Risk Mitigation

Chapter

1

INTRODUCTION
What is software engineering?

A popular definition of software engineering is: “A systematic collection of
good program development practices and techniques”. Good program

development techniques have resulted from research innovations as well as

from the lessons learnt by programmers through years of programming
experiences.

An alternative definition of software engineering is: “An engineering approach to

develop software”.

EXAMPLE:-

 Suppose you have asked a petty contractor to build a small house for you.
Petty contractors are not really experts in house building.They normally carry out
minor repair works and at most undertake very small building works such as the
construction of boundary walls. Now faced with the task of building a complete
house, your petty contractor would draw upon all his knowledge regarding house
building. Yet, he may often be clueless regarding what to do. For example, he
might not know the optimal proportion in which cement and sand should be
mixed to realise sufficient strength for supporting the roof. In such situations, he
would have to fall back upon his intuitions. He would normally succeed in his
work, if the house you asked him to construct is sufficiently small. Of course, the
house constructed by him may not look as good as one constructed by a
professional, may lack proper planning, and display several defects and
imperfections. It may even cost more and take longer to build.

1.1 EVOLUTION—FROM AN ART FORM TO AN ENGINEERING

DISCIPLINE

In this section, we review how starting from an esoteric art form, the
software engineering discipline has evolved over the years.

1.1.1 Evolution of an Art into an Engineering Discipline

Software engineering principles have evolved over the last sixty years
with contributions from numerous researchers and software
professionals. Over the years, it has emerged from a pure art to a craft,
and finally to an engineering discipline.

The early programmers used an ad hoc programming style. This style of

program development is now variously being referred to as exploratory, build

and fix, and code and fix styles.

In a build and fix style, a program is quickly developed without making any
specification, plan, or design. The different imperfections that are
subsequently noticed are fixed.

The exploratory programming style is an informal style in the sense that
there are no set rules or recommendations that a programmer has to adhere
to—every programmer himself evolves his own software development
techniques solely guided by his own intuition, experience, whims, and fancies.
The exploratory style comes naturally to all first time programmers. the
exploratory style usually yields poor quality and unmaintainable code and also
makes program development very expensive as well as time-consuming.

As we have already pointed out, the build and fix style was widely adopted
by the programmers in the early years of computing history. We can consider
the exploratory program development style as an art—since this style, as is
the case with any art, is mostly guided by intuition. There are many stories
about programmers in the past who were like proficient artists and could
write good programs using an essentially build and fix model and some
esoteric knowledge. The bad programmers were left to wonder how could
some programmers effortlessly write elegant and correct programs each time.
In contrast, the programmers working in modern software industry rarely
make use of any esoteric knowledge and develop software by applying some
well-understood principles.

1.1.2 Evolution Pattern for Engineering Disciplines

If we analyse the evolution of the software development styles over the last
sixty years, we can easily notice that it has evolved from an esoteric art form
to a craft form, and then has slowly emerged as an engineering discipline.

Irrespective of whether it is iron making, paper making, software
development, or building construction; evolution of technology has followed
strikingly similar patterns. This pattern of technology development has
schematically been shown in Figure 1.1. It can be seen from Figure 1.1 that
every technology in the initial years starts as a form of art.

Over time, it graduates to a craft and finally emerges as an engineering
discipline. Let us illustrate this fact using an example. Consider the evolution
of the iron making technology. In ancient times, only a few people knew how
to make iron. Those who knew iron making, kept it a closely-guarded secret.
This esoteric knowledge got transferred from generation to generation as a
family secret. Slowly, over time technology graduated from an art to a craft
form where tradesmen shared their knowledge with their apprentices and the
knowledge pool continued to grow. Much later, through a systematic
organisation and documentation of knowledge, and incorporation of scientific
basis, modern steel making technology emerged. The story of the evolution
of the software engineering discipline is not much different.

The good programmers knew certain principles (or tricks) that helped them
write good programs, which they seldom shared with the bad programmers.
Program writing in later years was akin to a craft. Over the next several years,
all good principles (or tricks) that were organised into a body of knowledge
that forms the discipline of software engineering.

Figure 1.1: Evolution of technology with time.

Software engineering principles are now being widely used in industry, and
new principles are still continuing to emerge at a very rapid rate—making this
discipline highly dynamic. Software engineering practices have proven to be
indispensable to the development of large software products—though
exploratory styles are often used successfully to develop small programs such
as those written by students as classroom assignments.

1.1.3 A Solution to the Software Crisis

At present, software engineering appears to be among the few options
that are available to tackle the present software crisis. But, what
exactly is the present software crisis? What are its symptoms, causes,
and possible solutions? To understand the present software crisis,
consider the following facts. The expenses that organisations all over
the world are incurring on software purchases as compared to the
expenses incurred on hardware purchases have been showing an
worrying trend over the years (see Figure 1.2). As can be seen in the

figure, organisations are spending increasingly larger portions of their
budget on software as compared to that on hardware. Among all the
symptoms of the present software crisis, the trend of increasing
software costs is probably the most vexing.

Figure 1.2: Relative changes of hardware and software costs over time.

At present, many organisations are actually spending much more on
software than on hardware. If this trend continues, we might soon have a
rather amusing scenario. Not long ago, when you bought any hardware
product, the essential software that ran on it came free with it. But, unless
some sort of revolution happens, in not very distant future, hardware prices
would become insignificant compared to software prices—when you buy any
software product the hardware on which the software runs would come free
with the software!!!

With this brief discussion on the evolution and impact of the discipline of
software engineering, we now examine some basic concepts pertaining to the
different types of software development projects that are undertaken by
software companies.

1.2 SOFTWARE DEVELOPMENT PROJECTS

Before discussing about the various types of development projects that
are being undertaken by software development companies, let us first

understand the important ways in which professional software differs
from toy software such as those written by a student in his first
programming assignment.

Programs versus Products

Many toy software are being developed by individuals such as students
for their classroom assignments and hobbyists for their personal use.
These are usually small in size and support limited functionalities.
Further, the author of a program is usually the sole user of the software
and himself maintains the code. These toy software therefore usually
lack good user-interface and proper documentation. Besides these may
have poor maintainability, efficiency, and reliability. Since these toy
software do not have any supporting documents such as users’ manual,
maintenance manual, design document, test documents, etc., we call
these toy software as programs.

In contrast, professional software usually have multiple users and,
therefore, have good user-interface, proper users’ manuals, and good
documentation support. Since, a software product has a large number of
users, it is systematically designed, carefully implemented, and thoroughly
tested. In addition, a professionally written software usually consists not only
of the program code but also of all associated documents such as
requirements specification document, design document, test document, users’
manuals, etc. A further difference is that professional software are often too
large and complex to be developed by any single individual. It is usually
developed by a group of developers working in a team.

A professional software is developed by a group of software developers
working together in a team. It is therefore necessary for them to use some
systematic development methodology. Otherwise, they would find it very
difficult to interface and understand each other’s work, and produce a
coherent set of documents.

1.2.1 Types of Software Development Projects

A software development company is typically structured into a large
number of teams that handle various types of software development
projects. These software development projects concern the
development of either software product or some software service. In
the following subsections, we distinguish between these two types of
software development projects.

Software products

We all know of a variety of software such as Microsoft’s Windows and the
Office suite, Oracle DBMS, software accompanying a camcorder or a
laser printer, etc. These software are available off-the-shelf for
purchase and are used by a diverse range of customers. These are
called generic software products since many users essentially use the

same software. These can be purchased off-the-shelf by the customers.
When a software development company wishes to develop a generic
product, it first determines the features or functionalities that would be
useful to a large cross section of users. Based on these, the
development team draws up the product specification on its own.

 Many companies find it advantageous to develop product lines that

target slightly different market segments based on variations of
essentially the same software. For example, Microsoft targets desktops
and laptops through its Windows 8 operating system, while it targets
high-end mobile handsets through its Windows mobile operating system,
and targets servers through its Windows server operating system.

Software services

A software service usually involves either development of a customised

software or development of some specific part of a software in an

outsourced mode. A customised software is developed according to the

specification drawn up by one or at most a few customers. These need
to be developed in a short time frame (typically a couple of months),
and at the same time the development cost must be low. Usually, a
developing company develops customised software by tailoring some of

its existing software.

 For example, when an academic institution wishes to have a software
that would automate its important activities such as student registration,
grading, and fee collection; companies would normally develop such a
software as a customised product.

 Another type of software service is outsourced software. Sometimes, it
can make good commercial sense for a company developing a large project to
outsource some parts of its development work to other companies. The reasons

behind such a decision may be many. For example, a company might consider the
outsourcing option, if it feels that it does not have sufficient expertise to develop

some specific parts of the software; or if it determines that some parts can be

developed cost-effectively by another company. Since an outsourced project is a
small part of some larger project, outsourced projects are usually small in size and

need to be completed within a few months or a few weeks of time.

The types of development projects that are being undertaken by a
company can have an impact on its profitability.

1.2.2 Software Projects Being Undertaken by Indian Companies

Indian software companies have excelled in executing software services
projects and have made a name for themselves all over the world. Of
late, the Indian companies have slowly started to focus on product
development as well.

 Let us try to hypothesise the reason for this situation. Generic product
development entails certain amount of business risk. A company needs
to invest upfront and there is substantial risks concerning whether the
investments would turn profitable. Possibly, the Indian companies were
risk averse.

Till recently, the world-wide sales revenue of software products and
services were evenly matched. But, of late the services segment has been
growing at a faster pace due to the advent of application service provisioning
and cloud computing.

1.3 EXPLORATORY STYLE OF SOFTWARE DEVELOPMENT

We have already discussed that the exploratory program development style

refers to an informal development style where the programmer makes

use of his own intuition to develop a program rather than making use of

the systematic body of knowledge categorized under the software
engineering discipline. The exploratory development style gives
complete freedom to the programmer to choose the activities using
which to develop software. Though the exploratory style imposes no
rules a typical development starts after an initial briefing from the
customer. Based on this briefing, the developers start coding to develop
a working program. The software is tested and the bugs found are
fixed. This cycle of testing and bug fixing continues till the software
works satisfactorily for the customer. A schematic of this work sequence
in a build and fix style has been shown graphically in Figure 1.3.

Figure 1.3: Exploratory program development.

 Observe that coding starts after an initial customer briefing about what
is required. After the program development is complete, a test and fix
cycle continues till the program becomes acceptable to the customer.

An exploratory development style can be successful when used for
developing very small programs, and not for professional software. We had
examined this issue with the help of the petty contractor analogy. Now let us
examine this issue more carefully.

What is wrong with the exploratory style of software development?

Though the exploratory software development style is intuitively obvious, no
software team can remain competitive if it uses this style of software
development. Let us investigate the reasons behind this.

 In an exploratory development scenario, let us examine how do the effort
and time required to develop a professional software increases with the
increase in program size.

Let us first consider that exploratory style is being used to develop a
professional software. The increase in development effort and time with
problem size has been indicated in Figure 1.4. Observe the thick line plot that
represents the case in which the exploratory style is used to develop a
program. It can be seen that as the program size increases, the required
effort and time increases almost exponentially.

For large problems, it would take too long and cost too much to be
practically meaningful to develop the program using the exploratory style of
development. The exploratory development approach is said to break down
after the size of the program to be developed increases beyond certain value.
In this case, it becomes possible to solve a problem with effort and time that
is almost linear in program size. On the other hand, if programs could be
written automatically by machines, then the increase in effort and time with
size would be even closer to a linear (dotted line plot) increase with size.

Figure 1.4: Increase in development time and effort with problem size.

Now let us try to understand why does the effort required to develop a
program grow exponentially with program size when the exploratory style is
used and then this approach to develop a program completely breaks down
when the program size becomes large? To get an insight into the answer to
this question, we need to have some knowledge of the human cognitive
limitations (see the discussion on human psychology in subsection 1.3.1). As
we shall see, the perceived (or psychological) complexity of a problem grows
exponentially with its size.

Please note that the perceived complexity of a problem is not related to the
time or space complexity issues with which you are likely to be familiar with
from a basic course on algorithms.

Even if the exploratory style causes the perceived difficulty of a problem to
grow exponentially due to human cognitive limitations, how do the software
engineering principles help to contain this exponential rise in complexity with
problem size and hold it down to almost a linear increase?

You may still wonder that when software engineering principles are used,
why does the curve not become completely linear? The answer is that it is
very difficult to apply the decomposition and abstraction principles to
completely overcome the problem complexity.

Summary of the shortcomings of the exploratory style of software

development:

We briefly summarise the important shortcomings of using the
exploratory development style to develop a professional software:

 The foremost difficulty is the exponential growth of development time
and effort with problem size and large-sized software becomes almost
impossible using this style of development.

 The exploratory style usually results in unmaintainable code. The
reason for this is that any code developed without proper design would
result in highly unstructured and poor quality code.

 It becomes very difficult to use the exploratory style in a team
development environment. In the exploratory style, the development
work is undertaken without any proper design and documentation.

 Therefore it becomes very difficult to meaningfully partition the
work among a set of developers who can work concurrently. On the
other hand, team development is indispensable for developing modern
software—most software mandate huge development efforts,
necessitating team effort for developing these. Besides poor quality
code, lack of proper documentation makes any later maintenance of
the code very difficult.

1.3.1 Perceived Problem Complexity: An Interpretation Based on

Human Cognition Mechanism

 The rapid increase of the perceived complexity of a problem with
increase in problem size can be explained from an interpretation of the
human cognition mechanism. It can also explain why it becomes
practically infeasible to solve problems larger than a certain size while
using an exploratory style; whereas using software engineering
principles, the required effort grows almost linearly with size.

Psychologists say that the human memory can be thought to consist of two
distinct parts[Miller 56]: short-term and long-term memories. A schematic
representation of these two types of memories and their roles in human
cognition mechanism has been shown in Figure 1.5. In Figure 1.5, the block
labelled sensory organs represents the five human senses sight, hearing,
touch, smell, and taste. The block labelled actuator represents neuromotor
organs such as hand, finger, feet, etc. We now elaborate this human
cognition model in the following subsection.

Figure 1.5: Human cognition mechanism model.

Short-term memory: The short-term memory, as the name itself suggests, can

store information for a short while—usually up to a few seconds, and at most

for a few minutes. The short-term memory is also sometimes referred to as

the working memory. The information stored in the short-term memory is

immediately accessible for processing by the brain. The short-term memory

of an average person can store up to seven items; but in extreme cases it can
vary anywhere from five to nine items (7 ± 2). As shown in Figure 1.5, the

short-term memory participates in all interactions of the human mind with its

environment.
It should be clear that the short-term memory plays a very crucial part in

the human cognition mechanism. All information collected through the
sensory organs are first stored in the short-term memory. The short-term
memory is also used by the brain to drive the neuromotor organs. The mental
manipulation unit also gets its inputs from the short-term memory and stores
back any output it produces. Further, information retrieved from the long-
term memory first gets stored in the short-term memory. As you can notice,
this model is very similar to the organisation of a computer in terms of
cache, main memory, and processor.

Long-term memory: The size of the long- term memory can vary from several
million items to several billion items, largely depending on how actively a
person exercises his mental faculty. An item once stored in the long-term
memory, is usually retained for several years. But, how do items get stored in

the long-term memory? Items present in the short-term memory can get
stored in the long-term memory either through large number of refreshments
(repetitions) or by forming links with already existing items in the long-term
memory.

 For example, you possibly remember your own telephone number because
you might have repeated(refreshed) it for a large number of times in your
short-term memory. Let us now take an example of a situation where you
may form links to existing items in the long- term memory to remember
certain information. Suppose y o u want to remember the 10 digit mobile
number 9433795369. To remember it by rote may be intimidating. But,
suppose you consider the number as split into 9433 7953 69 and notice that
94 is the code for BSNL, 33 is the code for Kolkata, suppose 79 is your year of
birth, and 53 is your roll number, and the rest of the two numbers are e a ch
one less than the corresponding digits of the previous number.

A small program having just a few variables is within the easy grasp of an
individual. As the number of independent variables in the program increases,
it quickly exceeds the grasping power of an individual and would require an
unduly large effort to master the problem. This outlines a possible reason
behind the exponential nature of the effort-size plot (thick line) shown in
Figure 1.4. Please note that the situation depicted in Figure 1.4 arises mostly
due to the human cognitive limitations. Instead of a human, if a machine
could be writing (generating) a program, the slope of the curve would be
linear, a s the cache size (short-term memory) of a computer is quite large.
But, why does the effort-size curve become almost linear when software
engineering principles are deployed? This is because software engineering
principles extensively use the techniques that are designed specifically to
overcome the human cognitive limitations. We discuss this issue in the next
subsection.

1.3.2 Principles Deployed by Software Engineering to Overcome

Human Cognitive Limitations

We shall see throughout this book that a central theme of most of software
engineering principles is the use of techniques to effectively tackle the
problems that arise due to human cognitive limitations.

When the number of details (or variables) that one has to track to solve a problem
increases beyond seven, it exceeds the capacity of the short-term memory and it
becomes exceedingly more difficult for a human mind to grasp the problem.

In the following subsections, with the help of Figure 1.6(a) and (b), we
explain the essence of these two important principles and how they help to
overcome the human cognitive limitations. In the rest of this book, we shall
time and again encounter the use of these two fundamental principles in
various forms and flavours in the different software development activities. A
thorough understanding of these two principles is therefore needed.

Figure 1.6: Schematic representation.

Abstraction

Abstraction refers to construction of a simpler version of a problem by
ignoring the details. The principle of constructing an abstraction is popularly
known as modelling (or model construction).

When using the principle of abstraction to understand a complex problem,
we focus our attention on only one or two specific aspects of the problem and
ignore the rest. Whenever we omit some details of a problem to construct an
abstraction, we construct a model of the problem. In every day life, we use

the principle of abstraction frequently to understand a problem or to assess a
situation. Consider the following two examples.

Two important principles that are deployed by software engineering to overcome the
problems arising due to human cognitive limitations are—abstraction and
decomposition.

Abstraction is the simplification of a problem by focusing on only one aspect of the
problem while omitting all other aspects.

 Consider the following situation. Suppose you are asked to develop an
understanding of all the living beings inhabiting the earth. If you use
the naive approach, you would start taking up one living being after
another who inhabit the earth and start understanding them. Even
after putting in tremendous effort, you would make little progress and
left confused since there are billions of living things on earth and the
information would be just too much for any one to handle. Instead,
what can be done is to build and understand an abstraction hierarchy
of all living beings as shown in Figure 1.7. At the top level, we
understand that there are essentially three fundamentally different
types of living beings—plants, animals, and fungi. Slowly more details
are added about each type at each successive level, until we reach the
level of the different species at the leaf level of the abstraction tree.

Figure 1.7: An abstraction hierarchy classifying living organisms.

A single level of abstraction can be sufficient for rather simple problems.
However, more complex problems would need to be modelled as a hierarchy
of abstractions. A schematic representation of an abstraction hierarchy has
been shown in Figure 1.6(a). The most abstract representation would have
only a few items and would be the easiest to understand. After one
understands the simplest representation, one would try to understand the
next level of abstraction where at most five or seven new information are
added and so on until the lowest level is understood. By the time, one
reaches the lowest level, he would have mastered the entire problem.

Decomposition

Decomposition is another important principle that is available in the
repertoire of a software engineer to handle problem complexity. This principle
is profusely made use by several software engineering techniques to contain
the exponential growth of the perceived problem complexity. The
decomposition principle is popularly known as the divide and conquer principle.

A popular way to demonstrate the decomposition principle is by trying to
break a large bunch of sticks tied together and then breaking them
individually. Figure 1.6(b) shows the decomposition o f a large problem into
many small parts.

As an example o f a use of the principle of decomposition, consider the
following. You would understand a book better when the contents are
decomposed (organised) into more or less independent chapters. That is,

each chapter focuses on a separate topic, rather than when the book mixes
up all topics together throughout all the pages. Similarly, each chapter should
be decomposed into sections such that each section discusses a different
issue. Each section should be decomposed into subsections and so on. If
various subsections are nearly independent of each other, the subsections
can be understood one by one rather than keeping on cross referencing to
various subsections across the book to understand one.

Why study software engineering?

Let us examine the skills that you could acquire from a study of the
software engineering principles. The following two are possibly the
most important skill you could be acquiring after completing a study of
software engineering:

 The skill to participate in development of large software. You can
meaningfully participate in a team effort to develop a large software
only after learning the systematic techniques that are being used in the
industry.

 You would learn how to effectively handle complexity in a software
development problem. In particular, you would learn how to apply the

The decomposition principle advocates decomposing the problem into many small
independent parts. The small parts are then taken up one by one and solved
separately. The idea is that each small part would be easy to grasp and understand
and can be easily solved. The full problem is solved when all the parts are solved.

principles of abstraction and decomposition to handle complexity
during various stages in software development such as specification,
design, construction, and testing.

1.4 EMERGENCE OF SOFTWARE ENGINEERING

We have already pointed out that software engineering techniques have
evolved over many years in the past. This evolution is the result of a
series of innovations and accumulation of experience about writing

good quality programs. Since these innovations and programming
experiences are too numerous, let us briefly examine only a few of
these innovations and programming experiences which have
contributed to the development of the software engineering discipline.

1.4.1 Early Computer Programming

Early commercial computers were very slow and too elementary as
compared to today’s standards. Even simple processing tasks took
considerable computation time on those computers. No wonder that
programs at that time were very small in size and lacked sophistication.
Those programs were usually written in assembly languages. Program
lengths were typically limited to about a few hundreds of lines of
monolithic assembly code. Every programmer developed his own
individualistic style of writing programs according to his intuition and
used this style ad hoc while writing different programs.

 In simple words, programmers wrote programs without formulating any
proper solution strategy, plan, or design a jump to the terminal and start
coding immediately on hearing out the problem. They then went on
fixing any problems that they observed until they had a program that
worked reasonably well. We have already designated this style of
programming as the build and fix (or the exploratory programming) style.

1.4.2 High-level Language Programming

Computers became faster with the introduction of the semiconductor
technology in the early 1960s. Faster semiconductor transistors
replaced the prevalent vacuum tube-based circuits in a computer. With
the availability of more powerful computers, it became possible to solve
larger and more complex problems. At this time, high-level languages
such as FORTRAN, ALGOL, and COBOL were introduced. This

considerably reduced the effort required to develop software and helped
programmers to write larger programs (why?). Writing each high-level
programming construct in effect enables the programmer to write
several machine instructions. Also, the machine details (registers, flags,
etc.) are abstracted from the programmer. However, programmers
were still using the exploratory style of software development. Typical
programs were limited t o sizes of around a few thousands of lines of
source code.

1.4.3 Control Flow-based Design

As the size and complexity of programs kept on increasing, the
exploratory programming style proved to be insufficient. Programmers
found it increasingly difficult not only to write cost-effective and correct
programs, but also to understand and maintain programs written by
others. To cope up with this problem, experienced programmers
advised other programmers to pay particular attention to the design of
a program’s control flow structure.

A program’s control flow structure indicates the sequence in which the
program’s instructions are executed.

In order to help develop programs having good control flow structures, the
flow charting technique was developed. E v e n today, t h e flow charting

technique is being used to represent and design algorithms; though the
popularity of flow charting represent and design programs has want to a
great extent due to the emergence of more advanced techniques.

1.4.4 Data Structure-oriented Design

Computers became even more powerful with the advent o f integrated

circuits (ICs) in the early seventies. These could now be used to solve

more complex problems. Software developers were tasked to develop
larger and more complicated software. which often required writing in

excess of several tens of thousands of lines of source code. The control

flow-based program development techniques could not be used

satisfactorily any more to write those programs, and more effective
program development techniques were needed.

It was soon discovered that while developing a program, it is much more
important to pay attention to the design of the important data structures of
the program than to the design of its control structure. Design techniques
based on this principle are called data structure- oriented design techniques.

1.4.5 Data Flow-oriented Design

As computers became still faster and more powerful with the introduction of
very large scale integrated (VLSI) Circuits and some new architectural concepts,

more complex and sophisticated software were needed to solve further
challenging problems. Therefore, software developers looked out for more
effective techniques for designing software and soon d a t a flow-oriented

techniques were proposed.

The functions (also called as processes) and the data items that are

exchanged between the different functions are represented in a diagram

known as a data flow diagram (DFD). The program structure can be designed

from the DFD representation of the problem.

DFDs: A crucial program representation for procedural program design

For example, Figure 1.11 shows the data-flow representation of an automated
car assembly plant. If you have never visited an automated car assembly
plant, a brief description of an automated car assembly plant would be
necessary. In an automated car assembly plant, there are several processing
stations (also called workstations) which are located along side of a conveyor
belt (also called an assembly line).

Each workstation is specialised to do jobs such a s fitting of wheels, fitting the
engine, spray painting the car, etc. As the partially assembled program moves
along the assembly line, different workstations perform their respective jobs
on the partially assembled software. Each circle in the DFDmodel of Figure
1.11 represents a workstation (called a process o r bubble). Each workstation
consumes certain input items and produces certain output items. As a car
under assembly arrives at a workstation, it fetches the necessary items to be
fitted from the corresponding stores (represented by two parallel horizontal
lines), and as soon as the fitting work is complete passes on to the next
workstation. It is easy to understand the DFD model of the car assembly plant
shown in Figure 1.11 even without knowing anything regarding DFDs. In this
regard, we can say that a major advantage of the DFDs is their simplicity.

Figure 1.11: Data flow model of a car assembly plant.

1.4.6 Object-oriented Design

Data flow-oriented techniques evolved into object-oriented design (OOD)
techniques in the late seventies. Object-oriented design technique is an
intuitively appealing approach, where the natural objects (such as
employees, pay-roll-register, etc.) relevant to a problem a r e first
identified and then the relationships among the objects such as
composition, reference, and inheritance are determined. Each object
essentially acts as a data hiding (also known as data abstraction) entity.

Object-oriented techniques have gained wide spread acceptance
because of their simplicity, the scope for code and design reuse,
promise of lower development time, lower development cost, more
robust code, and easier maintenance.

1.4.7 What Next?

In this section, we have so far discussed how software design techniques
have evolved since the early days of programming. However, we have
already seen that in the past, the design techniques have evolved each
time to meet the challenges faced in developing contemporary
software. Therefore, the next development would most probably occur
to help meet the challenges being faced by the modern software
designers. To get an indication of the techniques that are likely to
emerge, let us first examine what are the current challenges in
designing software. First, program sizes are further increasing as
compared to what was being developed a decade back. Second, many
of the present day software are required to work in a client-server
environment through a web browser-based access (called web-based

software). At the same time, embedded devices are experiencing an
unprecedented growth and rapid customer acceptance in the last

decade. It is there for necessary for developing applications for small
hand held devices and embedded processors. We examine later in this
text how aspect-oriented programming, client- server based design, and
embedded software design techniques have emerged rapidly. In the
current decade, service- orientation has emerged as a recent direction of
software engineering due to the popularity of web-based applications
and public clouds.

Figure 1.12: Evolution of software design techniques.

1.4.8 Other Developments

It can be seen that remarkable improvements to the prevalent software
design technique occurred almost every passing decade. The
improvements to the software design methodologies over the last five
decades have indeed been remarkable. In addition to the
advancements made to the software design techniques, several other
new concepts and techniques for effective software development were
also introduced. These new techniques include life cycle models,

specification techniques, project management techniques, testing
techniques, debugging techniques, quality assurance techniques,
software measurement techniques, computer aided software engineering

(CASE) tools, etc. The development of these techniques accelerated the
growth of software engineering as a discipline. We shall discuss these
techniques in the later chapters.

1.5 NOTABLE CHANGES IN SOFTWARE DEVELOPMENT PRACTICES

Before we discuss the details of various software engineering principles, it
is worthwhile to examine the glaring differences that you would notice when
you observe an exploratory style of software development and another
development effort based on modern software engineering practices. The
following noteworthy differences between these two software development
approaches would be immediately observable.

 An important difference is that the exploratory software development
style is based on error correction (build and f i x) while the software

engineering techniques are based on the principles of error prevention.

Inherent in the software engineering principles is the realisation that it
is much more cost-effective to prevent errors from occurring than to
correct them as and when they are detected. Even when mistakes are
committed during development, software engineering principles
emphasize detection of errors as detected only during the final product
testing. In contrast, the modern practice of software development is to
develop the software through several well-defined stages such as
requirements specification, design, coding, testing, etc., and attempts
are made to detect and fix as many errors as possible in the same
phase in which they are made.

 I n t h e exploratory style, coding wa s considered synonymous with
software development. For instance, this naive wa y of developing a
software believed in developing a working system as quickly as
possible and then successively modifying it until i t performed
satisfactorily. Exploratory programmers literally dive at the computer to
get started with their programs even before they fully learn about the
problem!!! It was recognised that exploratory programming not only
turns out to be prohibitively costly for non-trivial problems, but also
produces hard-to-maintain programs. Even minor modifications to such
programs later can become nightmarish. In the modern software
development style, coding is regarded as only a small part of the

overall software development a ct i vi t i es. There are several
development activities such as design and testing which may demand
much more effort than coding.

 A lot of attention is now being paid to requirements specification.
Significant effort is being devoted to develop a clear and correct
specification of the problem before any development activity starts.
Unless the requirements specification is able to correctly capture the
exact customer requirements, large number of rework would be
necessary at a later stage. Such rework would result in higher cost of
development and customer dissatisfaction.

 Now there is a distinct design phase where standard design techniques
are employed to yield coherent and complete design models.

 Periodic reviews are being carried out during all stages of the
development process. The main objective of carrying out reviews is
phase containment of errors, i.e. detect and correct errors as soon as

possible. Phase containment of errors is an important software
engineering principle. We will discuss this technique in Chapter 2.

 Today, software testing h a s become very systematic and standard
testing techniques are available. Testing activity has also become all
encompassing, as test cases are being developed right from the
requirements specification stage.

 There is better visibility of the software through various developmental
activities.

 In the past, very little attention was being paid to producing good
quality and consistent documents. In the exploratory style, the design
and test activities, even if carried out (in whatever way), were not
documented satisfactorily. Today, consciously good quality documents
are being developed during software development. This has made fault
diagnosis and maintenance far more smoother. We will see in Chapter

3 that i n addition to facilitating product maintenance, increased
visibility makes management of a software project easier.

 Now, projects are being thoroughly planned. The primary objective of
project planning is to ensure that the various development activities
take place at the correct time and no activity is halted due to the want
of some resource. Project planning normally includes preparation of
various types of estimates, resource scheduling, and development of
project tracking plans. Several techniques and automation tools for

tasks such as configuration management, cost estimation, scheduling,

etc., are being used for effective software project management.

 Several metrics (quantitative measurements) of the products and the
product development activities are being collected to help in software
project management and software quality assurance.

1.6 COMPUTER SYSTEMS ENGINEERING

In all the discussions so far, we assumed that the software being
developed would run on some general-purpose hardware platform such
as a desktop computer or a server. But, in several situations it may be
necessary to develop special hardware on which the software would
run. Examples of such systems are numerous, and include a robot, a
factory automation system, and a cell phone. In a cell phone, there is a
special processor and other specialised devices such as a speaker and a
microphone. I t can run only the programs written specifically for it.
Development of such systems entails development of both software and
specific hardware that would run the software. Computer systems
engineering addresses development of such systems requiring
development of both software and specific hardware to run the
software. Thus, systems engineering encompasses software
engineering.

The general model of systems engineering is shown schematically in Figure

1.12. One of the important stages in systems engineering i s the stage in
which decision is made regarding the parts of the problems that are to be
implemented in hardware and the ones that would be implemented in
software. This has been represented by the box captioned hardware-software
partitioning in Figure 1.13. While partitioning the functions between hardware
and software, several trade-offs such as flexibility, cost, speed of operation,
etc., need to be considered. The functionality implemented in hardware run
faster. On the other had, functionalities implemented in software is easier to
extend. Further, it is difficult to implement complex functions in hardware.
Also, functions implemented in hardware incur extra space, weight,
manufacturing cost, and power overhead.

After the hardware-software partitioning stage, development of hardware
and software are carried out concurrently (shown as concurrent branches in
Figure 1.13). In system engineering, testing the software during development
becomes a tricky issue, the hardware on which the software would run and

tested would still be under development—remember that the hardware and
the software are being developed at the same time. To test the software

during development, it usually becomes necessary to develop simulators that
mimic the features of the hardware being developed. The software is tested
using these simulators. Once both hardware and software development are
complete, these are integrated and tested. The project management activity
is required through out the duration of system development as shown in
Figure 1.13. In this text, we have confined our attention to software
engineering only.

Figure 1.13: Computer systems engineering.

Chapter

2

SOFTWARE LIFE CYCLE MODELS

2.1 WATERFALL MODEL AND ITS EXTENSIONS

The waterfall model and its derivatives were extremely popular in the
1970s and still are heavily being used across many development
projects. The waterfall model is possibly the most obvious and intuitive
way in which software can be developed through team effort. We can
think of the waterfall model as a generic model that has been extended
in many ways for catering to certain specific software development
situations to realise all other software life cycle models. For this reason,
after discussing the classical and iterative waterfall models, we discuss
its various extensions.

2.1.1 Classical Waterfall Model

Classical waterfall model is intuitively the most obvious way to develop
software. It is simple but idealistic. In fact, it is hard to put this model
into use in any non-trivial software development project. One might
wonder if this model is hard to use in practical development projects,
then why study it at all? The reason is that all other life cycle models
can be thought of as being extensions of the classical waterfall model.

Therefore, it makes sense to first understand the classical waterfall
model, in order to be able to develop a proper understanding of other
life cycle models. Besides, we shall see later in this text that this model
though not used for software development; is implicitly used while
documenting software.

The classical waterfall model divides the life cycle into a set of phases as
shown in Figure 2.1. It can be easily observed from this figure that the
diagrammatic representation of the classical waterfall model resembles a
multi-level waterfall. This resemblance justifies the name of the model.

Figure 2.1: Classical waterfa l model.

Phases of the classical waterfall model

The different phases of the classical waterfall model have been shown in
Figure 2.1. As shown in Figure 2.1, the different phases are—feasibility
study, requirements analysis and specification, design, coding and unit
testing, integration and system testing, and maintenance. The phases
starting from the feasibility study to the integration and system testing
phase are known as the development phases.

A software is developed during the development phases, and at the
completion of the development phases, the software is delivered to the

customer. After the delivery of software, customers start to use the
software signalling the commencement of the operation phase. As the
customers start to use the software, changes to it become necessary on
account of bug fixes and feature extensions, causing maintenance works
to be undertaken. Therefore, the last phase is also known as the
maintenance phase of the life cycle.

In the waterfall model, different life cycle phases typically require relatively
different amounts of efforts to be put in by the development team. The
relative amounts of effort spent on different phases for a typical software has
been shown in Figure 2.2. Observe from Figure 2.2 that among all the life
cycle phases, the maintenance phase normally requires the maximum effort.
On the average, about 60 per cent of the total effort put in by the
development team in the entire life cycle is spent on the maintenance
activities alone.

Figure 2.2: Relative effort distribution among different phases of a typical product.

However, among the development phases, the integration and system
testing phase requires the maximum effort in a typical development project.
In the following subsection, we briefly describe the activities that are carried
out in the different phases of the classical waterfall model.

Feasibility study

The main focus of the feasibility study stage is to determine whether it
would be financially and technically feasible to develop the software. The

feasibility study involves carrying out several activities such as
collection of basic information relating to the software such as the
different data items that would be input to the system, the processing
required to be carried out on these data, the output data required to be
produced by the system, as well as various constraints on the
development. These collected data are analysed to perform at the
following:

Development of an overall understanding of the problem: It is
necessary to first develop an overall understanding of what the customer
requires to be developed. For this, only the the important requirements of the
customer need to be understood and the details of various requirements such
as the screen layouts required in the graphical user interface (GUI), specific

formulas or algorithms required for producing the required results, and the
databases schema to be used are ignored.

Formulation of the various possible strategies for solving the
problem: In this activity, various possible high-level solution schemes to the
problem are determined. For example, solution in a client-server framework
and a standalone application framework may be explored.

Evaluation of the different solution strategies: The different identified
solution schemes are analysed to evaluate their benefits and shortcomings.
Such evaluation often requires making approximate estimates of the
resources required, cost of development, and development time required.
The different solutions are compared based on the estimations that have
been worked out. Once the best solution is identified, all activities in the later
phases are carried out as per this solution. At this stage, it may also be
determined that none of the solutions is feasible due to high cost, resource
constraints, or some technical reasons. This scenario would, of course,
require the project to be abandoned.

We can summarise the outcome of the feasibility study phase by noting
that other than deciding whether to take up a project or not, at this stage
very high-level decisions regarding the solution strategy is defined. Therefore,
feasibility study is a very crucial stage in software development. The
following is a case study of the feasibility study undertaken by an
organisation. It is intended to give a feel of the activities and issues involved
in the feasibility study phase of a typical software project.

Requirements analysis and specification

The aim of the requirements analysis and specification phase is to
understand the exact requirements of the customer and to document

them properly. This phase consists of two distinct activities, namely
requirements gathering and analysis, and requirements specification. In
the following subsections, we give an overview of these two activities:

 Requirements gathering and analysis: The goal of the
requirements gathering activity is to collect all relevant information
regarding the software to be developed from the customer with a view
to clearly understand the requirements. For this, first requirements are
gathered from the customer and then the gathered requirements are
analysed. The goal of the requirements analysis activity is to weed out

the incompleteness and inconsistencies in these gathered
requirements. Note that a n inconsistent requirement is one in which

some part of the requirement contradicts with some other part. On the
other hand, a n incomplete requirement is one in which some parts of

the actual requirements have been omitted.
 Requirements specification: After the requirement gathering and
analysis activities are complete, the identified requirements are
documented. This is called a software requirements specification (SRS)

document. The SRS document is written using end-user terminology.
This makes the SRS document understandable to the customer.
Therefore, understandability of the SRS document is an important
issue. The SRS document normally serves as a contract between the
development team and the customer. Any future dispute between the
customer and the developers can be settled by examining the SRS
document. The SRS document is therefore an important document
which must be thoroughly understood by the development team, and
reviewed jointly with the customer. The SRS document not only forms
the basis for carrying out all the development activities, but several
documents such as users’ manuals, system test plan, etc. are prepared
directly based on it. In Chapter 4, we examine the requirements
analysis activity and various issues involved in developing a good SRS
document in more detail.

Design

The goal of the design phase is to transform the requirements specified
in the SRS document into a structure that is suitable for implementation
in some programming language. In technical terms, during the design
phase the software architecture is derived from the SRS document. Two

distinctly different design approaches are popularly being used at
present—the procedural and object-oriented design approaches.

 Procedural design approach: The traditional design approach is in

use in many software development projects at the present time. This

traditional design technique is based on the data flow-oriented design
approach. It consists of two important activities; first structured analysis

of the requirements specification is carried out where the detailed
structure of the problem is examined. This is followed by a structured

design step where the results of structured analysis are transformed

into the software design.

During structured analysis, the functional requirements specified in the
SRS document are decomposed into subfunctions and the data-flow among
these subfunctions is analysed and represented diagrammatically in the
form of DFDs. The DFD technique is discussed in Chapter 6. Structured
design is undertaken once the structured analysis activity is complete.
Structured design consists of two main activities—architectural design (also
called high-level design) and detailed design (also called Low-level design).

High-level design involves decomposing the system i nt o modules, and
representing the interfaces and the invocation relationships among the
modules..

 Object-oriented design approach: In this technique, various
objects that occur in the problem domain and the solution domain are
first identified and the different relationships that exist among these
objects are identified. The object structure is further refined to obtain
the detailed design. The OOD approach is credited to have several
benefits such as lower development time and effort, and better
maintainability of the software.

Coding and unit testing

The purpose of the coding and unit testing phase is to translate a
software design into source code and to ensure that individually each
function is working correctly. The coding phase is also sometimes called
t h e implementation phase, since the design is implemented into a

workable solution in this phase. Each component of the design is
implemented as a program module. The end-product of this phase is a
set of program modules that have been individually unit tested. The
main objective of unit testing is to determine the correct working of the
individual modules. The specific activities carried out during unit testing
include designing test cases, testing, debugging to fix problems, and
management of test cases.

Integration and system testing

Integration of different modules is undertaken soon after they have been
coded and unit tested. During the integration and system testing phase, the
different modules are integrated in a planned manner. Various modules
making up a software are almost never integrated in one shot (can you guess
the reason for this?). Integration of various modules are normally carried out

incrementally over a number of steps. During each integration step,
previously planned modules are added to the partially integrated system and
the resultant system is tested. Finally, after all the modules have been
successfully integrated and tested, the full working system is obtained.
System testing is carried out on this fully working system.

Maintenance

The total effort spent on maintenance of a typical software during its
operation phase is much more than that required for developing the
software itself. Many studies carried out in the past confirm this and
indicate that the ratio of relative effort of developing a typical software
product and the total effort spent on its maintenance is roughly 40:60.
Maintenance is required in the following three types of situations:

 Corrective maintenance: This type of maintenance is carried out to
correct errors that were not discovered during the product
development phase.

 Perfective maintenance: This type of maintenance is carried out to
improve the performance of the system, or to enhance the
functionalities of the system based on customer’s requests.

 Adaptive maintenance: Adaptive maintenance is usually required for
porting the software to work in a new environment. For example,
porting may be required to get the software to work on a new
computer platform or with a new operating system.

Shortcomings of the classical waterfall model

The classical waterfall model is a very simple and intuitive model.
However, it suffers from several shortcomings. Let us identify some of
the important shortcomings of the classical waterfall model:

No feedback paths: In classical waterfall model, the evolution of a software
from one phase to the next is analogous to a waterfall. Just as water in a
waterfall after having flowed down cannot flow back, once a phase is
complete, the activities carried out in it and any artifacts produced in this
phase are considered to be final and are closed for any rework. This requires
that all activities during a phase are flawlessly carried out.

Difficult to accommodate change requests: This model assumes that all
customer requirements can be completely and correctly defined at the
beginning of the project. There is much emphasis on creating an

unambiguous and complete set of requirements. But, it is hard to achieve this
even in ideal project scenarios. The customers’ requirements usually keep on
changing with time. But, in this model it becomes difficult to accommodate
any requirement change requests made by the customer after the
requirements specification phase is complete, and this often becomes a
source of customer discontent.

Inefficient error corrections: This model defers integration of code and
testing tasks until it is very late when the problems are harder to resolve.

No overlapping of phases: This model recommends that the phases be
carried out sequentially—new phase can start only after the previous one
completes. However, it is rarely possible to adhere to this recommendation
and it leads to a large number of team members to idle for extended periods.

Is the classical waterfall model useful at all?

The rationale behind preparation of documents based on the classical
waterfall model can be explained using Hoare’s metaphor of mathematical
theorem [1994] proving—A mathematician presents a proof as a single chain
of deductions, even though the proof might have come from a convoluted set
of partial attempts, blind alleys and backtracks. Imagine how difficult it would
be to understand, if a mathematician presents a proof by retaining all the
backtracking, mistake corrections, and solution refinements he made while
working out the proof.

2.1.2 Iterative Waterfall Model

We had pointed out in the previous section that in a practical software
development project, the classical waterfall model is hard to use. We had
branded the classical waterfall model as an idealistic model. In this context,
the iterative waterfall model can be thought of as incorporating the necessary
changes to the classical waterfall model to make it usable in practical
software development projects.

The feedback paths introduced by the iterative waterfall model are shown
in Figure 2.3. The feedback paths allow for correcting errors committed by a
programmer during some phase, as and when these are detected in a later

The main change brought about by the iterative waterfall model to the classical
waterfall model is in the form of providing feedback paths from every phase to its
preceding phases.

phase. For example, if during the testing phase a design error is identified,
then the feedback path allows the design to be reworked and the changes to
b e reflected in the design documents and all other subsequent documents.
Please notice that in Figure 2.3 there is no feedback path to the feasibility
stage. This is because once a team having accepted to take up a project,
does not give up the project easily due to legal and moral reasons.

Figure 2.3: Iterative waterfa l model.

Almost every life cycle model that we discuss are iterative in nature, except
the classical waterfall model and the V-model—which are sequential in
nature. In a sequential model, once a phase is complete, no work product of
that phase are changed later.

Phase containment of errors

No matter how careful a programmer may be, he might end up committing
some mistake or other while carrying out a life cycle activity. These mistakes
result in errors (also called faults o r bugs) in the work product. It is

advantageous to detect these errors in the same phase in which they take
place, since early detection of bugs reduces the effort and time required for
correcting those. For example, if a design problem i s detected in the design
phase itself, then the problem can be taken care of much more easily than if
the error is identified, say, at the end of the testing phase. In the later case,
it would be necessary not only to rework the design, but also to appropriately
redo the relevant coding as well as the testing activities, thereby incurring
higher cost. It may not always be possible to detect all the errors in the same

phase in which they are made. Nevertheless, the errors should be detected as
early as possible.

For achieving phase containment of errors, how can the developers detect
almost all error that they commit in the same phase? After all, the end
product of many phases are text or graphical documents, e.g. SRS document,
design document, test plan document, etc. A popular technique is to
rigorously review the documents produced at the end of a phase.

Phase overlap

Even though the strict waterfall model envisages sharp transitions to
occur from one phase to the next (see Figure 2.3), in practice the
activities of different phases overlap (as shown in Figure 2.4) due to
two main reasons:

 In spite of the best effort to detect errors in the same phase in which
they are committed, some errors escape detection and are detected in
a later phase. These subsequently detected errors cause the activities
of some already completed phases to be reworked. If we consider such
rework after a phase is complete, we can say that the activities
pertaining to a phase do not end at the completion of the phase, but
overlap with other phases as shown in Figure 2.4.

 An important reason for phase overlap is that usually the work required
to be carried out in a phase is divided among the team members.
Some members may complete their part of the work earlier than other
members. If strict phase transitions are maintained, then the team
members who complete their work early would idle waiting for the
phase to be complete, and are said to be in a blocking state. Thus the

developers who complete early would idle while waiting for their team
mates to complete their assigned work. Clearly this is a cause for
wastage of resources and a source of cost escalation and inefficiency.
As a result, in real projects, the phases are allowed to overlap. That is,
once a developer completes his work assignment for a phase, proceeds
to start the work for the next phase, without waiting for all his team
members to complete their respective work allocations.

Considering these situations, the effort distribution for different phases with

time would be as shown in Figure 2.4.

Figure 2.4: Distribution of effort for various phases in the iterative waterfa l model.

Shortcomings of the iterative waterfall model

Some of the glaring shortcomings of the waterfall model when used in
the present-day software development projects are as following:

Difficult to accommodate change requests: A major problem with the
waterfall model is that the requirements need to be frozen before the
development starts. Based on the frozen requirements, detailed plans are
made for the activities to be carried out during the design, coding, and
testing phases. Since activities are planned for the entire duration,
substantial effort and resources are invested in the activities as developing
the complete requirements specification, design for the complete functionality
and so on. Therefore, accommodating even small change requests after the
development activities are underway not only requires overhauling the plan,
but also the artifacts that have already been developed.

The basic assumption made in the iterative waterfall model that methodical
requirements gathering and analysis alone would comprehensively and
correctly identify all the requirements by the end of the requirements phase is
flawed.

Incremental delivery not supported: In the iterative waterfall model, the
full software is completely developed and tested before it is delivered to the
customer. There is no provision for any intermediate deliveries to occur. This

is problematic because the complete application may take several months or
years to be completed and delivered to the customer. By the time the
software is delivered, installed, and becomes ready for use, the customer’s
business process might have changed substantially. This makes the
developed application a poor fit to the customer’s requirements.

Phase overlap not supported: For most real life projects, i t becomes

difficult to follow the rigid phase sequence prescribed by the waterfall model.
By the term a rigid phase sequence, we mean that a phase can start only after

the previous phase is complete in all respects. As already discussed, strict
adherence to the waterfall model creates blocking states. The waterfall model

is usually adapted for use in real-life projects by allowing overlapping of

various phases as shown in Figure 2.4.

Error correction unduly expensive: In waterfall model, validation is
delayed till the complete development of the software. As a result, the
defects that are noticed at the time of validation incur expensive rework and
result in cost escalation and delayed delivery.

Limited customer interactions: This model supports very limited customer
interactions. It is generally accepted that software developed in isolation
from the customer is the cause of many problems. In fact, interactions occur
only at the start of the project and at project completion. As a result, the
developed software usually turns out to be a misfit to the customer’s actual
requirements.

Heavy weight: The waterfall model overemphasises documentation. A
significant portion of the time of the developers is spent in preparing
documents, and revising them as changes occur over the life cycle. Heavy
documentation though useful during maintenance and for carrying out review,
is a source of team inefficiency.

No support for risk handling and code reuse: It becomes difficult to use
the waterfall model in projects that are susceptible to various types of risks,
or those involving significant reuse of existing development artifacts. Please
recollect that software services types of projects usually involve significant
reuse.

2.1.3 V-Model

A popular development process model, V-model is a variant of the waterfall
model. As is the case with the waterfall model, this model gets its name from
its visual appearance (see Figure 2.5). In this model verification and

validation activities are carried out throughout the development life cycle,
and therefore the chances bugs in the work products considerably reduce.
This model is therefore generally considered to be suitable for use in projects
concerned with development of safety-critical software that are required to
have high reliability.

Figure 2.5: V-model.

As shown in Figure 2.5, there are two main phases—development and
validation phases. The left half of the model comprises the development
phases and the right half comprises the validation phases.

 In each development phase, along with the development of a work
product, test case design and the plan for testing the work product are
carried out, whereas the actual testing is carried out in the validation
phase. This validation plan created during the development phases is
carried out in the corresponding validation phase which have been
shown by dotted arcs in Figure 2.5.

 In the validation phase, testing is carried out in three steps—unit,
integration, and system testing. The purpose of these three different
steps of testing during the validation phase is to detect defects that
arise in the corresponding phases of software development—

requirements analysis and specification, design, and coding
respectively.

V-model versus waterfall model

We have already pointed out that the V-model can be considered to be
an extension of the waterfall model. However, there are major
differences between the two. As already mentioned, in contrast to the
iterative waterfall model where testing activities are confined to the
testing phase only, in the V-model testing activities are spread over the
entire life cycle. As shown in Figure 2.5, during the requirements
specification phase, the system test suite design activity takes place.
During the design phase, the integration test cases are designed.
During coding, the unit test cases are designed. Thus, we can say that
in this model, development and validation activities proceed hand in
hand.

Advantages of V-model

The important advantages of the V-model over the iterative waterfall
model are as following:

 In the V-model, much o f the testing activities (test case design, test
planning, etc.) are carried out in parallel with the development
activities. Therefore, before testing phase starts significant part of the
testing activities, including test case design and test planning, is
already complete. Therefore, this model usually leads to a shorter
testing phase and an overall faster product development as compared
to the iterative model.

 Since test cases are designed when the schedule pressure has not built
up, the quality of the test cases are usually better.

 The test team is reasonably kept occupied throughout the
development cycle in contrast to the waterfall model where the testers
are active only during the testing phase. This leads to more efficient
manpower utilisation.

 In the V-model, the test team is associated with the project from the

beginning. Therefore they build up a good understanding of the
development artifacts, and this in turn, helps them to carry out
effective testing of the software. In contrast, in the waterfall model
often the test team comes on board late in the development
cycle,since no testing activities are carried out before the start of
the implementation and testing phase.

Disadvantages of V-model

Being a derivative of the classical waterfall model, this model inherits
most of the weaknesses of the waterfall model.

2.1.4 Prototyping Model

The prototype model is also a popular life cycle model. The prototyping

model can be considered to be an extension of the waterfall model.
This model suggests building a working prototype of the system, before

development of the actual software. A prototype is a toy and crude

implementation of a system. It has limited functional capabilities, low

reliability, or inefficient performance as compared to the actual
software.

 A prototype can be built very quickly by using several shortcuts. The

shortcuts usually involve developing inefficient, inaccurate, or dummy

functions. The shortcut implementation of a function, for example, may

produce the desired results by using a table look-up rather than by
performing the actual computations. Normally the term rapid prototyping

is used when software tools are used for prototype construction. For
example, tools based on fourth generation languages (4GL) may be used

to construct the prototype for the GUI parts.

Necessity of the prototyping model

The prototyping model is advantageous to use for specific types of
projects. In the following, we identify three types of projects for which
the prototyping model can be followed to advantage:

 It is advantageous to use the prototyping model for development of
the graphical user interface (GUI) part of an application. Through the
use of a prototype, it becomes easier to illustrate the input data
formats, messages, reports, and the interactive dialogs to the
customer. This is a valuable mechanism for gaining better

understanding of the customers’ needs. In this regard, the prototype
model turns out to be especially useful in developing the graphical user

interface (GUI) part of a system. For the user, it becomes much easier

to form an opinion regarding what would be more suitable by
experimenting with a working user interface, rather than trying to
imagine the working of a hypothetical user interface.

 The prototyping model is especially useful when the exact technical
solutions are unclear to the development team. A prototype can help
them to critically examine the technical issues associated with product
development.

 An important reason for developing a prototype is that it is impossible
to “get it right” the first time. As advocated by Brooks [1975], one
must plan to throw away the software in order to develop a good
software later. Thus, the prototyping model can be deployed when
development of highly optimised and efficient software is required.

From the above discussions, we can conclude the following:

Life cycle activities of prototyping model

The prototyping model of software development is graphically shown in

Figure 2.6. As shown in Figure 2.6, software is developed through two
major activities—prototype construction and iterative waterfall-based
software development.

Prototype development: Prototype development starts with an initial
requirements gathering phase. A quick design is carried out and a prototype
is built. The developed prototype is submitted to the customer for evaluation.
Based on the customer feedback, the requirements are refined and the
prototype is suitably modified. This cycle of obtaining customer feedback and
modifying the prototype continues till the customer approves the prototype.

Iterative development: Once the customer approves the prototype, the
actual software is developed using the iterative waterfall approach. In spite
of the availability of a working prototype, the SRS document is usually
needed to be developed since the SRS document is invaluable for carrying out
traceability analysis, verification, and test case design during later phases.
However, for GUI parts, the requirements analysis and specification phase
becomes redundant since the working prototype that has been approved by

the customer serves as an animated requirements specification.

T h e code for the prototype is usually thrown away. However, the
experience gathered from developing the prototype helps a great deal in
developing the actual system.

Figure 2.6: Prototyping model of software development.

By constructing the prototype and submitting it for user evaluation, many
customer requirements get properly defined and technical issues get resolved
by experimenting with the prototype. This minimises later change requests

from the customer and the associated redesign costs.

Strengths of the prototyping model

This model is the most appropriate for projects that suffer from technical
and requirements risks. A constructed prototype helps overcome these
risks.

Weaknesses of the prototyping model

The prototype model can increase the cost of development for projects
that are routine development work and do not suffer from any
significant risks. Even when a project is susceptible to risks, the
prototyping model is effective only for those projects for which the risks
can be identified upfront before the development starts. Since the
prototype is constructed only at the start of the project, the prototyping
model is ineffective for risks identified later during the development
cycle. The prototyping model would not be appropriate for projects for
which the risks can only be identified after the development is
underway.

2.1.5 Incremental Development Model

This life cycle model is sometimes referred to as the successive versions model

and sometimes as the incremental model. In this life cycle model, first a
simple working system implementing only a few basic features is built and
delivered to the customer. Over many successive iterations successive
versions are implemented and delivered to the customer until the desired
system is realised. The incremental development model has been shown in
Figure 2.7.

Figure 2.7: Incremental software development.

Life cycle activities of incremental development model

In the incremental life cycle model, the requirements of the software are
first broken down into several modules or features that can be
incrementally constructed and delivered. This has been pictorially
depicted i n Figure 2.7. At any time, plan is made only for the next
increment and no long-term plans a re made. Therefore, it becomes
easier to accommodate change requests from the customers.

The development team first undertakes to develop the core features of the
system. The core or basic features are those that do not need to invoke any
services from the other features. On the other hand, non-core features need
services from the core features. Once the initial core features are developed,
these are refined into increasing levels of capability by adding new
functionalities in successive versions. Each incremental version is usually
developed using an iterative waterfall model of development. The
incremental model is schematically shown in Figure 2.8. As each successive
version of the software is constructed and delivered to the customer, the
customer feedback is obtained on the delivered version and these feedbacks
are incorporated in the next version. Each delivered version of the software
incorporates additional features over the previous version and also refines the
features that were already delivered to the customer.

Advantages

Figure 2.8: Incremental model of software development.

The incremental development model offers several advantages. Two
important ones are the following:

 Error reduction: The core modules are used by the customer from
the beginning and therefore these get tested thoroughly. This reduces
chances of errors in the core modules of the final product, leading to
greater reliability of the software.

 Incremental resource deployment: This model obviates the need
for the customer to commit large resources at one go for development
of the system. It also saves the developing organisation from deploying
large resources and manpower for a project in one go.

2.1.6 Evolutionary Model

This model has many of the features of the incremental model. As in
case of the incremental model, the software is developed over a
number of increments. At each increment, a concept (feature) is
implemented and is deployed at the client site. The software is

successively refined and feature-enriched until the full software is
realised. The principal idea behind the evolutionary life cycle model is
conveyed by its name. In the incremental development model,
complete requirements are first developed and the SRS document
prepared. In contrast, in the evolutionary model, the requirements,
plan, estimates, and solution evolve over the iterations, rather than
fully defined and frozen in a major up-front specification effort before
the development iterations begin. Such evolution is consistent with the
pattern of unpredictable feature discovery and feature changes that
take place in new product development.

Though the evolutionary model can also be viewed as an extension of the
waterfall model, but it incorporates a major paradigm shift that has been
widely adopted in many recent life cycle models. Due to obvious reasons, the
evolutionary software development process is sometimes referred to as
design a little, build a little, test a little, deploy a little model. This means that

after the requirements have been specified, the design, build, test, and
deployment activities are iterated. A schematic representation of the
evolutionary model of development has been shown in Figure 2.9.

Advantages

The evolutionary model of development has several advantages. Two

important advantages of using this model are the following:

 Effective elicitation of actual customer requirements: In this
model, the user gets a chance to experiment with a partially developed
software much before the complete requirements are developed.
Therefore, the evolutionary model helps to accurately elicit user
requirements with the help of feedback obtained on the delivery of
different versions of the software. As a result, the change requests
after delivery of the complete software gets substantially reduced.

 Easy handling change requests: In this model, handling change
requests is easier as no long term plans are made. Consequently,
reworks required due to change requests are normally much smaller
compared to the sequential models.

Disadvantages

The main disadvantages of the successive versions model are as follows:

Figure 2.9: Evolutionary model of software development.

 Feature division into incremental parts can be non-trivial: For
many development projects, especially for small-sized projects, it is
difficult to divide the required features into several parts that can be
incrementally implemented and delivered. Further, even for larger
problems, often the features are so interwined and dependent on each
other that even an expert would need considerable effort to plan the
incremental deliveries.

 Ad hoc design: Since at a time design for only the current increment is

done, the design can become ad hoc without specific attention being

paid to maintainability and optimality. Obviously, for moderate sized

problems and for those for which the customer requirements are clear,
the iterative waterfall model can yield a better solution.

Applicability of the evolutionary model

The evolutionary model is normally useful for very large products, where it is
easier t o find modules for incremental implementation. Often evolutionary
model is used when the customer prefers to receive the product in increments
so that he can start using the different features as and when they are
delivered rather than waiting all the time for the full product to be developed
and delivered. Another important category of projects for which the
evolutionary model is suitable, is projects using object-oriented development.

Evolutionary model is appropriate for object-oriented development project,
since it is easy to partition the software into stand alone units in terms of the
classes. Also, classes are more or less self contained units that can be
developed independently.

2.2 RAPID APPLICATION DEVELOPMENT (RAD)

The rapid application development (RAD) model was proposed in the early

nineties in an attempt to overcome the rigidity of the waterfall model
(and its derivatives) that makes it difficult to accommodate any change
requests from the customer. It proposed a few radical extensions to the
waterfall model. This model has the features of both prototyping and
evolutionary models. It deploys an evolutionary delivery model to

The evolutionary model is well-suited to use in object-oriented software development
projects.

obtain and incorporate the customer feedbacks on incrementally
delivered versions.

In this model prototypes are constructed, and incrementally the features
are developed and delivered to the customer. But unlike the prototyping
model, the prototypes are not thrown away but are enhanced and used in the
software construction

The major goals of the RAD model are as follows:

 To decrease the time taken and the cost incurred to develop software
systems.

 To limit the costs of accommodating change requests.

 T o reduce the communication gap between the customer and the
developers.

Main motivation

In the iterative waterfall model, the customer requirements need to be
gathered, analysed, documented, and signed off upfront, before any
development could start. However, often clients do not know what they
exactly wanted until they saw a working system. It has now become
well accepted among the practitioners that only through the process
commenting on an installed application that the exact requirements can
be brought out. But in the iterative waterfall model, the customers do
not get to see the software, until the development is complete in all
respects and the software has been delivered and installed. Working of
RAD

In the RAD model, development takes place in a series of short cycles or

iterations. At any time, the development team focuses on the present iteration

only, and therefore plans are made for one increment at a time. The time planned

for each iteration is called a time box. Each iteration is planned to enhance the

implemented functionality of the application by only a small amount. During each

time box, a quick-and-dirty prototype-style software for some functionality is

developed. The customer evaluates the prototype and gives feedback on the

specific improvements that may be necessary. The prototype is refined based on

the customer feedback. Please note that the prototype is not meant to be released

to the customer for regular use though.

The development team almost always includes a customer representative
to clarify the requirements. This is intended to make the system tuned to the
exact customer requirements and also to bridge the communication gap
between the customer and the development team. The development team

usually consists of about five to six members, including a customer
representative.

How does RAD facilitate accommodation of change requests?

The customers usually suggest changes to a specific feature only after
they have used it. Since the features are delivered in small increments,
the customers are able to give their change requests pertaining to a
feature already delivered. Incorporation of such change requests just
after the delivery of an incremental feature saves cost as this is carried
out before large investments have been made in development and
testing of a large number of features.

How does RAD facilitate faster development?

The decrease in development time and cost, and at the same time an
increased flexibility to incorporate changes are achieved in the RAD
model in two main ways—minimal use of planning and heavy reuse of
any existing code through rapid prototyping. The lack of long-term and
detailed planning gives the flexibility to accommodate later
requirements changes. Reuse of existing code has been adopted as an
important mechanism of reducing the development cost.

RAD model emphasises code reuse as an important means for completing a
project faster. In fact, the adopters of the RAD model were the earliest to
embrace object-oriented languages and practices. Further, RAD advocates
use of specialised tools to facilitate fast creation of working prototypes. These
specialised tools usually support the following features:

 Visual style of development.

 Use of reusable components.

2.2.1 Applicability of RAD Model

The following are some of the characteristics of an application that
indicate its suitability to RAD style of development:

 Customised software: As already pointed out a customised software is

developed for one or two customers only by adapting an existing software. In

customised software development projects, substantial reuse is usually made of

code from pre-existing software. For example, a company might have

developed a software for automating the data processing activities at

one or more educational institutes. When any other institute requests

for an automation package to be developed, typically only a few

aspects needs to be tailored—since among different educational

institutes, most of the data processing activities such as student
registration, grading, fee collection, estate management, accounting,
maintenance of staff service records etc. are similar to a large extent.
Projects involving such tailoring can be carried out speedily and cost-
effectively using the RAD model.

 Non-critical software: The RAD model suggests that a quick and
dirty software should first be developed and later this should be refined
into the final software for delivery. Therefore, the developed product is
usually far from being optimal in performance and reliability. In this
regard, for well understood development projects and where the scope
of reuse is rather restricted, the Iiterative waterfall model may provide
a better solution.

 Highly constrained pro ject schedule: RAD aims to reduce
development time at the expense of good documentation,
performance, and reliability. Naturally, for projects with very
aggressive time schedules, RAD model should be preferred.

 Large software: Only for software supporting many features (large
software) can incremental development and delivery be meaningfully
carried out.

Application characteristics that render RAD unsuitable

The RAD style of development is not advisable if a development project
has one or more of the following characteristics:

 Generic products (wide distribution): As we have already pointed
out in Chapter 1, software products are generic in nature and usually
have wide distribution. For such systems, optimal performance and
reliability are imperative in a competitive market. As it has already
been discussed, the RAD model of development may not yield systems
having optimal performance and reliability.

 Requirement of optimal performance and/or reliability: For
certain categories of products, optimal performance or reliability is
required. Examples of such systems include an operating system (high
reliability required) and a flight simulator software (high performance

required). If such systems are to be developed using the RAD model,
the desired product performance and reliability may not be realised.

 Lack of similar products: If a company has not developed similar

software, then it would hardly be able to reuse much of the existing
artifacts. In the absence of sufficient plug-in components, it becomes
difficult to develop rapid prototypes through reuse, and use of RAD
model becomes meaningless.

 Monolithic entity: For certain software, especially small-sized
software, it may be hard to divide the required features into parts that
can be incrementally developed and delivered. In this case, it becomes
difficult to develop a software incrementally.

2.2.2 Comparison of RAD with Other Models

In this section, we compare the relative advantages and disadvantages
of RAD with other life cycle models.

RAD versus prototyping model

In the prototyping model, the developed prototype is primarily used by the
development team to gain insights into the problem, choose between
alternatives, and elicit customer feedback. The code developed during
prototype construction is usually thrown away. In contrast, in RAD it is the
developed prototype that evolves into the deliverable software.

RAD versus iterative waterfall model

In the iterative waterfall model, all the functionalities of a software are
developed together. On the other hand, in the RAD model the product
functionalities are developed incrementally through heavy code and
design reuse. Further, in the RAD model customer feedback is obtained
on the developed prototype after each iteration and based on this the
prototype is refined. Thus, it becomes easy to accommodate any
request for requirements changes. However, the iterative waterfall
model does not support any mechanism to accommodate any
requirement change requests. The iterative waterfall model does have
some important advantages that include the following. Use of the

Though RAD is expected to lead to faster software development compared to the
traditional models (such as the prototyping model), though the quality and reliability
would be inferior.

iterative waterfall model leads to production of good quality
documentation which can help during software maintenance. Also, the
developed software usually has better quality and reliability than
thatdeveloped using RAD.

RAD versus evolutionary model

Incremental development is the hallmark of both evolutionary and RAD
models. However, in RAD each increment results in essentially a quick
and dirty prototype, whereas in the evolutionary model each increment
is systematically developed using the iterative waterfall model. Also in
the RAD model, software is developed in much shorter increments
compared the evolutionary model. In other words, the incremental
functionalities that are developed are of fairly larger granularity in the
evolutionary model.

2.3 AGILE DEVELOPMENT MODELS

In the following, a few reasons why the waterfall-based development was
becoming difficult to use in project in recent times:

 In the traditional iterative waterfall-based software development
models, the requirements for the system are determined at the start of
a development project and are assumed to be fixed from that point on.
Later changes to the requirements after the SRS document has been
completed are discouraged. If at all any later requirement changes
becomes unavoidable, then the cost of accommodating it becomes
prohibitively high. On the other hand, accumulated experience
indicates that customers frequently change their requirements during
the development period due to a variety of reasons.

 Waterfall model is called a heavy weight model, since there is too much

emphasis on producing documentation and usage of tools. This is often

a source of inefficiency and causes the project completion time to be
much longer in comparison to the customer expectations.

 Waterfall model prescribes almost no customer interactions after the
requirements have been specified. In fact, in the waterfall model of
software development, customer interactions are largely confined to
the project initiation and project completion stages.

The agile software development model was proposed in the mid-1990s to

overcome the serious shortcomings of the waterfall model of development
identified above. The agile model was primarily designed to help a project to
adapt to change requests quickly.1Thus, a major aim of the agile models is to
facilitate quick project completion. But, how is agility achieved in these
models? Agility is achieved by fitting the process to the project, i.e. removing
activities that may not be necessary for a specific project. Also, anything that
that wastes time and effort is avoided.

Please note that agile model is being used as an umbrella term to refer to a
group of development processes. These processes share certain common
characteristics, but do have certain subtle differences among themselves. A
few popular agile SDLC models are the following:

 Crystal

 Atern (formerly DSDM)

 Feature-driven development

 Scrum

 Extreme programming (XP)

 Lean development
 Unified process

In the agile model, the requirements are decomposed into many small
parts that can be incrementally developed. The agile model adopts an
iterative approach. Each incremental part is developed over an iteration. Each
iteration is intended to be small and easily manageable and lasting fo r a

couple of weeks only. At a time, only one increment is planned, developed,
and then deployed at the customer site. No long-term plans are made. The
time to complete an iteration is called a time box. The implication of the term
time box is that the end date for an iteration does not change. That is, the

delivery date is considered sacrosanct. The development team can, however,
decide to reduce the delivered functionality during a time box if necessary.

A central principle of the agile model is the delivery of an increment to the
customer after each time box. A few other principles that are central to the
agile model are discussed below.

2.3.1 Essential Idea behind Agile Models

For establishing close contact with the customer during development and
to gain a clear understanding of the domain-specific issues, each agile
project usually includes a customer representative in the team. At the

end of each iteration, stakeholders and the customer representative
review the progress made and re-evaluate the requirements. A
distinguishing characteristics of the agile models is frequent delivery of
software increments to the customer.

Agile model emphasise face-to-face communication over written
documents. It is recommended that the development team size be
deliberately kept small (5–9 people) to help the team members meaningfully
engage in face-to-face communication and have collaborative work
environment. It is implicit then that the agile model is suited to the
development of small projects. However, if a large project is required to be
developed using the agile model, it is likely that the collaborating teams
might work at different locations. In this case, the different teams are needed
to maintain as much daily contact as possible through video conferencing,

telephone, e-mail, etc.

The following important principles behind the agile model were publicised
in the agile manifesto in 2001:

 Working software over comprehensive documentation.

 Frequent delivery of incremental versions of the software to the
customer in intervals of few weeks.

 Requirement change requests from the customer are encouraged and
are efficiently incorporated.

 Having competent team members and enhancing interactions among
them is considered much more important than issues such as usage of
sophisticated tools or strict adherence to a documented process. It is
advocated that enhanced communication among the development
team members can be realised through face-to-face communication
rather than through exchange of formal documents.

 Continuous interaction with the customer is considered much more
important rather than effective contract negotiation. A customer
representatives is required to be a part of the development team, thus
facilitating close, daily co-operation between customers and
developers.

Agile development projects usually deploy pair programming.

Several studies indicate that programmers working in pairs produce
compact well-written programs and commit fewer errors as compared to

programmers working alone.

Advantages and disadvantages of agile methods

The agile methods derive much of their agility by relying on the tacit
knowledge of the team members about the development project and
informal communications to clarify issues, rather than spending
significant amounts of time in preparing formal documents and

reviewing them. Though this eliminates some overhead, but lack of
adequate documentation may lead to several types of problems, which
are as follows:

 Lack of formal documents leaves scope for confusion and important
decisions taken during different phases can be misinterpreted at later
points of time by different team members.

 In the absence of any formal documents, it becomes difficult to get
important project decisions such as design decisions to be reviewed by
external experts.

 When the project completes and the developers disperse, maintenance
can become a problem.

2.3.2 Agile versus Other Models

In the following subsections, we compare the characteristics of the agile
model with other models of development.

Agile model versus iterative waterfall model

The waterfall model is highly structured and systematically steps through
requirements-capture, analysis, specification, design, coding, and
testing stages in a planned sequence. Progress is generally measured in
terms of the number of completed and reviewed artifacts such as
requirement specifications, design documents, test plans, code reviews,
etc. for which review is complete. In contrast, while using an agile
model, progress is measured in terms of the developed and delivered
functionalities. In agile model, delivery of working versions of a
software is made in several increments. However, as regards to
similarity it can be said that agile teams use the waterfall model on a
small scale, repeating the entire waterfall cycle in every iteration.

If a project being developed using waterfall model is cancelled mid-way
during development, then there i s nothing to show from the abandoned

project beyond several documents. With agile model, even if a project is
cancelled midway, it still leaves the customer with some worthwhile code,
that might possibly have already been put into live operation.

Agile versus exploratory programming

Though a few similarities do exist between the agile and exploratory
programming styles, there are vast differences between the two as
well. Agile development model’s frequent re- evaluation of plans,
emphasis on face-to-face communication, and relatively sparse use of
documentation are similar to that of the exploratory style. Agile teams,
however, do follow defined and disciplined processes and carry out
systematic requirements capture, rigorous designs, compared to chaotic
coding in exploratory programming.

Agile model versus RAD model

The important differences between the agile and the RAD models are
the following:

 Agile model does not recommend developing prototypes, but
emphasises systematic development of each incremental feature. In
contrast, the central theme of RAD is based on designing quick-and-
dirty prototypes, which are then refined into production quality code.

 Agile projects logically break down the solution into features that are
incrementally developed and delivered. The RAD approach does not
recommend this. Instead, developers using the RAD model focus on
developing all the features of an application by first doing it badly and
then successively improving the code over time.

 Agile teams only demonstrate completed work to the customer. In
contrast, RAD teams demonstrate to customers screen mock ups, and
prototypes, that may be based on simplifications such as table look-ups
rather than actual computations.

2.3.3 Extreme Programming Model

Extreme programming (XP) is an important process model under the
agile umbrella and was proposed by Kent Beck in 1999. The name of
this model reflects the fact that it recommends taking these best

practices that have worked well in the past in program development

projects to extreme levels. This model is based on a rather simple

philosophy: ”If something is known to be beneficial, why not put it to
constant use?” Based on this principle, it puts forward several key
practices that need to be practised to the extreme. Please note that
most of the key practices that it emphasises were already recognised as
good practices for some time.

Good practices that need to be practised to the extreme

In the following subsections, we mention some of the good practices that
have been recognised in the extreme programming model and the
suggested way to maximise their use:

Code review: It is good since it helps detect and correct problems most
efficiently. It suggests pair programming as the way to achieve continuous

review. In pair programming, coding is carried out by pairs of programmers.
The programmers take turn in writing programs and while one writes the
other reviews code that is being written.

Testing: Testing code helps to remove bugs and improves its reliability. XP
suggests test-driven development (TDD) to continually write and execute test

cases. In the TDD approach, test cases are written even before any code is
written.

Incremental development: Incremental development is good, since it
helps to get customer feedback, and extent of features delivered is a reliable
indicator of progress. It suggests that the team should come up with new
increments every few days.

Simplicity: Simplicity makes it easier to develop good quality code, as well
as to test and debug it. Therefore, one should try to create the simplest code
that makes the basic functionality being written to work. For creating the
simplest code, one can ignore the aspects such as efficiency, reliability,
maintainability, etc. Once the simplest thing works, other aspects can be
introduced through refactoring.

Design: Since having a good quality design is important to develop a good

quality solution, everybody should design daily. This can be achieved through
refactoring, whereby a working code is improved for efficiency and

maintainability.

Integration testing: It is important since it helps identify the bugs at the
interfaces of different functionalities. To this end, extreme programming
suggests that the developers should achieve continuous integration, by
building and performing integration testing several times a day.

Basic idea of extreme programming model

XP is based on frequent releases (called iteration), during which the

developers implement “user stories”. User stories are similar to use

cases, but are more informal and are simpler. A user story is the

conversational description by the user about a feature of the required

system. For example, a user story about a library software can be:

 A library member can issue a book.

 A library member can query about the availability of a book.

 A library member should be able to return a borrowed book.

On the basis o f user stories, the project team proposes “metaphors”—a
common vision of how the system would work. The development team may
decide to construct a spike for some feature. A spike, is a very simple program

that is constructed to explore the suitability of a solution being proposed. A
spike can be considered to be similar to a prototype.

X P prescribes several basic activities to be part of the software
development process. We discuss these activities in the following
subsections:

Coding: XP argues that code is the crucial part of any system development
process, since without code it is not possible to have a working system.
Therefore, utmost care and attention need to be placed on coding activity.
However, the concept of code as used in XP has a slightly different meaning
from what is traditionally understood. For example, coding activity includes
drawing diagrams (modelling) that will be transformed to code, scripting a
web-based system, and choosing among several alternative solutions.

Testing: XP places high importance on testing and considers it be the
primary means for developing a fault-free software.

Listening: The developers need to carefully listen to the customers if they
have to develop a good quality software. Programmers may not necessarily
be having an in-depth knowledge of the the specific domain of the system
under development. On the other hand, customers usually have this domain
knowledge. Therefore, for the programmers to properly understand what the

A user story is a simplistic statement of a customer about a functionality he needs, it
does not mention about finer details such as the different scenarios that can occur,
the precondition (state at which the system) to be satisfied before the feature can be
invoked, etc.

functionality of the system should be, they have to listen to the customer.

Designing: Without proper design, a system implementation becomes too
complex and the dependencies within the system become too numerous and
it becomes very difficult to comprehend the solution, and thereby making
maintenance prohibitively expensive. A good design should result
inelimination of complex dependencies within a system. Thus, effective use of
a suitable design technique is emphasised.

Feedback: It espouses the wisdom: “A system staying out of users is trouble
waiting to happen”. It recognises the importance of user feedback in
understanding the exact customer requirements. The time that elapses
between the development of a version and collection of feedback on it is
critical to learning and making changes. It argues that frequent contact with
the customer makes the development effective.

Simplicity: A corner-stone of XP is based on the principle: “build something
simple that will work today, rather than trying to build something that would
take time and yet may never be used”. This in essence means that attention
should be focused on specific features that are immediately needed and
making them work, rather than devoting time and energy on speculations
about future requirements.

Applicability of extreme programming model

The following are some of the project characteristics that indicate the
suitability of a project for development using extreme programming
model:

Projects involving new technology or research pro jects: In this case,
the requirements change rapidly and unforeseen technical problems need to
be resolved.

Small projects: Extreme programming was proposed in the context of small
teams as face to face meeting is easier to achieve.

Project characteristics not suited to development using
agile models

The following are some of the project characteristics that indicate

XP is in favour of making the solution to a problem as simple as possible. In contrast,
the traditional system development methods recommend planning for reusability and
future extensibility of code and design at the expense of higher code and design
complexity.

unsuitability of agile development model for use in a development
project:

 Stable requirements: Conventional development models are more
suited to use in projects characterised by stable requirements. For such

projects, it is known that few changes, if at all, will occur. Therefore,
process models such as iterative waterfall model that involve making
long-term plans during project initiation can meaningfully be used.

 Mission critical or safety critical systems: In the development of
such systems, the traditional SDLC models are usually preferred to
ensure reliability.

2.3.4 Scrum Model

In the scrum model, a project is divided into small parts of work that can
be incrementally developed and delivered over time boxes that are
called sprints. The software therefore gets developed over a series of

manageable chunks. Each sprint typically takes only a couple of weeks
to complete. At the end of each sprint, stakeholders and team members
meet to assess the progress made and the stakeholders suggest to the
development team any changes needed to features that have already
been developed and any overall improvements that they might feel
necessary.

In the scrum model, the team members assume three fundamental roles—
software owner, scrum master, and team member. The software owner is
responsible for communicating the customers vision of the software to the
development team. The scrum master acts as a liaison between the software
owner and the team, thereby facilitating the development work.

2.4 SPIRAL MODEL

This model gets its name from the appearance of its diagrammatic
representation that looks like a spiral with many loops (see Figure
2.10). The exact number of loops of the spiral is not fixed and can vary
from project to project. The number of loops shown in Figure 2.10 is
just an example. Each loop of the spiral is called a phase of the software

process. The exact number of phases through which the product is
developed can be varied by the project manager depending upon the
project risks. A prominent feature of the spiral model is handling

unforeseen risks that can show up much after the project has started. In
this context, please recollect that the prototyping model can be used
effectively only when the risks in a project can be identified upfront
before the development work starts. As we shall discuss, this model
achieves this by incorporating much more flexibility compared to SDLC
other models.

While the prototyping model does provide explicit support for risk handling,
the risks are assumed to have been identified completely before the project
start. This is required since the prototype is constructed only at the start of
the project. In contrast, in the spiral model prototypes are built at the start of
every phase. Each phase of the model is represented as a loop in its
diagrammatic representation. Over each loop, one or more features of the
product are elaborated and analysed and the risks at that point of time are
identified and are resolved through prototyping. Based on this, the identified
features are implemented.

Figure 2.10: Spiral model of software development.

Risk handling in spiral model

A risk is essentially any adverse circumstance that might hamper the
successful completion of a software project. As an example, consider a
project for which a risk can be that data access from a remote database

might be too slow to be acceptable by the customer. This risk can be
resolved by building a prototype of the data access subsystem and
experimenting with the exact access rate. If the data access rate is too
slow, possibly a caching scheme can be implemented or a faster

communication scheme can be deployed to overcome the slow data
access rate. Such risk resolutions are easier done by using a prototype
as the pros and cons of an alternate solution scheme can evaluated
faster and inexpensively, as compared to experimenting using the
actual software application being developed. The spiral model supports
coping up with risks by providing the scope to build a prototype at every
phase of software development.

2.4.1 Phases of the Spiral Model

Each phase in this model is split into four sectors (or quadrants) as
shown in Figure 2.10. In the first quadrant, a few features of the
software are identified to be taken u p for immediate development
based on how crucial it is to the overall software development. With
each iteration around the spiral (beginning at the center and moving
outwards), progressively more complete versions of the software get
built. In other words, implementation of the identified features forms a
phase.

Quadrant 1: The objectives are investigated, elaborated, and analysed.
Based on this, the risks involved in meeting the phase objectives are
identified. In this quadrant, alternative solutions possible for the phase under
consideration are proposed.

Quadrant 2: During the second quadrant, the alternative solutions are
evaluated to select the best possible solution. To be able to do this, the
solutions are evaluated by developing an appropriate prototype.

Quadrant 3: Activities during the third quadrant consist of developing and
verifying the next level of the software. At the end of the third quadrant, the
identified features have been implemented and the next version of the
software is available.

Quadrant 4: Activities during the fourth quadrant concern reviewing the
results of the stages traversed so far (i.e. the developed version of the
software) with the customer and planning the next iteration of the spiral.

The radius of the spiral at any point represents the cost incurred in the
project so far, and the angular dimension represents the progress made so

far in the current phase.
In the spiral model of development, the project manager dynamically

determines the number of phases as the project progresses. Therefore, in this
model, the project manager plays the crucial role of tuning the model
tospecific projects.

To make the model more efficient, the different features of the software
that can be developed simultaneously through parallel cycles are identified.
To keep our discussion simple, we shall not delve into parallel cycles in the
spiral model.

Advantages/pros and disadvantages/cons of the spiral
model

There are a few disadvantages of the spiral model that restrict its use to
a only a few types of projects. To the developers of a project, the spiral
model usually appears as a complex model to follow, since it is risk-
driven and is more complicated phase structure than the other models
we discussed. It would therefore be counterproductive to use, unless
there are knowledgeable and experienced staff in the project. Also, it is
not very suitable for use in the development of outsourced projects,
since the software risks need to be continually assessed as it is
developed.

In spite of the disadvantages of the spiral model that we pointed out, for
certain categories of projects, the advantages of the spiral model can
outweigh its disadvantages.

In this regard, it is much more powerful than the prototyping model.
Prototyping model can meaningfully be used when all the risks associated
with a project are known beforehand. All these risks are resolved by building
a prototype before the actual software development starts.

Spiral model as a meta model

As compared to the previously discussed models, the spiral model can be
viewed as a meta model, since it subsumes all the discussed models. For

example, a single loop spiral actually represents the waterfall model. The
spiral model uses the approach of the prototyping model by first building a
prototype in each phase before the actual development starts. This
prototypes are used as a risk reduction mechanism. The spiral model
incorporates the systematic step- wise approach of the waterfall model. Also,
the spiral model can be considered as supporting the evolutionary model—the

iterations along the spiral can be considered as evolutionary levels through
which the complete system is built. This enables the developer to understand
and resolve the risks at each evolutionary level (i.e. iteration along the
spiral).

2.5 A COMPARISON OF DIFFERENT LIFE CYCLE MODELS

The classical waterfall model can be considered as the basic model and
all other life cycle models as embellishments of this model. However,
the classical waterfall model cannot be used in practical development
projects, since this model supports no mechanism to correct the errors
that are committed during any of the phases but detected at a later
phase. This problem is overcome by the iterative waterfall model
through the provision of feedback paths.

The iterative waterfall model is probably the most widely used software
development model so far. This model is simple to understand and use.
However, this model is suitable only for well-understood problems, and is not
suitable for development of very large projects and projects that suffer from
large number of risks.

The prototyping model is suitable for projects for which either the user
requirements or the underlying technical aspects are not well understood,
however all the risks can be identified before the project starts. This model is
especially popular for development of the user interface part of projects.

The evolutionary approach is suitable for large problems which can be
decomposed into a set of modules for incremental development and delivery.
This model is also used widely for object-oriented development projects. Of
course, this model can only be used if incremental delivery of the system is
acceptable to the customer.

The spiral model is considered a meta model and encompasses all other life

cycle models. Flexibility and risk handling are inherently built into this model.
The spiral model is suitable for development of technically challenging and
large software that are prone to several kinds of risks that are difficult to
anticipate at the start of the project. However, this model is mu ch more
complex than the other models—this is probably a factor deterring its use in
ordinary projects.

Let us now compare the prototyping model with the spiral model. The
prototyping model can be used if the risks are few and can be determined at
the start of the project. The spiral model, on the other hand, is useful when

the risks are difficult to anticipate at the beginning of the project, but are
likely to crop up as the development proceeds.

Let us compare the different life cycle models from the viewpoint of the
customer. Initially, customer confidence is usually high on the development
team irrespective of the development model followed. During the lengthy
development process, customer confidence normally drops off, as no working
software is yet visible. Developers answer customer queries using technical
slang, and delays are announced. This gives rise to customer resentment. On
the other hand, an evolutionary approach lets the customer experiment with
a working software much earlier than the monolithic approaches. Another
important advantage of the incremental model is that it reduces the
customer’s trauma of getting used to an entirely new system. The gradual
introduction of the software via incremental phases provides time to the
customer to adjust to the new software. Also, from the customer’s financial
view point, incremental development does not require a large upfront capital
outlay. The customer can order the incremental versions as and when he can
afford them.

2.5.1 Selecting an Appropriate Life Cycle Model for a Pro ject

We have discussed the advantages and disadvantages of the various life
cycle models. However, how to select a suitable life cycle model for a
specific project? The answer to this question would depend on several
factors. A suitable life cycle model can possibly be selected based on an
analysis of issues such as the following:

Characteristics of the software to be developed: The choice of the life
cycle model to a large extent depends on the nature of the software that is
being developed. For small services projects, the agile model is favoured. On
the other hand, for product and embedded software development, the
iterative waterfall model can be preferred. An evolutionary model is a
suitable model for object-oriented development projects.

Characteristics of the development team: The skill-level of the team
members is a significant factor in deciding about the life cycle model to use.
If the development team is experienced in developing similar software, then
even an embedded software can be developed using an iterative waterfall
model. If the development team is entirely novice, then even a simple data
processing application may require a prototyping model to be adopted.

Characteristics of the customer: If the customer is not quite familiar with
computers, then the requirements are likely to change frequently as it would

be difficult to form complete, consistent, and unambiguous requirements.
Thus, a prototyping model may be necessary to reduce later change requests
from the customers.

Chapter

3

SOFTWARE PROJECT

MANAGEMENT

3.1 SOFTWARE PROJECT MANAGEMENT COMPLEXITIES

Management of software projects is much more complex than
management of many other types of projects. The main factors
contributing to the complexity of managing a software project, as
identified by [Brooks75], are the following:

Invisibility: Software remains invisible, until its development is complete
and it is operational. Anything that is invisible, is difficult to manage and
control. Consider a house building project. For this project, the project
manger can very easily assess the progress of the project through a visual
examination of the building under construction. Therefore, the manager can
closely monitor the progress of the project, and take remedial actions
whenever he finds that the progress is not as per plan. In contrast, it
becomes very difficult for the manager of a software project to assess the
progress of the project due to the invisibility of software. The best that he
can do perhaps is to monitor the milestones that have been completed by the
development team and the documents that have been produced—which are
rough indicators of the progress achieved.

Changeability: Because the software part of any system is easier to change
as compared to the hardware part, the software part is the one that gets
most frequently changed. This is especially true in the later stages of a
project. As far as hardware development is concerned, any late changes to
the specification of the hardware system under development usually amounts
to redoing the entire project. This makes late changes to a hardware project
prohibitively expensive to carry out. This possibly is a reason why
requirement changes are frequent in software projects. These changes
usually arise from changes to the business practices, changes to the
hardware or underlying software (e.g. operating system, other applications),
or just because the client changes his mind.

Complexity: Even a moderate sized software has millions of parts
(functions) that interact with each other in many ways—data coupling, serial
and concurrent runs, state transitions, control dependency, file sharing, etc.
Due to the inherent complexity of the functioning of a software product in
terms of the basic parts making up the software, many types of risks are
associated with its development. This makes managing these projects much
more difficult as compared to many other kinds of projects.

Uniqueness: Every software project is usually associated with many unique
features or situations. This makes every project much different from the
others. This is unlike projects in other domains, such as car manufacturing or
steel manufacturing where the projects are more predictable. Due to the
uniqueness of the software projects, a project manager in the course of a
project faces many issues that are quite unlike the others he had
encountered in the past. As a result, a software project manager has to
confront many unanticipated issues in almost every project that he manages.

Exactness of the solution: Mechanical components such as nuts and bolts
typically work satisfactorily as long as they are within a tolerance of 1 per
cent or so of their specified sizes. However, the parameters of a function call
in a program are required to be in complete conformity with the function
definition. This requirement not only makes it difficult to get a software
product up and working, but also makes reusing parts of one software
product in another difficult. This requirement of exact conformity of the
parameters of a function introduces additional risks and contributes to the
complexity of managing software projects.

Team-oriented and intellect-intensive work: Software development
projects are akin to research projects in the sense that they both involve
team-oriented, intellect-intensive work. In contrast, projects in many domains
are labour-intensive and each member works in a high degree of autonomy.
Examples of such projects are planting rice, laying roads, assembly-line
manufacturing, constructing a multi-storeyed building, etc. In a software
development project, the life cycle activities not only highly intellect-
intensive, but each member has to typically interact, review, and interface
with several other members, constituting another dimension of complexity of
software projects.

3.2 RESPONSIBILITIES OF A SOFTWARE PROJECT
MANAGER

In this section, we examine the principal job responsibilities of a project
manager and the skills necessary to accomplish those.

3.2.1 Job Responsibilities for Managing Software Projects

A software project manager takes the overall responsibility of steering a
project to success. This surely is a very hazy job description. In fact, it is very
difficult to objectively describe the precise job responsibilities of a project
manager. The job responsibilities of a project manager ranges from invisible
activities like building up of team morale to highly visible customer
presentations. Most managers take the responsibilities for project proposal
writing, project cost estimation, scheduling, project staffing, software process
tailoring, project monitoring and control, software configuration management,
risk management, managerial report writing and presentation, and interfacing
with clients. These activities are certainly numerous and varied. We can still
broadly classify these activities into two major types—project planning and
project monitoring and control.

In the following subsections, we give an overview of these two classes of
responsibilities. Later on, we shall discuss them in more detail.

Project planning: Project planning is undertaken immediately after the
feasibility study phase and before the starting of the requirements analysis
and specification phase.

The initial project plans are revised from time to time as the project
progresses and more project data become available.

Project monitoring and control: Project monitoring and control activities
are undertaken once the development activities start.While carrying out project

monitoring and control activities, a project manager may sometimes find it necessary to change the plan to
cope up with specific situations at hand.

3.2.2 Skills Necessary for Managing Software Projects

A theoretical knowledge of various project management techniques is
certainly important to become a successful project manager. However, a
purely theoretical knowledge of various project management techniques
would hardly make one a successful project manager. Effective software
project management calls for good qualitative judgment and decision taking
capabilities. In addition to having a good grasp of the latest software project

management techniques such as cost estimation, risk management, and
configuration management, etc., project managers need good communication
skills and the ability to get work done. Some skills such as tracking and
controlling the progress of the project, customer interaction, managerial
presentations, and team building are largely acquired through experience.
Never the less, the importance of a sound knowledge of the prevalent project
management techniques cannot be overemphasized. The objective of the rest
of this chapter is to introduce the reader to the same.

With this brief discussion on the overall responsibilities of a software
project manager and the skills necessary to accomplish these, in the next
section we examine some important issues in project planning.

3.3 METRICS FOR PROJECT SIZE ESTIMATION

As already mentioned, accurate estimation of project size is central to
satisfactory estimation of all other project parameters such as effort,
completion time, and total project cost. Before discussing the available
metrics to estimate the size of a project, let us examine what does the
term “project size” exactly mean. The size of a project is obviously not
the number of bytes that the source code occupies, neither is it the size
of the executable code.

The project size is a measure of the problem complexity in terms of the
effort and time required to develop the product.

Currently, two metrics are popularly being used to measure size—lines of
code (LOC) and function point (FP). Each of these metrics has its own
advantages and disadvantages. These are discussed in the following
subsection. Based on their relative advantages, one metric may be more
appropriate than the other in a particular situation.

3.3.1 Lines of Code (LOC)

LOC is possibly the simplest among all metrics available to measure
project size. Consequently, this metric is extremely popular. This metric
measures the size of a project by counting the number of source
instructions in the developed program. Obviously, while counting the
number of source instructions, comment lines, and header lines are

Three skills that are most critical to successful project management are the following:

• Knowledge of project management techniques.
• Decision taking capabilities.
• Previous experience in managing similar projects.

ignored.
Determining the LOC count at the end of a project is very simple. However,

accurate estimation of LOC count at the beginning of a project is a very
difficult task. One can possibly estimate the LOC count at the starting of a
project, only by using some form of systematic guess work. Systematic
guessing typically involves the following. The project manager divides the
problem into modules, and each module into sub-modules and so on, until
the LOC of the leaf-level modules are small enough to be predicted. To be
able to predict the LOC count for the various leaf-level modules sufficiently
accurately, past experience in developing similar modules is very helpful. By
adding the estimates for all leaf level modules together, project managers
arrive at the total size estimation. In spite of its conceptual simplicity, LOC
metric has several shortcomings when used to measure problem size. We
discuss the important shortcomings of the LOC metric in the following
subsections:

LOC is a measure of coding activity alone. A good problem size
measure should consider the total effort needed to carry out various life cycle
activities (i.e. specification, design, code, test, etc.) and not just the coding
effort. LOC, however, focuses on the coding activity alone—it merely
computes the number of source lines in the final program. We have already
discussed in Chapter 2 that coding is only a small part of the overall software
development effort.

The presumption that the total effort needed to develop a project is
proportional to the coding effort is easily countered by noting the fact that
even when the design or testing issues are very complex, the code size might
be small and vice versa. Thus, the design and testing efforts can be grossly
disproportional to the coding effort. Code size, therefore, is obviously an
improper indicator of the problem size.

LOC count depends on the choice of specific instructions: LOC gives a
numerical value of problem size that can vary widely with coding styles of
individual programmers. By coding style, we mean the choice of code layout,
the choice of the instructions in writing the program, and the specific
algorithms used. Different programmers may lay out their code in very
different ways. For example, one programmer might write several source
instructions on a single line, whereas another might split a single instruction
across several lines. Unless this issue is handled satisfactorily, there is a
possibility of arriving at very different size measures for essentially identical
programs. This problem can, to a large extent, be overcome by counting the

language tokens in a program rather than the lines of code. However, a more
intricate problem arises due to the specific choices of instructions made in
writing the program. For example, one programmer may use a switch
statement in writing a C program and another may use a sequence of if ...
then ... else ... statements. Therefore, the following can easily be concluded.

LOC measure correlates poorly with the quality and efficiency of the
code: Larger code size does not necessarily imply better quality of code or
higher efficiency. Some programmers produce lengthy and complicated code
as they do not make effective use of the available instruction set or use
improper algorithms. In fact, it is true that a piece of poor a n d sloppily
written piece of code can have larger number of source instructions than a
piece t h a t is efficient and has been thoughtfully written. Calculating
productivity as LOC generated per man-month may encourage programmers
to write lots of poor quality code rather than fewer lines of high quality code
achieve the same functionality.

LOC metric penalises use of higher-level programming languages
and code reuse: A paradox is that if a programmer consciously uses several
library routines, then the LOC count will be lower. This would sh ow up as
smaller program size, and in turn, would indicate lower effort! Thus, if
managers use the LOC count to measure the effort put in by different
developers (that is, their productivity), they would be discouraging code
reuse by developers. Modern programming methods such as object-oriented
programming and reuse of components makes the relationships between LOC
and other project attributes even less precise.

LOC metric measures the lexical complexity of a program and does
not address the more important issues of logical and structural
complexities: Between two programs with equal LOC counts, a program
incorporating complex logic would require much more effort to develop than a
program with very simple logic. To realise why this is so, imagine the effort
that would be required to develop a program having multiple nested loops
and decision constructs and compare that with another program having only
sequential control flow.

It is very difficult to accurately estimate LOC of the final program
from problem specification: As already discussed, at the project initiation
time, it is a very difficult task to accurately estimate the number of lines of
code (LOC) that the program would have after development. The LOC count
can accurately be computed only after the code has fully been developed.
Since project planning is carried out even before any development activity

starts, the LOC metric is of little use to the project managers during project
planning.

3.3.2 Function Point (FP) Metric

Function point metric was proposed by Albrecht in 1983. This metric
overcomes many of the shortcomings of the LOC metric. Since its
inception in late 1970s, function point metric has steadily gained
popularity. Function point metric has several advantages over LOC
metric. One of the important advantages of the function point metric
over the LOC metric is that it can easily be computed from the problem
specification itself. Using the LOC metric, on the other hand, the size
can accurately be determined only after the product has fully been
developed.

The conceptual idea behind the function point metric is the following. The
size of a software product is directly dependent on the number of different
high-level functions or features it supports. This assumption is reasonable,
since each feature would take additional effort to implement.

Though each feature takes some effort to develop, different features may
take very different amounts of efforts to develop. For example, in a banking
software, a function to display a help message may be much easier to
develop compared to say the function that carries out the actual banking
transactions. This has been considered by the function point metric by
counting the number of input and output data items and the number of files
accessed by the function.

 The implicit assumption made is that the more the number of data items
that a function reads from the user and outputs and the more the number of
files accessed, the higher is the complexity of the function. Now let us analyse
why this assumption must be intuitively correct. Each feature when invoked
typically reads some input data and then transforms those to the required
output data. For example, the query book feature (see Figure 3.2) of a Library
Automation Software takes the name of the book as input and displays its
location in the library and the total number of copies available. Similarly, the
issue book and the return book features produce their output based on the
corresponding input data. It can therefore be argued that the computation of
the number of input and output data items

would give a more accurate indication of the code size compared to simply
counting the number of high-level functions supported by the system.

Figure 3.2: System function as a mapping of input data to output data.

Albrecht postulated that in addition to the number of basic functions that a
software performs, size also depends on the number of files and the number
of interfaces that are associated with the software. Here, interfaces refer to
the different mechanisms for data transfer with external systems including
the interfaces with the user, interfaces with external computers, etc.

Function point (FP) metric computation

The size of a software product (in units of function points or FPs) is
computed using different characteristics of the product identified in its
requirements specification. It is computed using the following three
steps:

 Step 1: Compute the unadjusted function point (UFP) using a heuristic
expression.

 Step 2: Refine UFP to reflect the actual complexities of the different
parameters used in UFP computation.

 Step 3: Compute FP by further refining UFP to account for the specific
characteristics of the project that can influence the entire development
effort.

We discuss these three steps in more detail in the following.

Step 1: UFP computation

The unadjusted function points (UFP) is computed as the weighted sum of
five characteristics of a product as shown in the following expression. The
weights associated with the five characteristics were determined empirically
by Albrecht through data gathered from many projects.

UFP = (Number of inputs)*4 + (Number of outputs)*5 +

(Number of inquiries)*4 + (Number of files)*10 +

(Number of interfaces)*10 (3.1)

The meanings of the different parameters of Eq. 3.1 are as follows:

1. Number of inputs: Each data item input by the user is counted.
However, it should be noted that data inputs are considered different
from user inquiries. Inquiries are user commands such as print-
account-balance that require no data values to be input by the user.
Inquiries are counted separately (see the third point below). It needs
to be further noted that individual data items input by the user are
not simply added up to compute the number of inputs, but related
inputs are grouped and considered as a single input. For example,
while entering the data concerning an employee to an employee pay
roll software; the data items name, age, sex, address, phone number,
etc. are together considered as a single input. All these data items
can be considered to be related, since they describe a single
employee.

2. Number of outputs: The outputs considered include reports printed,
screen outputs, error messages produced, etc. While computing the
number of outputs, the individual data items within a report are not
considered; but a set of related data items is counted as just a single
output.

3. Number of inquiries: An inquiry is a user command (without any
data input) and only requires some actions to be performed by the
system. Thus, the total number of inquiries is essentially the number
of distinct interactive queries (without data input) which can be made
by the users. Examples of such inquiries are print account balance,
print all student grades, display rank holders’ names, etc.

4. Number of files: The files referred to here are logical files. A logical
file represents a group of logically related data. Logical files include
data structures as well as physical files.

5. Number of interfaces: Here the interfaces denote the different
mechanisms that are used to exchange information with other

systems. Examples of such interfaces are data files on tapes, disks,
communication links with other systems, etc.

Step 2: Refine parameters

UFP computed at the end of step 1 is a gross indicator of the problem size.
This UFP needs to be refined. This is possible, since each parameter (input,
output, etc.) has been implicitly assumed to be of average complexity.
However, this is rarely true. For example, some input values may be
extremely complex, some very simple, etc. In order to take this issue into
account, UFP is refined by taking into account the complexities of the
parameters of UFP computation (Eq. 3.1). The complexity of each parameter
is graded into three broad categories—simple, average, or complex. The
weights for the different parameters are determined based on the numerical
values shown in Table 3.1. Based on these weights of the parameters, the
parameter values in the UFP are refined. For example, rather than each input
being computed as four FPs, very simple inputs are computed as three FPs
and very complex inputs as six FPs.

Table 3.1: Refinement of Function Point Entities

Type Simple Average Complex

Input(I) 3 4 6

Output (O) 4 5 7

Inquiry (E) 3 4 6

Number of files (F) 7 10 15

Number of interfaces 5 7 10

Step 3: Refine UFP based on complexity of the overall project

In the final step, several factors that can impact the overall project size are
considered to refine the UFP computed in step 2. Examples of such project
parameters that can influence the project sizes include high transaction rates,
response time requirements, scope for reuse, etc. Albrecht identified 14
parameters that can influence the development effort. The list of these
parameters have been shown in Table 3.2. Each of these 14 parameters is
assigned a value from 0 (not present or no influence) to 6 (strong influence).
The resulting numbers are summed, yielding the total degree of influence
(DI). A technical complexity factor (TCF) for the project is computed and the
TCF is multiplied with UFP to yield FP. The TCF expresses the overall impact
of the corresponding project parameters on the development effort. TCF is
computed as (0.65+0.01*DI). As DI can vary from 0 to 84, TCF can vary from

0.65 to 1.49. Finally, FP is given as the product of UFP and TCF. That is,
FP=UFP*TCF.

Example 3.1 Determine the function point measure of the size of the
following supermarket software. A supermarket needs to develop the
following software to encourage regular customers. For this, the customer
needs to supply his/her residence address, telephone number, and the driving
license number. Ea ch customer who registers for this scheme is assigned a
unique customer number (CN) by the computer. Based on the generated CN,
a clerk manually prepares a customer identity card after getting the market
manager’s signature on it. A customer can present his customer identity card
to the check out staff when he makes any purchase. In this case, the value of
his purchase is credited against his CN. At the end of each year, the
supermarket intends to award surprise gifts to 10 customers who make the
highest total purchase over the year. Also, it intends to award a 22 caret gold
coin to every customer whose purchase exceeded Rs. 10,000. The entries
against the CN are reset on the last day of every year after the prize winners’
lists are generated. Assume that various project characteristics determining
the complexity of software development to be average.

Answer:

Step 1: From an examination of the problem description, we find that
there are two inputs, three outputs, two files, and no interfaces. Two
files would be required, one for storing the customer details and
another for storing the daily purchase records. Now, using equation 3.1,
we get:

UFP = 2 × 4 + 3 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 47

Step 2: A l l the parameters are of moderate complexity, except the

Table 3.2: Function Point Relative Complexity Adjustment Factors

Requirement for reliable backup and recovery

Requirement for data communication

Extent of distributed processing

Performance requirements

Expected operational environment

Extent of online data entries

Extent of multi-screen or multi-operation online data input

Extent of online updating of master files

Extent of complex inputs, outputs, online queries and files

Extent of complex data processing

Extent that currently developed code can be designed for reuse

Extent of conversion and installation included in the design

Extent of multiple installations in an organisation and variety of customer organisations

Extent of change and focus on ease of use

output parameter of customer registration, in which the only output is
the CN value. Consequently, the complexity of the output parameter of
the customer registration function can be categorized as simple. By
consulting Table 3.1, we find that the value for simple output is given to
be 4. The UFP can be refined as follows:

UFP = 3 × 4 + 2 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 46

Therefore, the UFP will be 46.

Step 3: Since the complexity adjustment factors have average values,
therefore the total degrees of influence would be: DI = 14 × 4 = 56

TCF = 0.65 + 0.01 + 56 = 1.21

Therefore, the adjusted FP=46*1.21=55.66

Feature point metric shortcomings: A major shortcoming of the
function point measure is that it does not take into account the
algorithmic complexity of a function. That is, the function point metric
implicitly assumes that the effort required to design and develop any
two different functionalities of the system is the same. But, we know
that this is highly unlikely to be true. The effort required to develop any
two functionalities may vary widely. For example, in a library
automation software, the create-member feature would be much
simpler compared to the loan-from-remote-library feature. FP only
considers the number of functions that the system supports, without
distinguishing the difficulty levels of developing the various
functionalities. To overcome this problem, an extension to the function
point metric called feature point metric has been proposed.

Feature point metric incorporates algorithm complexity as an extra
parameter. This parameter ensures that the computed size using the feature
point metric reflects the fact that higher the complexity of a function, the
greater the effort required to develop it—therefore, it should have larger size
compared to a simpler function.

Critical comments on the function point and feature point
metrics

Proponents of function point and feature point metrics claim that these
t w o metrics are language-independent and can be easily computed
from the SRS document during project planning stage itself. On the
other hand, opponents claim that these metrics are subjective and
require a sleight of hand. An example of the subjective nature of the

function point metric can be that the way one groups input and output
data items into logically related groups can be very subjective. For
example, consider that certain functionality requires the employee
name and employee address to be input. It is possible that one can
consider both these items as a single unit of data, since after all, these
describe a single employee. It is also possible for someone else to
consider an employee’s address as a single unit of input data and name
as another. Such ambiguities leav e sufficient scope for debate and keep
open the possibility for different project managers to arrive at different
function point measures for essentially the same problem.

3.4 PROJECT ESTIMATION TECHNIQUES

Estimation of various project parameters is an important project planning
activity. The different parameters of a project that need to be
estimated include—project size, effort required to complete the project,
project duration, and cost. Accurate estimation of these parameters is
important, since these not only help in quoting an appropriate project
cost to the customer, but also form the basis for resource planning and
scheduling. A large number of estimation techniques have been
proposed by researchers. These can broadly be classified into three
main categories:

• Empirical estimation techniques

• Heuristic techniques

• Analytical estimation techniques

In the following subsections, we provide an overview of the different
categories of estimation techniques.

3.4.1 Empirical Estimation Techniques

Empirical estimation techniques are essentially based on making an
educated guess of the project parameters. While using this technique,
prior experience with development of similar products is helpful.
Although empirical estimation techniques are based on common sense
and subjective decisions, over the years, the different activities involved
in estimation have been formalised to a large extent. We shall discuss
two such formalisations of the basic empirical estimation techniques
known as expert judgement and the Delphi techniques in Sections 3.6.1
and 3.6.2 respectively.

3.4.2 Heuristic Techniques

Heuristic techniques assume that the relationships that exist among the
different project parameters can be satisfactorily modelled using
suitable mathematical expressions. Once the basic (independent)
parameters are known, the other (dependent) parameters can be easily
determined by substituting the values of the independent parameters in
the corresponding mathematical expression. Different heuristic
estimation models can be divided into the following two broad
categories—single variable and multivariable models.

S i n g l e variable estimation models assume that various project
characteristic can be predicted based on a single previously estimated basic
(independent) characteristic of the software such as its size. A single variable
estimation model assumes that the relationship between a parameter to be
estimated and the corresponding independent parameter can be
characterised by an expression of the following form:

Estimated Parameter = c1 ◻ ed1

In the above expression, e represents a characteristic of the software that
has already been estimated (independent variable). Estimated P arameter is
the dependent parameter (to be estimated). The dependent parameter to be
estimated could be effort, project duration, staff size, etc., c1 a nd d1 are

constants. The values of the constants c1 a nd d1 a re usually determined

using data collected from past projects (historical data). The COCOMO model
discussed in Section 3.7.1, is an example of a single variable cost estimation
model.

A multivariable cost estimation model assumes that a parameter can be
predicted based on the values of more than one independent parameter. It
takes the following form:

Estimated Resource = c1 ◻ p1
d1 + c2 ◻ p2

d2 + ...

where, p1, p2, ... are the basic (independent) characteristics of the

software already estimated, and c1, c2, d1, d2, are constants.

Multivariable estimation models are expected to give more accurate
estimates compared to the single variable models, since a project
parameter is typically influenced by several independent parameters.
The independent parameters influence the dependent parameter to
different extents. This is modelled by the different sets of constants c1 ,

d1 , c2 , d2 , Values of these constants are usually determined from

an analysis of historical data. The intermediate COCOMO model
discussed in Section 3.7.2 can b e considered to be an example of a
multivariable estimation model.

3.4.3 Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with
certain basic assumptions regarding a project. Unlike empirical and
heuristic techniques, analytical techniques do have certain scientific
basis. As an example of an analytical technique, we shall discuss the
Halstead’s software science in Section 3.8. We shall see that starting
with a few simple assumptions, Halstead’s software science derives
some interesting results. Halstead’s software science is especially useful
for estimating software maintenance efforts. In fact, it outperforms both
empirical and heuristic techniques as far as estimating software
maintenance efforts is concerned.

3.5 EMPIRICAL ESTIMATION TECHNIQUES

We have already pointed out that empirical estimation techniques have,
over the years, been formalised to a certain extent. Yet, these are still
essentially euphemisms for pure guess work. These techniques are easy
to use and give reasonably accurate estimates. Two popular empirical
estimation techniques are—Expert judgement and Delphi estimation
techniques. We discuss these two techniques in the following
subsection.

3.5.1 Expert Judgement

Expert judgement is a widely used size estimation technique. In this
technique, an expert makes an educated guess about the problem size
after analysing the problem thoroughly.

Usually, the expert estimates the cost of the different components (i.e.
modules or subsystems) that would make up the system and then combines
the estimates for the individual modules to arrive at the overall estimate.
However, this technique suffers from several shortcomings. The outcome of
the expert judgement technique is subject to human errors and individual
bias. Also, it is possible that an expert may overlook some factors
inadvertently. Further, an expert making an estimate may not have relevant

experience and knowledge of all aspects of a project. For example, he may
be conversant with the database and user interface parts, but may not be
very knowledgeable about the computer communication part. Due to these
factors, the size estimation arrived at by the judgement of a single expert
may be far from being accurate.

A more refined form of expert judgement is the estimation made by a
group of experts. Chances of errors arising out of issues such as individual
oversight, lack of familiarity with a particular aspect of a project, personal
bias, and the desire to win contract through overly optimistic estimates is
minimised when the estimation is done by a group of experts. However, the
estimate made by a group of experts may still exhibit bias. For example, on
certain issues the entire group of experts may be biased due to reasons such
as those arising out of political or social considerations. Another important
shortcoming of the expert judgement technique is that the decision made by
a group may be dominated by overly assertive members.

3.5.2 Delphi Cost Estimation

Delphi cost estimation technique tries to overcome some of the
shortcomings of the expert judgement approach. Delphi estimation is
carried out by a team comprising a group of experts and a co-ordinator.
In this approach, the co-ordinator provides each estimator with a copy
of the software requirements specification (SRS) document and a form
for recording his cost estimate. Estimators complete their individual
estimates anonymously and submit them to the co-ordinator. In their
estimates, the estimators mention any unusual characteristic of the
product which has influenced their estimations. The co-ordinator
prepares the summary of the responses of all the estimators, and also
includes any unusual rationale noted by any of the estimators. The
prepared summary information is distributed to the estimators. Based
on this summary, the estimators re-estimate. This process is iterated
for several rounds. However, no discussions among the estimators is
allowed during the entire estimation process. The purpose behind this
restriction is that if any discussion is allowed among the estimators,
then many estimators may easily get influenced by the rationale of an
estimator who may be more experienced or senior. After the completion
of several iterations of estimations, the co-ordinator takes the
responsibility of compiling the results and preparing the final estimate.
The Delphi estimation, though consumes more time and effort,

overcomes an important shortcoming of the expert judgement
technique in that the results can not unjustly be influenced by overly
assertive and senior members.

3.6 COCOMO—A HEURISTIC ESTIMATION TECHNIQUE

COnstructive COst estimation MOdel (COCOMO) was proposed by Boehm
[1981]. COCOMO prescribes a three stage process for project
estimation. In the first stage, an initial estimate is arrived at. Over the
next two stages, the initial estimate is refined to arrive at a more
accurate estimate. COCOMO uses both single and multivariable
estimation models at different stages of estimation.

The three stages of COCOMO estimation technique are—basic COCOMO,
intermediate COCOMO, and complete COCOMO. We discuss these three
stages of estimation in the following subsection.

3.6.1 Basic COCOMO Model

Boehm postulated that any software development project can be
classified into one of the following three categories based on the
development complexity—organic, semidetached, and embedded.
Based on the category of a software development project, he gave
different sets of formulas to estimate the effort and duration from the
size estimate.

Three basic classes of software development projects

In order to classify a project into the identified categories, Boehm
requires us to consider not only the characteristics of the product but
also those of the development team and development environment.
Roughly speaking, the three product development classes correspond to
development of application, utility and system software. Normally, data

processing programs1 are considered to be application programs.
Compilers, linkers, etc., are utility programs. Operating systems and
real-time system programs, etc. are system programs. System
programs interact directly with the hardware and programming
complexities also arise out of the requirement for meeting timing
constraints and concurrent processing of tasks.

Brooks [1975] states that utility programs are roughly three times as
difficult to write as application programs and system programs are roughly
three times as difficult as utility programs. Thus according to Brooks, the

relative levels of product development complexity for the three categories
(application, utility and system programs) of products are 1:3:9.

Boehm’s [1981] definitions of organic, semidetached, and embedded
software are elaborated as follows:

Organic: We can classify a development project to be of organic type, if the
project deals with developing a well-understood application program, the size
of the development team is reasonably small, and the team members are
experienced in developing similar types of projects.

Semidetached: A development project can be classify to be of
semidetached type, if the development team consists of a mixture of
experienced and inexperienced staff. Team members may have limited
experience on related systems but may be unfamiliar with some aspects of
the system being developed.

Embedded: A development project is considered to be of embedded type, if
the software being developed is strongly coupled to hardware, or if stringent
regulations on the operational procedures exist. Team members may have
limited experience on related systems but may be unfamiliar with some
aspects of the system being developed.

Observe that in deciding the category of the development project, in
addition to considering the characteristics of the product being developed, we
need to consider the characteristics of the team members. Thus, a simple
data processing program may be classified as semidetached, if the team
members are inexperienced in the development of similar products.

For the three product categories, Boehm provides different sets of
expressions to predict the effort (in units of person-months) and development
time from the size estimation given in kilo lines of source code (KLSC). But,
how much effort is one person-month?

What is a person-month?

Person-month (PM) is a popular unit for effort measurement.

One person month is the effort an individual can typically put in a month. The
person-month estimate implicitly takes into account the productivity losses that
normally occur due to time lost in holidays, weekly offs, coffee breaks, etc.

Person-month (PM) is considered to be an appropriate unit for measuring effort,
because developers are typically assigned to a project for a certain number of
months.

It should be carefully noted that an effort estimation of 100 PM does not
imply that 100 persons should work for 1 month. Neither does it imply that 1
person should be employed for 100 months to complete the project. The
effort estimation simply denotes the area under the person-month curve (see
Figure 3.3) for the project. The plot in Figure 3.3 shows that different
number of personnel may work at different points in the project development.
The number of personnel working on the project usually increases or
decreases by an integral number, resulting in the sharp edges in the plot. We
shall elaborate in Section 3.9 how the exact number of persons to work at
any time on the product development can be determined from the effort and
duration estimates.

Figure 3.3: Person-month curve.

General form of the COCOMO expressions

The basic COCOMO model is a single variable heuristic model that
gives an approximate estimate of the project parameters. The basic
COCOMO estimation model is given by expressions of the following
forms:

Effort = a1 × (KLOC)a2 PM

Tdev = b1 × (Effort)b2 months

where,

 KLOC is the estimated size of the software product expressed in Kilo
Lines Of Code.

 a1, a2, b1, b2 are constants for each category of software product.

 Tdev is the estimated time to develop the software, expressed in

months.

 Effort is the total effort required to develop the software product,
expressed in person- months (PMs).

According to Boehm, every line of source text should be calculated as one
LOC irrespective of the actual number of instructions on that line. Thus, if a
single instruction spans several lines (say n lines), it is considered to be
nLOC. The values of a1, a2, b1, b2 for different categories of products as

given by Boehm [1981] are summarised below. He derived these values by
examining historical data collected from a large number of actual projects.

Estimation of development effort: For the three classes of software
products, the formulas for estimating the effort based on the code size are
shown below:

Organic : Effort = 2.4(KLOC)1.05 PM

Semi-detached : Effort = 3.0(KLOC)1.12 PM
Embedded : Effort = 3.6(KLOC)1.20 PM

Estimation of development time: For the three classes of software products,
the formulas for estimating the development time based on the effort are
given below:

Organic : Tdev = 2.5(Effort)0.38 Months

Semi-detached : Tdev = 2.5(Effort)0.35 Months
Embedded : Tdev = 2.5(Effort)0.32 Months

We can gain some insight into the basic COCOMO model, if we plot the
estimated effort and duration values for different software sizes. Figure 3.4
shows the plots of estimated effort versus product size for different categories
of software products.

Observations from the effort-size plot From Figure 3.4, we can observe
that the effort is some what superlinear (that is, slope of the curve>1) in the
size of the software product.

Figure 3.4: Effort versus product size.

This is because the exponent in the effort expression is more than 1. Thus,
the effort required to develop a product increases rapidly with project size.
However, observe that the increase in effort with size is not as bad as that
was portrayed in Chapter 1. The reason for this is that COCOMO assumes that
projects are carefully designed and developed by using software engineering
principles.

Observations from the development time—size plot

The development time versus the product size in KLOC is plotted in
Figure 3.5. From

Figure 3.5, we can observe the following:

 The development time is a sublinear function of the size of the product.
That is, when the size of the product increases by two times, the time
to develop the product does not double but rises moderately. For
example, to develop a product twice as large as a product of size
100KLOC, the increase in duration may only be 20 per cent. It may
appear surprising that the duration curve does not increase
superlinearly—one would normally expect the curves to behave similar
to those in the effort-size plots. This apparent anomaly can be
explained by the fact that COCOMO assumes that a project
development is carried out not by a single person but by a team of
developers.

 From Figure 3.5 we can observe that for a project of any given size, the

development time is roughly the same for all the three categories of
products. For example, a 60 KLOC program can be developed in
approximately 18 months, regardless of whether it is of organic, semi-
detached, or embedded type. (Please verify this using the basic
COCOMO formulas discussed in this section). However, according to
the COCOMO formulas, embedded programs require much higher effort
than either application or utility programs. We can interpret it to mean
that there is more scope for parallel activities for system programs
than those in utility or application programs.

Cost estimation

Figure 3.5: Development time versus size.

From the effort estimation, project cost can be obtained by multiplying
the estimated effort (in man-month) by the manpower cost per month.
Implicit in this project cost computation is the assumption that the
entire project cost is incurred on account of the manpower cost alone.
However, in addition to manpower cost, a project would incur several
other types of costs which we shall refer to as the overhead costs. The
overhead costs would include the costs due to hardware and software
required for the project and the company overheads for administration,
office space,electricity, etc. Depending on the expected values of the
overhead costs, the project manager has to suitably scale up the cost

arrived by using the COCOMO formula.

Implications of effort and duration estimate

An important implicit implication of the COCOMO estimates are that if you
try to complete the project in a time shorter than the estimated duration,
then the cost will increase drastically. But, if you complete the project over a
longer period of time than that estimated, then there is almost no decrease
in the estimated cost value. The reasons for this are discussed in Section 3.9.
Thus, we can consider that the COCOMO effort and duration values to
indicate the following.

Staff-size estimation

Given the estimations for the project development effort and the nominal
development time, can the required staffing level be determined by a
simple division of the effort estimation by the duration estimation? The
answer is “No”. It will be a perfect recipe for project delays and cost
overshoot. We examine the staffing problem in more detail in Section
3.9. From the discussions in Section 3.9, it would become clear that the
simple division approach to obtain the staff size would be highly
improper.

Example 3.2 Assume that the size of an organic type software product has
been estimated to be 32,000 lines of source code. Assume that the average
salary of a software developer is Rs. 15,000 per month. Determine the effort
required to develop the software product, the nominal development time, and
the cost to develop the product.

From the basic COCOMO estimation formula for organic software: Effort =
2.4 × (32)1.05 = 91 PM

Nominal development time = 2.5 × (91)0.38 = 14 months

Staff cost required to develop the product = 91 × Rs. 15, 000 = Rs.
1,465,000

3.6.2 Intermediate COCOMO

The basic COCOMO model assumes that effort and development time are
functions of the product size alone. However, a host of other project
parameters besides the product size affect the effort as well as the time
required to develop the product. For example the effort to develop a
product would vary depending upon the sophistication of the

development environment.
Therefore, in order to obtain an accurate estimation of the effort and

project duration, the effect of all relevant parameters must be taken into
account. The intermediate COCOMO model recognises this fact and refines
the initial estimates.

The intermediate COCOMO model uses a set of 15 cost drivers (multipliers)
that are determined based on various attributes of software development.
These cost drivers are multiplied with the initial cost and effort estimates
(obtained from the basic COCOMO) to appropriately scale those up or down.
For example, if modern programming practices are used, the initial estimates
are scaled downward by multiplication with a cost driver having a value less
than 1. If there are stringent reliability requirements on the software product,
the initial estimates are scaled upward. Boehm requires the project manager
to rate 15 different parameters for a particular project on a scale of one to
three. For each such grading of a project parameter, he has suggested
appropriate cost drivers (or multipliers) to refine the initial estimates.

In general, the cost drivers identified by Boehm can be classified as being
attributes of the following items:

Product: The characteristics of the product that are considered include the
inherent complexity of the product, reliability requirements of the product,
etc.

Computer: Characteristics of the computer that are considered include the
execution speed required, storage space required, etc.

Personnel: The attributes of development personnel that are considered
include the experience level of personnel, their programming capability,
analysis capability, etc.

Development environment: Development environment attributes capture
the development facilities available to the developers. An important
parameter that is considered is the sophistication of the automation (CASE)
tools used for software development.

We have discussed only the basic ideas behind the intermediate COCOMO
model. A detailed discussion on the intermediate COCOMO model are beyond
the scope of this book and the interested reader may refer [Boehm81].

3.6.3 Complete COCOMO

A major shortcoming of both the basic and the intermediate COCOMO
models is that they consider a software product as a single

homogeneous entity. However, most large systems are made up of
several smaller sub-systems. These sub-systems often have widely
different characteristics. For example, some sub-systems may be
considered as organic type, some semidetached, and some even
embedded. Not only may the inherent development complexity of the

subsystems be different, but for some subsystem the reliability
requirements may be high, for some the development team might have
no previous experience of similar development, and so on.

The complete COCOMO model considers these differences in characteristics
of the subsystems and estimates the effort and development time as the sum
of the estimates for the individual sub-systems.

In other words, the cost to develop each sub-system is estimated
separately, and the complete system cost is determined as the subsystem
costs. This approach reduces the margin of error in the final estimate.

L e t us consider the following development project as an example
application of the complete COCOMO model. A distributed management
information system (MIS) product for an organisation having offices at several
places across the country can have the following sub-component:

• Database part

• Graphical user interface (GUI) part

• Communication part

Of these, the communication part can be considered as embedded
software. The database part could be semi-detached software, and the GUI
part organic software. The costs for these three components can be
estimated separately, and summed up to give the overall cost of the system.

To further improve the accuracy of the results, the different parameter
values of the model can be fine-tuned and validated against an organisation’s
historical project database to obtain more accurate estimations. Estimation
models such as COCOMO are not totally accurate and lack a full scientific
justification. Still, software cost estimation models such as COCOMO are
required for an engineering approach to software project management.
Companies consider computed cost estimates to be satisfactory, if these are
within about 80 per cent of the final cost. Although these estimates are gross
approximations—without such models, one has only subjective judgements to
rely on.

3.6.4 COCOMO 2

Since the time that COCOMO estimation model was proposed in the early

1980s, the software development paradigms as well as the
characteristics of development projects have undergone a sea change.
The present day software projects are much larger in size and reuse of
existing software to develop new products has become pervasive. For
example, component-based development and service-oriented

architectures (SoA) have become very popular (discussed in Chapter
15). New life cycle models and development paradigms are being
deployed for web-based and component-based software. During the
1980s rarely any program was interactive, and graphical user interfaces
were almost non-existent. On the other hand, the present day software
products are highly interactive and support elaborate graphical user
interface. Effort spent on developing the GUI part is often as much as
the effort spent on developing the actual functionality of the software.
To make COCOMO suitable in the changed scenario, Boehm proposed
COCOMO 2 [Boehm95] in 1995.

COCOMO 2 provides three models to arrive at increasingly accurate cost
estimations. These can be used to estimate project costs at different phases
of the software product. As the project progresses, these models can be
applied at the different stages of the same project.

Application composition model: This model as the name suggests, can be
used to estimate the cost for prototype development. We had already
discussed in Chapter 2 that a prototype is usually developed to resolve user
interface issues.

Early design model: This supports estimation of cost at the architectural
design stage.

Post-architecture model: This provides cost estimation during detailed
design and coding stages.

The post-architectural model can be considered as an update of the original
COCOMO. The other two models help consider the following two factors. Now
a days every software is interactive and GUI-driven. GUI development
constitutes a significant part of the overall development effort. The second
factor concerns several issues that affect productivity such as the extent of
reuse. We briefly discuss these three models in the following.

Application composition model

The application composition model is based on counting the number of
screens, reports, and modules (components). Each of these components
is considered to be an object (this has nothing to do with the concept of

objects in the object-oriented paradigm). These are used to compute
the object points of the application.

Effort is estimated in the application composition model as follows:

1. Estimate the number of screens, reports, and modules (components)

from an analysis of the SRS document.

2. Determine the complexity level of each screen and report, and rate
these as either simple, medium, or difficult. The complexity of a
screen or a report is determined by the number of tables and views it
contains.

3. Use the weight values in Table 3.3 to 3.5.

The weights have been designed to correspond to the amount of effort
required to implement an instance of an object at the assigned complexity
class.

Table 3.3: SCREEN Complexity Assignments for the Data Tables

Number of views Tables < 4 Tables < 8 Tables ≥ 8

< 3 Simple Simple Medium

3–7 Simple Medium Difficult

>8 Medium Difficult Difficult

.
Table 3.4: Report Complexity Assignments for the Data Tables

Number of views Tables < 4 Tables < 8 Tables ≥ 8

0 or 1 Simple Simple Medium

2 or 3 Simple Medium Difficult

4 or more Medium Difficult Difficult

4. Add all the assigned complexity values for the object instances together
to obtain the object points.

Table 3.5: Table of Complexity Weights for Each Class for Each Object Type

Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL component — — 10

5. Estimate percentage of reuse expected in the system. Note that reuse
refers to the amount of pre-developed software that will be used within
the system. Then, evaluate New Object-Point count (NOP) as follows,

6. Determine the productivity using Table 3.6. The productivi ty depends
onthe experience of the developers as well as the maturity of the CASE environment used.

7. Finally, the estimated effort in person-months is computed as E =
NOP/PROD.

Table 3.6: Productivity Table

Developers’ experience Very low Low Nominal High Very high

CASE maturity Very low Low Nominal High Very high

PRODUCTIVITY 4 7 13 25 50

Early design model

T he unadjusted function points (UFP) are counted and converted to
source lines of code (SLOP). In a typical programming environment,
each UFP would correspond to about 128 lines of C, 29 lines of C++, or
320 lines of assembly code. Of course, the conversion from UFP to LOC
is environment specific, and depends on factors such as extent of
reusable libraries supported. Seven cost drivers that characterise the
post-architecture model are used. These are rated on a seven points
scale. The cost drivers include product reliability and complexity, the
extent of reuse, platform sophistication, personnel experience, CASE
support, and schedule.

The effort is calculated using the following formula:

Effort = K SLOC × ◻i cost driveri

Post-architecture model

The effort is calculated using the following formula, which is similar to
the original COCOMO model.

Effort = a × K SLOCb × ◻i cost driveri

The post-architecture model differs from the original COCOMO model in the
choice of the set of cost drivers and the range of values of the exponent b.
The exponent b can take values in the range of 1.01 to 1.26. The details of
the COCOMO 2 model, and the exact values of b and the cost drivers can be
found in [Boehm 97].

3.7 HALSTEAD’S SOFTWARE SCIENCE—AN ANALYTICAL
TECHNIQUE

Halstead’s software science2 is an analytical technique to measure size,

development effort, and development cost of software products.
Halstead used a few primitive program parameters to develop the
expressions for over all program length, potential minimum volume,
actual volume, language level, effort, and development time.

For a given program, let:

 h1 be the number of unique operators used in the program,

 h2 be the number of unique operands used in the program,

 N1 be the total number of operators used in the program,

 N2 be the total number of operands used in the program.

Although the terms operators a nd operands have intuitive meanings, a
precise definition of these terms is needed to avoid ambiguities. But,
unfortunately we would not be able to provide a precise definition of these
two terms. There is no general agreement among researchers on what is the
most meaningful way to define the operators and operands for different
programming languages. However, a few general guidelines regarding
identification of operators and operands for any programming language can
be provided. For instance, assignment, arithmetic, and logical operators are
usually counted as operators.

A pair of parentheses, as well as a block begin

—block end pair, are considered as single operators. A label is considered to
be an operator, if it is used as the target of a GOTO statement. The
constructs if ... then ... else ... endif and a while ... do

are considered as single operators. A sequence (statement termination)
operator ’;’ is considered as a single operator. Subroutine declarations and
variable declarations comprise the operands. Function name in a function call
statement is considered as an operator, and the arguments of the function
call are considered as operands. However, the parameter list of a function in
the function declaration statement is not considered as operands. We list
below what we consider to be the set of operators and operands for the ANSI
C language. However, it should be realised that there is considerable
disagreement among various researchers in this regard.

Operators and Operands for the ANSI C language

The following is a suggested list of operators for the ANSI C language:

([. , -> * + - ~ ! ++ -- * / % + - << >> < > <= >= !=

== & ^ | && || = *= /= %= += -= <<= >>= &= ^= |= : ? { ;

CASE DEFAULT IF ELSE SWITCH WHILE DO FOR GOTO CONTINUE

BREAK RETURN and a function name in a function call

Operands are those variables and constants which are being used with
operators in expressions. Note that variable names appearing in declarations
are not considered as operands.

Example 3.3 Consider the expression a = &b; a, b are the operands and =,
& are the operators.

Example 3.4 The function name in a function definition is not counted as an
operator.

int func (int a, int b)

{

. . .

}

For the above example code, the operators are: {}, () We do not consider
func, a, and b as operands, since these are part of the function definition.

Example 3.5 Consider the function call statement: func (a, b);. In this, func
‘ ,’ a n d ; are considered as operators and variables a, b are treated as
operands.

3.7.1 Length and Vocabulary

The length of a program as defined by Halstead, quantifies total usage
of all operators and operands in the program. Thus, length N = N1 +

N2. Halstead’s definition of the length of the program as the total

number of operators and operands roughly agrees with the intuitive
notion of the program length as the total number of tokens used in the
program.

The program vocabulary is the number of unique operators and operands
used in the program. Thus, program vocabulary h = h1 + h2.

3.7.2 Program Volume

The length of a program (i.e., the total number of operators and
operands used in the code) depends on the choice of the operators and
operands used. In other words, for the same programming problem, the
length would depend on the programming style. This type of
dependency would produce different measures of length for essentially
the same problem when different programming languages are used.

Thus, while expressing program size, the programming language used
must be taken into consideration:

V = N log2 h

Let us try to understand the important idea behind this expression.
Intuitively, the program volume V is the minimum number of bits
needed to encode the program. In fact, to represent h different

identifiers uniquely, we need at least log2 h bits (where h is the

program vocabulary). In this scheme, we need N log2 h bits to store a

program of length N. Therefore, the volume V represents the size of the
program by approximately compensating for the effect of the
programming language used.

3.7.3 Potential Minimum Volume

The potential minimum volume V* is defined as the volume of the most
succinct program in which a problem can be coded. The minimum
volume is obtained when the program can be expressed using a single

source code instruction, say a function call like foo();. In other words,

the volume is bound from below due to the fact that a program would
have at least two operators and no less than the requisite number of
operands. Note that the operands are the input and output data items.

Thus, if an algorithm operates on input and output data d1, d2, ... dn, the

most succinct program would be f(d1, d2 , ..., dn); for which, h1 = 2, h2 = n.

Therefore, V* = (2 + h2) log2 (2 + h2).

The program level L is given by L = V*/V. The concept of program level L
has been introduced in an attempt to measure the level of abstraction
provided by the programming language. Using this definition, languages can
be ranked into levels that also appear intuitively correct.

The above result implies that the higher the level of a language, the less
effort it takes to develop a program using that language. This result agrees
with the intuitive notion that it takes more effort to develop a program in

assembly language than to develop a program in a high-level language to
solve a problem.

3.7.4 Effort and Time

The effort required to develop a program can be obtained by dividing the
program volume with the level of the programming language used to
develop the code. Thus, effort E = V /L, where E is the number of
mental discriminations required to implement the program and also the
effort required to read and understand the program. Thus, the

programming effort E = V2/V* (since L = V*/V) varies as the square of
the volume. Experience shows that E is well correlated to the effort
needed for maintenance of an existing program.

The programmer’s time T = E/S, where S is the speed of mental
discriminations. The value of S has been empirically developed from
psychological reasoning, and its recommended value for programming
applications is 18.

3.7.5 Length Estimation

Even though the length of a program can be found by calculating the
tota l number of operators and operands in a program, Halstead
suggests a way to determine the length of a program using the number
of unique operators and operands used in the program. Using this
method, the program parameters such as length, volume, cost, effort,
etc., can be determined even before the start of any programming
activity. His method is summarised below.

Halstead assumed that it is quite unlikely that a program has several

identical parts— in formal language terminology identical substrings—of
length greater than h(h being the program vocabulary). In fact, once a piece

of code occurs identically at several places, it is usually made into a

procedure or a function. Thus, we can safely assume that any program of
length N consists of N/h unique strings of length h. Now, it is a standard

combinatorial result that for any given alphabet of size K, there are exactly Kr

different strings of length r. Thus,

Since operators and operands usually alternate in a program, we can

further refine the upper bound into N ≤ hh1
h1 h2

h3. Also, N must include not

only the ordered set of N elements, but it should also include all possible
subsets of that ordered set, i.e. the power set of N strings

(This particular reasoning of Halstead is hard to justify!).
Therefore,

Experimental evidence gathered from the analysis of a large number of
programs suggests that the computed and actual lengths match very closely.
However, the results may be inaccurate when small programs are considered
individually.

Example 3.6 Let us consider the following C program:

main()

{

int a,b,c,avg;

scanf("%d %d %d",&a,&b,&c);

avg=(a+b+c)/3;

printf("avg= %d",avg);

}

The unique operators are: main, (), {}, int, scanf, &, “,”, “;”,
=, +, /, printf

The unique operands are: a,b,c,&a,&b,&c,a+b+c,avg,3,”%d %d

%d”, “avg=%d”

Therefore,

In conclusion, Halstead’s theory tries to provide a formal definition and
quantification of such qualitative attributes as program complexity, ease of
understanding, and the level of abstraction based on some low-level
parameters such as the number of operands, and operators appearing in the
program. Halstead’s software science provides gross estimates of properties
of a large collection of software, but extends to individual cases rather
inaccurately.

3.8 RISK MANAGEMENT

Every project is susceptible to a large number of risks. Without effective
management of the risks, even the most meticulously planned project may go
hay ware.

We need to distinguish between a risk which is a problem that might occur
from the problems currently being faced by a project. If a risk becomes real,
the anticipated problem becomes a reality and is no more a risk. If a risk
becomes real, it can adversely affect the project and hamper the successful
and timely completion of the project. Therefore, it is necessary for the project
manager to anticipate and identify different risks that a project is susceptible
to, so that contingency plans can be prepared beforehand to contain each
risk. In this context, risk management aims at reducing the chances of a risk
becoming real as well as reducing the impact of a risks that becomes real.
Risk management consists of three essential activities—risk identification, risk
assessment, and risk mitigation. We discuss these three activities in the
following subsections.

3.8.1 Risk Identification

The project manager needs to anticipate the risks in a project as early as
possible. As soon as a risk is identified, effective risk management plans
are made, so that the possible impacts of the risks is minimised. So,
early risk identification is important. Risk identification is somewhat
similar to the project manager listing down his nightmares. For
example, project manager might be worried whether the vendors whom

you have asked to develop certain modules might not complete their
work in time, whether they would turn in poor quality work, whether
some of your key personnel might leave the organisation, etc. All such

A risk is any anticipated unfavourable event or circumstance that can occur while a

project is underway.

risks that are likely to affect a project must be identified and listed.

A project can be subject to a large variety of risks. In order to be able to

systematically identify the important risks which might affect a project, it is
necessary to categorise risks into different classes. The project manager can
then examine which risks from each class are relevant to the project. There
are three main categories of risks which can affect a software project: project
risks, technical risks, and business risks. We discuss these risks in the
following.

Project risks: Project risks concern various forms of budgetary, schedule,
personnel, resource, and customer-related problems. An important project
risk is schedule slippage. Since, software is intangible, it is very difficult to
monitor and control a software project. It is very difficult to control something
which cannot be seen. For any manufacturing project, such as manufacturing
of cars, the project manager can see the product taking shape. He can for
instance, see that the engine is fitted, after that the doors are fitted, the car
is getting painted, etc. Thus he can accurately assess the progress of the
work and control it, if he finds any activity is progressing at a slower rate than
what was planned. The invisibility of the product being developed is an
important reason why many software projects suffer from the risk of schedule
slippage.

Technical risks: Technical risks concern potential design, implementation,
interfacing, testing, and maintenance problems. Technical risks also include
ambiguous specification, incomplete specification, changing specification,
technical uncertainty, and technical obsolescence. Most technical risks occur
due the development team’s insufficient knowledge about the product.

Business risks: This type of risks includes the risk of building an excellent
product that no one wants, losing budgetary commitments, etc.

Classification of risks in a project

Example 3.12 Let us consider a satellite based mobile communication
product discussed in Case Study 2.2 of Section 2.5. The project
manager can identify several risks in this project. Let us classify them
appropriately.

 What if the project cost escalates and overshoots what was

estimated?: Project risk.

 What if the mobile phones that are developed become too bulky in size

to conveniently carry?: Business risk.

 What if it is later found out that the level of radiation coming from the
phones is harmful to human being?: Business risk.

 What if call hand-off between satellites becomes too difficult to
implement?: Technical risk.

In order to be able to successfully foresee and identify different risks that
might affect a software project, it is a good idea to have a company disaster
list. This list would contain all the bad events that have happened to software
projects of the company over the years including events that can be laid at
the customer’s doors. This list can be read by the project mangers in order to
be aware of some of the risks that a project might be susceptible to. Such a
disaster list has been found to help in performing better risk analysis.

3.8.2 Risk Assessment

The objective of risk assessment is to rank the risks in terms of their
damage causing potential. For risk assessment, first each risk should be
rated in two ways:

 The likelihood of a risk becoming real (r).

 The consequence of the problems associated with that risk (s).

Based on these two factors, the priority of each risk can be computed as
follows:

p = r ◻ s

where, p is the priority with which the risk must be handled, r is the
probability of the risk becoming real, and s is the severity of damage
caused due to the risk becoming real. If all identified risks are
prioritised, then the most likely and damaging risks can be handled first
and more comprehensive risk abatement procedures can be designed
for those risks.

3.8.3 Risk Mitigation

After all the identified risks of a project have been assessed, plans are
made to contain the most damaging and the most likely risks first.
Different types of risks require different containment procedures. In

fact, most risks require considerable ingenuity on the part of the project
manager in tackling the risks.

There are three main strategies for risk containment:

Avoid the risk: Risks can be avoided in several ways. Risks often arise due
to project constraints and can be avoided by suitably modifying the
constraints. The different categories of constraints that usually give rise to
risks are:

Process-related risk: These risks arise due to aggressive work schedule,
budget, and resource utilisation.

Product-related risks: These risks arise due to commitment to challenging
product features (e.g. response time of one second, etc.), quality, reliability
etc.

Technology-related risks: These risks arise due to commitment to use certain
technology (e.g., satellite communication).

A few examples of risk avoidance can be the following: Discussing with the
customer to change the requirements to reduce the scope of the work, giving
incentives to the developers to avoid the risk of manpower turnover, etc.

Transfer the risk: This strategy involves getting the risky components
developed by a third party, buying insurance cover, etc.

Risk reduction: This involves planning ways to contain the damage due to a
risk. For example, if there is risk that some key personnel might leave, new
recruitment may be planned. The most important risk reduction techniques
for technical risks is to build a prototype that tries out the technology that
you are trying to use. For example, if you are using a compiler for recognising
user commands, you would have to construct a compiler for a small and very
primitive command language first.

There can be several strategies to cope up with a risk. To choose the most
appropriate strategy for handling a risk, the project manager must consider
the cost of handling the risk and the corresponding reduction of risk. For this
we may compute the risk leverage of the different risks. Risk leverage is the
difference in risk exposure divided by the cost of reducing the risk. More
formally,

Even though we identified three broad ways to handle any risk, effective
risk handling cannot be achieved by mechanically following a set procedure,

but requires a lot of ingenuity on the part of the project manager. As an
example, let us consider the options available to contain an important type of
risk that occurs in many software projects—that of schedule slippage.

REQUIREMENTS ANALYSIS AND

SPECIFICATION

4.1 REQUIREMENTS GATHERING AND ANALYSIS

The complete set of requirements are almost never available in the form
of a single document from the customer. In fact, it would be unrealistic
to expect the customers to produce a comprehensive document
containing a precise description of what he wants. Further, the
complete requirements are rarely obtainable from any single customer
representative. Therefore, the requirements have to be gathered by the
analyst from several sources in bits and pieces. These gathered
requirements need to be analysed to remove several types of problems
that frequently occur in the requirements that have been gathered
piecemeal from different sources.

We can conceptually divide the requirements gathering and analysis activity
into two separate tasks:

• Requirements gathering

• Requirements analysis

We discuss these two tasks in the following subsections.

4.1.1 Requirements Gathering

Requirements gathering is also popularly known as requirements elicitation.

The primary objective of the requirements gathering task is to collect the
requirements from the stakeholders.

Requirements gathering may sound like a simple task. However, in practice
it is very difficult to gather all the necessary information from a large number
of stakeholders and from information scattered across several pieces of
documents. Gathering requirements turns out to be especially challenging if
there is no working model of the software being developed.

Suppose a customer wants to automate some activity in his organisation
that is currently being carried out manually. In this case, a working model of
the system (that is, the manual system) exists. Availability of a working

model is usually of great help in requirements gathering.

Typically even before visiting the customer site, requirements gathering

activity is started by studying the existing documents to collect all possible
information about the system to be developed. During visit to the customer
site, the analysts normally interview the end-users and customer

representatives,1carry out requirements gathering activities such as
In the following, we briefly discuss the important ways in which an

experienced analyst gathers requirements:

1. Studying existing documentation: The analyst usually studies all the

available documents regarding the system to be developed before visiting the
customer site. Customers usually provide statement of purpose (SoP)
document to the developers. Typically these documents might discuss issues
such as the context in which the software is required, the basic purpose, the
stakeholders, features of any similar software developed elsewhere, etc.

2. Interview: Typically, there are many differe nt categories of users of a
software. Each category of users typically requires a different set of features
from the software. Therefore, it is important for the analyst to first identify
the different categories of users and then determine the requirements of
each. For example, the different categories of users of a library automation
software could be the library members, the librarians, and the accountants.
The library members would like to use the software to query availability of
books and issue and return books. The librarians might like to use the
software to determine books that are overdue, create member accounts,
delete member accounts, etc. The accounts personnel might use the software
to invoke functionalities concerning financial aspects such as the total fee
collected from the members, book procurement expenditures, staff salary
expenditures, etc.

To systematise this method of requirements gathering, the Delphi
technique can be followed. In this technique, the analyst consolidates the
requirements as understood by him in a document and then circulates it for
the comments of the various categories of users. Based on their feedback, he
refines his document. This procedure is repeated till the different users agree
on the set of requirements.

3. Task analysis: The users usually have a black-box view of a software and
consider the software as something that provides a set of services
(functionalities). A service supported by a software is also called a task. We

can therefore say that the software performs various tasks of the users. In
this context, the analyst tries to identify and understand the different tasks to
be performed by the software. For each identified task, the analyst tries to

formulate the different steps necessary to realise the required functionality in
consultation with the users. For example, for the issue book service, the steps
may be—authenticate user, check the number of books issued to the
customer and determine if the maximum number of books that this member
can borrow has been reached, check whether the book has been reserved,
post the book issue details in the member’s record, and finally print out a
book issue slip that can be presented by the member at the security counter
to take the book out of the library premises.

Scenario analysis: A task can have many scenarios of operation. The
different scenarios of a task may take place when the task is invoked under
different situations. For different types of scenarios of a task, the behaviour of
the software can be different. For example, the possible scenarios for the
book issue task of a library automation software may be:

 Book is issued successfully to the member and the book issue slip is
printed.

 The book is reserved, and hence cannot be issued to the member.

 The maximum number of books that can be issued to the member is
already reached, and no more books can be issued to the member.

For various identified tasks, the possible scenarios of execution are
identified and the details of each scenario is identified in consultation with
the users. For each of the identified scenarios, details regarding system
response, the exact conditions under which the scenario occurs, etc. are
determined in consultation with the user.

Form analysis: Form analysis is an important and effective
requirements gathering activity that is undertaken by the analyst, when
the project involves automating an existing manual system. During the
operation of a manual system, normally several forms are required to
b e filled up by the stakeholders, and in turn they receive several
notifications (usually manually filled forms). In form analysis the exiting
forms and the formats of the notifications produced are analysed to
determine the data input to the system and the data that are output
from the system. For the different sets of data input to the system, how
these input data would be used by the system to produce the
corresponding output data is determined from the users.

4.1.2 Requirements Analysis

After requirements gathering is complete, the analyst analyses the gathered
requirements to form a clear understanding of the exact customer
requirements and to weed out any problems in the gathered requirements. It
is natural to expect that the data collected from various stakeholders to
contain several contradictions, ambiguities, and incompleteness, since each
stakeholder typically has only a partial and incomplete view of the software.
Therefore, it is necessary to identify all the problems in the requirements and
resolve them through further discussions with the customer.

For carrying out requirements analysis effectively, the analyst first needs to
develop a clear grasp of the problem. The following basic questions
pertaining to the project should be clearly understood by the analyst before
carrying out analysis:

 What is the problem?
 Why is it important to solve the problem?

 What exactly are the data input to the system and what exactly are
the data output by the system?

 What are the possible procedures that need to be followed to solve the
problem?

 What are the likely complexities that might arise while solving the
problem?

 If there are external software or hardware with which the developed
software has to interface, then what should be the data interchange
formats with the external systems?

After the analyst has understood the exact customer requirements, he
proceeds to identify and resolve the various problems that he detects in the
gathered requirements.

The main purpose of the requirements analysis activity is to analyse the gathered
requirements to remove all ambiguities, incompleteness, and inconsistencies from the
gathered customer requirements and to obtain a clear understanding of the software
to be developed.

During requirements analysis,the analyst needs to identify and resolve three main
types of problems in the requirements:
• Anomaly

• Inconsistency

• Incompleteness

Let us examine these different types of requirements problems in detail.

Anomaly: It is an anomaly is an ambiguity in a requirement. When a
requirement is anomalous, several interpretations of that requirement are
possible. Any anomaly in any of the requirements can lead to the
development of an incorrect system, since an anomalous requirement can be
interpreted in the several ways during development. The following are two
examples of anomalous requirements:

problems existing in the gathered requirements?

Many of the inconsistencies, anomalies, and incompleteness are
detected effortlessly, while some others require a focused study of the
specific requirements. A few problems in the requirements can,
however, be very subtle and escape even the most experienced eyes.
Many of these subtle anomalies and inconsistencies can be detected, if
the requirements are specified and analysed using a formal method.
Once a system has been formally specified, it can be systematically
(and even automatically) analysed to remove all problems from the
specification. We will discuss the basic concepts of formal system
specification in Section 4.3. Though the use of formal techniques is not
widespread, the current practice is to formally specify only the safety-
critical parts of a system.

4.2 SOFTWARE REQUIREMENTS SPECIFICATION (SRS)

After the analyst has gathered all the required information regarding the
software to be developed, and has removed all incompleteness,
inconsistencies, and anomalies from the specification, he starts to
systematically organise the requirements in the form of an SRS
document. The SRS document usually contains all the user
requirements in a structured though an informal form.

Among all the documents produced during a software development life
cycle, SRS document is probably the most important document and is the
toughest to write. One reason for this difficulty is that the SRS document is
expected to cater to the needs of a wide variety of audience. In the following
subsection, we discuss the different categories of users of an SRS document
and their needs from it.

4.2.1 Users of SRS Document

Usually a large number of different people need the SRS document for

very different purposes. Some of the important categories of users of
the SRS document and their needs for use are as follows:

Users, customers, and marketing personnel: These stakeholders need
to refer to the SRS document to ensure that the system as described in the
document will meet their needs. Remember that the customer may not be
the user of the software, but may be some one employed or designated by
the user. For generic products, the marketing personnel need to understand
the requirements that they can explain to the customers.

Software developers: The software developers refer to the SRS document
to make sure that they are developing exactly what is required by the
customer.

Test engineers: The test engineers use the SRS document to understand
the functionalities, and based on this write the test cases to validate its
working. They need that the required functionality should be clearly
described, and the input and output data should have been identified
precisely.

User documentation writers: The user documentation writers need to
read the SRS document to ensure that they understand the features of the
product well enough to be able to write the users’ manuals.

Pro ject managers: The project managers refer to the SRS document to
ensure that they can estimate the cost of the project easily by referring to the
SRS document and that it contains all the information required to plan the
project.

Maintenance engineers: The SRS document helps the maintenance
engineers to under- stand the functionalities supported by the system. A clear
knowledge of the functionalities can help them to understand the design and
code. Also, a proper understanding of the functionalities supported enables
them to determine the specific modifications to the system’s functionalities
would be needed for a specific purpose.

Many software engineers in a project consider the SRS document to be a
reference document. However, it is often more appropriate to think of the
SRS document as the documentation of a contract between the development
team and the customer. In fact, the SRS document can be used to resolve
any disagreements between the developers and the customers that may arise
in the future. The SRS document can even be used as a legal document to
settle disputes between the customers and the developers in a court of law.
Once the customer agrees to the SRS document, the development team
proceeds to develop the software and ensure that it conforms to all the

requirements mentioned in the SRS document.

4.2.2 Why Spend Time and Resource to Develop an SRS Document?

A well-formulated SRS document finds a variety of usage other than the
primary intended usage as a basis for starting the software
development work. In the following subsection, we identify the
important uses of a well-formulated SRS document:

Forms an agreement between the customers and the developers: A
good SRS document sets the stage for the customers to form their
expectation about the software and the developers about what is expected
from the software.

Reduces future reworks: The process of preparation of the SRS document
forces the stakeholders to rigorously think about all of the requirements
before design and development get underway. This reduces later redesign,
recoding, and retesting. Careful review of the SRS document can reveal
omissions, misunderstandings, and inconsistencies early in the development
cycle.

Provides a basis for estimating costs and schedules: Project managers
usually estimate the size of the software from an analysis of the SRS
document. Based on this estimate they make other estimations such as the
effort required to develop the software and the total cost of development.
The SRS document also serves as a basis for price negotiations with the
customer. The pr oject manager also uses the SRS document for work
scheduling.

Provides a baseline for validation and verification: The SRS document
provides a baseline against which compliance of the developed software can be checked. It is also used by
the test engineers to create the test plan.

Facilitates future extensions: The SRS document usually serves as a basis
for planning future enhancements.

Before we discuss about how to write an SRS document, we first discuss the
characteristics of a good SRS document and the pitfalls that one must
consciously avoid while writing an SRS document.

4.2.3 Characteristics of a Good SRS Document

The skill of writing a good SRS document usually comes from the
experience gained from writing SRS documents for many projects.
However, the analyst should be aware of the desirable qualities that
every good SRS document should possess. IEEE Recommended Practice

for Software Requirements Specifications[IEEE830] describes the
content and qualities of a good software requirements specification
(SRS). Some of the identified desirable qualities of an SRS document
are the following:

 Concise: The SRS document should be concise and at the same time
unambiguous, consistent, and complete. Verbose and irrelevant
descriptions reduce readability and also increase the possibilities of
errors in the document.

 Implementation-independent: The SRS should be free of design
and implementation decisions unless those decisions reflect actual
requirements. It should only specify what the system should do and
refrain from stating how to do these. This means that the SRS
document should specify the externally visible behaviour of the system
a nd not discuss the implementation issues.

Traceable: It should be possible to trace a specific requirement to the
design elements that implement it and vice versa. Similarly, it should be

possible to trace a requirement to the code segments that implement it and
the test cases that test this requirement and vice versa. Traceability is also

important to verify the results of a phase with respect to the previous phase

and to analyse the impact of changing a requirement on the design elements

and the code.

Modifiable: Customers frequently change the requirements during the
software development development due to a variety of reasons. Therefore, in
practice the SRS document undergoes several revisions during software
development. Also, an SRS document is often modified after the project
completes to accommodate future enhancements and evolution. To cope up
with the requirements changes, the SRS document should be easily
modifiable. For this, an SRS document should be well-structured. A well-
structured document is easy to understand and modify. Having the
description of a requirement scattered across many places in the SRS
document may not be wrong—but it tends to make the requirement difficult
to understand and also any modification to the requirement would become
difficult as it would require changes to be made at large number of places in
the document.

Identification of response to undesired events: The SRS document
should discuss the system responses to various undesired events and
exceptional conditions that may arise.

Verifiable: All requirements of the system as documented in the SRS
document should be verifiable. This means that it should be possible to
design test cases based on the description of the functionality as to whether
or not requirements have been met in an implementation. A requirement
such as “the system should be user friendly” is not verifiable. On the other
hand, the requirement—“When the name of a book is entered, the software
should display whether the book is available for issue or it has been loaned
out” is verifiable. Any feature of the required system that is not verifiable
should be listed separately in the goals of the implementation section of the
SRS document.

4.2.4 Attributes of Bad SRS Documents

SRS documents written by novices frequently suffer from a variety of
problems. As discussed earlier, the most damaging problems are
incompleteness, ambiguity, and contradictions. There are many other
types problems that a specification document might suffer from. By
knowing these problems, one can try to avoid them while writing an
SRS document. Some of the important categories of problems that
many SRS documents suffer from are as follows:

Over-specification: It occurs when the analyst tries to address the “how to”
aspects in the SRS document. For example, in the library automation
problem, one should not specify whether the library membership records
need to be stored indexed on the member’s first name or on the library
member’s identification (ID) number. Over-specification restricts the freedom
of the designers in arriving at a good design solution.

Forward references: One should not refer to aspects that are discussed
much later in the SRS document. Forward referencing seriously reduces
readability of the specification.

Wishful thinking: This type of problems concern description of aspects
which would be difficult to implement.

Noise: The term noise refers to presence of material not directly relevant to
the software development process. For example, in t h e register customer

function, suppose the analyst writes that customer registration department is
manned by clerks who report for work between 8am and 5pm, 7 days a week.
This information can be called noise as it would hardly be of any use to the

software developers and would unnecessarily clutter the SRS document,

diverting the attention from the crucial points.

Several other “sins” of SRS documents can be listed and used to guard
against writing a bad SRS document and is also used as a checklist to review
an SRS document.

4.2.5 Important Categories of Customer Requirements

A good SRS document, should properly categorize and organise the
requirements into different sections [IEEE830]. As per the IEEE 830
guidelines, the important categories of user requirements are the following.

In the following subsections, we briefly describe the different categories of
requirements.

Functional requirements

The functional requirements capture the functionalities required by the
users from the system.

The functional requirements of the system, should clearly describe each

functionality that the system would support along with the

corresponding input and output data set. documented effectively.

Non-functional requirements

The non-functional requirements are non-negotiable obligations that must be
supported by the software. The non-functional requirements capture those
requirements of the customer that cannot be expressed as functions (i.e.,
accepting input data and producing output data). Non-functional
requirements usually address aspects concerning external interfaces, user
interfaces, maintainability, portability, usability, maximum number of
concurrent users, timing, and throughput (transactions per second, etc.). The
non-functional requirements can be critical in the sense that any failure by
the developed software to achieve some minimum defined level in these
requirements can be considered as a failure and make the software
unacceptable by the customer.

An SRS document should clearly document the following aspects of a software:
• Functional requirements
• Non-functional requirements

— Design and implementation constraints
— External interfaces required
— Other non-functional requirements

• Goals of implementation.

In the following subsections, we discuss the different categories of non-
functional requirements that are described under three different sections:

Design and implementation constraints: Design and implementation
constraints are an important category of non-functional requirements describe
any items or issues that will limit the options available to the developers.
Some of the example constraints can be—corporate or regulatory policies that
needs to be honoured; hardware limitations; interfaces with other
applications; specific technologies, tools, and databases to be used; specific
communications protocols to be used; security considerations; design
conventions or programming standards to be followed, etc. Consider an
example of a constraint that can be included in this section—Oracle DBMS
needs to be used as this would facilitate easy interfacing with other
applications that are already operational in the organisation.

External interfaces required: Examples of external interfaces are—
hardware, software and communication interfaces, user interfaces, report
formats, etc. To specify the user interfaces, each interface between the
software and the users must be described. The description may include
sample screen images, any GUI standards or style guides that are to be
followed, screen layout constraints, standard buttons and functions (e.g.,
help) that will appear on every screen, keyboard shortcuts, error message
display standards, and so on. One example of a user interface requirement of
a software can be that it should be usable by factory shop floor workers who
may not even have a high school degree. The details of the user interface
design such as screen designs, menu structure, navigation diagram, etc.
should be documented in a separate user interface specification document.

Other non-functional requirements: This section contains a description of
non- functional requirements that are neither design constraints and nor are
external interface requirements. An important example is a performance
requirement such as the number of transactions completed per unit time.
Besides performance requirements, the other non-functional requirements to
be described in this section may include reliability issues, accuracy of results,
and security issues.

Goals of implementation

The ‘goals of implementation’ part of the SRS document offers some general
suggestions regarding the software to be developed. These are not binding
on the developers, and they may take these suggestions into account if
possible. For example, the developers may use these suggestions while

choosing among different design solutions.

The goals of implementation section might document issues such as easier
revisions to the system functionalities that may be required in the future,
easier support for new devices to be supported in the future, reusability
issues, etc. These are the items which the developers might keep in their
mind during development so that the developed system may meet some
aspects that are not required immediately. It is useful to remember that
anything that would be tested by the user and the acceptance of the system
would depend on the outcome of this task, is usually considered as a
requirement to be fulfilled by the system and not a goal and vice versa.

4.2.6 Functional Requirements

In order to document the functional requirements of a system, it is
necessary to first learn to identify the high-level functions of the
systems by reading the informal documentation of the gathered
requirements. The high-level functions would be split into smaller
subrequirements. Each high-level function is an instance of use of the
system (use case) by the user in some way.

A high-level function is one using which the user can get some useful piece
of work done.

In Figure 4.2, the different scenarios occur depending on the amount
entered for withdrawal. The different scenarios are essentially different
behaviour exhibited by the system for the same high-level function. Typically,
each user input and the corresponding system action may be considered as a
sub-requirement of a high-level requirement. Thus, each high-level
requirement can consist of several sub-requirements.

Figure 4.2: User and system interactions in high-level functional requirement.

4.2.7 How to Identify the Functional Requirements?

The high-level functional requirements often need to be identified either from
an informal problem description document or from a conceptual
understanding of the problem.

Remember that there can be many types of users of a system and their
requirements from the system may be very different. So, it is often useful to
first identify the different types of users who might use the system and then
try to identify the different services expected from the software by different
types of users.

The decision regarding which functionality of the system can be taken to be

a high-level functional requirement and the one that can be considered as

part of another function (that is, a subfunction) leaves scope for some

subjectivity. For example, consider the issue-book function in a Library

Automation System. Suppose, when a user invokes the issue-book function,

the system would require the user to enter the details of each book to be

issued. Should the entry of the book details be considered as a high-level
function, or as only a part of the issue-book function? Many times, the choice is

obvious. But, sometimes it requires making non-trivial decisions.

4.2.8 How to Document the Functional Requirements?

Once all the high-level functional requirements have been identified and
the requirements problems have been eliminated, these are documented.
A function can be documented by identifying the state at which the data is
to be input to the system, its input data domain, the output data domain,
and the type of processing to be carried on the input data to obtain the
output data. We now illustrate the specification of the functional
requirements through two examples. Let us first try to document the
withdraw-cash function of an automated tell e r machine (ATM) system in the
following. The withdraw-cash is a high-level requirement. It has several

sub-requirements corresponding to the different user interactions. These
user interaction sequences may vary from one invocation from another
depending on some conditions. These different interaction sequences
capture the different scenarios. To accurately describe a functional

requirement, we must document all the different scenarios that may occur.

4.2.9 Traceability

Traceability means that it would be possible to identify (trace) the
specific design component which implements a given requirement, the
code part that corresponds to a given design component, and test cases
that test a given requirement. Thus, any given code component can be
traced to the corresponding design component, and a design
component can be traced to a specific requirement that it implements
a nd vice versa. Traceability analysis is an important concept and is

frequently used during software development. For example, by doing a
traceability analysis, we can tell whether all the requirements have
been satisfactorily addressed in all phases. It can also be used to assess
the impact of a requirements change. That is, traceability makes it easy
to identify which parts of the design and code would be affected, when
certain requirement change occurs. It can also be used to study the
impact of a bug that is known to exist in a code part on various

requirements, etc.

4.2.10 Organisation of the SRS Document

I n this section, we discuss the organisation of an SRS document as
prescribed by the IEEE 830 standard[IEEE 830]. Please note that IEEE 830
standard has been intended to serve only as a guideline for organizing a
requirements specification document into sections and allows the flexibility of
tailoring it, as may be required for specific projects. Depending on the type of
project being handled, some sections can be omitted, introduced, or
interchanged as may be considered prudent by the analyst. However,
organisation of the SRS document to a large extent depends on the
preferences of the system analyst himself, and he is often guided in this by
the policies and standards being followed by the development company. Also,
the organisation of the document and the issues discussed in it to a large
extent depend on the type of the product being developed. However,
irrespective of the company’s principles and product type, the three basic
issues that any SRS document should discuss are—functional requirements,
non-functional requirements, and guidelines for system implementation.

The introduction section should describe the context in which the system is
being developed, and provide an overall description of the system, and the
environmental characteristics. The introduction section may include the
hardware that the system will run on, the devices that the system will
interact with and the user skill-levels. Description of the user skill-level is
important, since the command language design and the presentation styles of
the various documents depend to a large extent on the types of the users it is
targeted for. For example, if the skill-levels of the users is “novice”, it would
mean that the user interface has to be very simple and rugged, whereas if
the user-level is “advanced”, several short cut techniques and advanced
features may be provided in the user interface.

It is desirable to describe the formats for the input commands, input data,
output reports, and if necessary the modes of interaction. We have already

discussed how the contents of the Sections on the functional requirements,
the non-functional requirements, and the goals of implementation should be
written. In the following subsections, we outline the important sections that
an SRS document should contain as suggested by the IEEE 830 standard, for
each section of the document, we also briefly discuss the aspects that should
be discussed in it.

4.3 FORMAL SYSTEM SPECIFICATION

In recent years, formal techniques3 have emerged as a central issue in
software engineering. This is not accidental; the importance of precise
specification, modelling, and verification is recognised to be important
in most engineering disciplines. Formal methods provide us with tools to
precisely describe a system and show that a system is correctly
implemented. We say a system is correctly implemented when it
satisfies its given specification. The specification of a system can be
given either as a list of its desirable properties (property-oriented
approach) or as an abstract model of the system (model-oriented

approach). These two approaches are discussed here. Before discussing
representative examples of these two types of formal specification
techniques, we first discuss a few basic concepts in formal specification
We will first highlight some important concepts in formal methods, and
examine the merits and demerits of using formal techniques.

4.3.1 What is a Formal Technique?

A formal technique is a mathematical method to specify a hardware

and/or software system, verify whether a specification is realisable,

verify that an implementation satisfies its specification, prove properties

of a system without necessarily running the system, etc. The
mathematical basis of a formal method is provided by its specification

language. More precisely, a formal specification language consists of
two sets—syn and sem, and a relation sat between them. The set syn is

called the syntactic domain, the set sem is called the semantic domain, and

the relation sat is called the satisfaction relation. For a given specification

syn, and model of the system sem, if sat (syn, sem), then syn is said to be

the specification of sem, and sem is said to be the specificand of syn.

T he generally accepted paradigm for system development is through a
hierarchy of abstractions. Each stage in this hierarchy is an implementation of

its preceding stage and a specification of the succeeding stage. The different
stages in this system development activity are requirements specification,
functional design, architectural design, detailed design, coding,
implementation, etc. In general, formal techniques can be used at every
stage of the system development activity to verify that the output of one
stage conforms to the output of the previous stage.

Syntactic domains

The syntactic domain of a formal specification language consists of an
alphabet of symbols and a set of formation rules to construct well-
formed formulas from the alphabet. The well-formed formulas are used
to specify a system.

Semantic domains

Formal techniques can have considerably different semantic domains.
Abstract data type specification languages are used to specify algebras,
theories, and programs. Programming languages are used to specify
functions from input to output values. Concurrent and distributed

system specification languages are used to specify state sequences,
event sequences, state-transition sequences, synchronisation trees,
partial orders, state machines, etc.

Satisfaction relation

Given the model of a system, it is important to determine whether an

element of the semantic domain satisfies the specifications. This
satisfaction is determined by using a homomorphism known as semantic

abstract i on function. The semantic abstraction function maps the

elements of the semantic domain into equivalent classes. There can be

different specifications describing different aspects of a system model,

possibly using different specification languages. Some of these
specifications describe the system’s behaviour and the others describe

the system’s structure. Consequently, t wo broad classes of semantic
abstraction functions are defined— those that preserve a system’s

behaviour and those that preserve a system’s structure.

Model versus property-oriented methods

Formal methods are usually classified into two broad categories—the so-
called model-oriented and the property-oriented approaches. In a model-

oriented style, one defines a system’s behaviour directly by constructing

a model of the system in terms of mathematical structures such as
tuples, relations, functions, sets, sequences, etc. In the property-oriented

style, the system’s behaviour is defined indirectly by stating its

properties, usually in the form of a set of axioms that the system must

satisfy. Let us consider a simple producer/consumer example. In a
property-oriented style, we would probably start by listing the properties

of the system like—the consumer can start consuming only after the
producer has produced an item, the producer starts to produce an item

only after the consumer has consumed the last item, etc. Two examples

of property-oriented specification styles are axiomatic specification and
algebraic specification.

In a model-oriented style, we would start by defining the basic operations, p

(produce) and c (consume). Then we can state that S 1 + p ⇒ S, S + c ⇒ S
1. Thus model-oriented approaches essentially specify a program by writing
another, presumably simpler program. A few notable examples of popular
model-oriented specification techniques are Z, CSP,CCS, etc.

It is alleged that property-oriented approaches are more suitable for
requirements specification, and that the model-oriented approaches are more
suited to system design specification. The reason for this distinction is the fact

that property-oriented approaches specify a system behaviour not by what
they say of the system but by what they do not say of the system. Thus,
property-oriented specifications permit a large number of possible
implementations.

4.3.2 Operational Semantics

Informally, the operational semantics of a formal method is the way

computations are represented. There are different types of operational

semantics according to what is meant by a single run of the system and

how the runs are grouped together to describe the behaviour of the

system. In the following subsection we discuss some of the commonly

used operational semantics.

Linear semantics: In this approach, a run o f a system is described by a
sequence (possibly infinite) of events or states. The concurrent activities of
the system are represented by non-deterministic interleavings of the atomic

actions. For example, a concurrent activity a || b is represented by the set of
sequential activities a; b a nd b; a. This is a simple but rather unnatural

representation of concurrency. The behaviour of a system in this model
consists of the set of all its runs. To make this model more realistic, usually
justice and fairness restrictions are imposed on computations to exclude the

unwanted interleavings.

Branching semantics: In this approach, the behaviour of a system is
represented by a directed graph. The nodes of the graph represent the
possible states in the evolution of a system. The descendants of each node of
the graph represent the states which can be generated by any of the atomic
actions enabled at that state. Although this semantic model distinguishes the
branching points in a computation, still it represents concurrency by
interleaving.

Maximally parallel semantics: In this approach, all the concurrent actions
enabled at any state are assumed to be taken together. This is again not a
natural model of concurrency since it implicitly assumes the availability of all
the required computational resources.

Partial order semantics: Under this view, the semantics ascribed to a
system is a structure of states satisfying a partial order relation among the

states (events). The partial order represents a precedence ordering among

events, and constrains some events to occur only after some other events
have occurred; while the occurrence of other events (called concurrent events)

is considered to be incomparable. This fact identifies concurrency as a

phenomenon not translatable to any interleaved representation.

Merits and limitations of formal methods

In addition to facilitating precise formulation of specifications, formal
methods possess several positive features, some of which are discussed
as follows:

 Formal specifications encourage rigour. It is often the case that the
very process of construction of a rigorous specification is more
important than the formal specification itself. The construction of a
rigorous specification clarifies several aspects of system behaviour that
are not obvious in an informal specification. It is widely acknowledged
that it is cost-effective to spend more efforts at the specification stage,
otherwise, many flaws would go unnoticed only to be detected at the
later stages of software development that would lead to iterative
changes to occur in the development life cycle. According to an
estimate, for large and complex systems like distributed real-time

systems 80 per cent of project costs and most of the cost overruns
result from the iterative changes required in a system development
process due to inappropriate formulation of requirements specification.
Thus, the additional effort required to construct a rigorous specification
is well worth the trouble.

 Formal methods usually have a well-founded mathematical basis.
Thus, formal specifications are not only more precise, but also
mathematically sound and can be used to reason about the properties
of a specification and to rigorously prove that an implementation
satisfies its specifications. Informal specifications may be useful in
understanding a system and its documentation, but they cannot serve
as a basis of verification. Even carefully written specifications are prone
to error, and experience has shown that unverified specifications are
comparable in reliability to unverified programs. automatically avoided
when one formally specifies a system.

 The mathematical basis of the formal methods makes it possible for
automating the analysis of specifications. For example, a tableau-
based technique has been used to automatically check the consistency
of specifications. Also, automatic theorem proving techniques can be
used to verify that an implementation satisfies its specifications. The
possibility of automatic verification is one of the most important
advantages of formal methods.

 Formal specifications can be executed to obtain immediate feedback
o n the features of the specified system. This concept of executable
specifications is related to rapid prototyping. Informally, a prototype is
a “toy” working model of a system that can provide immediate
feedback on the behaviour of the specified system, and is especially
useful in checking the completeness of specifications.

It is clear that formal methods provide mathematically sound frameworks
within which large, complex systems can be specified, developed and verified
in a systematic rather than in an ad hoc manner. However, formal meth ods
suffer from several shortcomings, some of which are as following:

 Formal methods are difficult to learn and use.

 The basic incompleteness results of first-order logic suggest that it is
impossible to check absolute correctness of systems using theorem

proving techniques.

 Formal techniques are not able to handle complex problems. This
shortcoming results from the fact that, even moderately complicated
problems blow up the complexity of formal specification and their
analysis. Also, a large unstructured set of mathematical formulas is
difficult to comprehend.

In the following two sections, we discuss the axiomatic and algebraic
specification styles. Both these techniques can be classified as the property-
oriented specification techniques.

4.4 AXIOMATIC SPECIFICATION

In axiomatic specification of a system, first-order logic is used to write
the pre- and post- conditions to specify the operations of the system in
the form of axioms. The pre-conditions basically capture the conditions
that must be satisfied before an operation can successfully be invoked.
In essence, the pre-conditions capture the requirements on the input
parameters of a function. The post-conditions are the conditions that
must be satisfied when a function post-conditions are essentially
constraints on the results produced for the function execution to be
considered successful.

How to develop an axiomatic specifications?

The following are the sequence of steps that can be followed to
systematically develop the axiomatic specifications of a function:

 Establish the range of input values over which the function should
behave correctly. Establish the constraints on the input parameters as
a predicate.

 Specify a predicate defining the condition which must hold on the
output of the function if it behaved properly.

 Establish the changes made to the function’s input parameters after
execution of the function. Pure mathematical functions do not change
their input and therefore this type assertion is not necessary for pure
functions.

 Combine all of the above into pre- and post-conditions of the function.

We now illustrate how simple abstract data types can be algebraically
specified through two simple examples.

4.5 ALGEBRAIC SPECIFICATION

In the algebraic specification technique, an object class or type is
specified in terms of relationships existing between the operations
defined on that type. It was first brought into prominence by Guttag
[1980,1985] in specification of abstract data types. Various notations of
algebraic specifications have evolved, including those based on OBJ and
Larch languages.

Essentially, algebraic specifications define a system as a heterogeneous

algebra. A heterogeneous algebra is a collection of different sets on which

several operations are defined. Traditional algebras are homogeneous. A

homogeneous algebra consists of a single set and several operations defined

in this set; e.g. { I, +, -, *, / }. In contrast, alphabetic strings S together with

operations of concatenation and length {S, I , con, len}, is not a

homogeneous algebra, since the range of the length operation is the set of

integers.
Each set of symbols in a heterogeneous algebra is called a sort of the

algebra. To define a heterogeneous algebra, besides defining the sorts, we
need to specify the involved operations, their signatures, and their domains

and ranges. Using algebraic specification, we define the meaning of a set of
interface procedure by using equations. An algebraic specification is usually

presented in four sections.

Types section: In this section, the sorts (or the data types) being used is
specified.

Exception section: This section gives the names of the exceptional
conditions that might occur when different operations are carried out. These
exception conditions are used in the later sections of an algebraic
specification.

Syntax section: This section defines the signatures of the interface
procedures. The collection of sets that form input domain of an operator and
the sort where the output is produced are called the signature of the operator.

For example, PUSH takes a stack and an element as its input and returns a
new stack that has been created.

Equations section: This section gives a set of rewrite rules (or equations)

defining the meaning of the interface procedures in terms of each other. In

general, this section is allowed to contain conditional expressions.
By convention each equation is implicitly universally quantified over all

possible values of the variables. This means that the equation holds for all
possible values of the variable. Names not mentioned in the syntax section

such r or e are variables. The first step in defining an algebraic specification is
to identify the set of required operations. After having identified the required
operators, it is helpful to classify them as either basic constructor operators,
extra constructor operators, basic inspector operators, or extra inspection
operators. The definition of these categories of operators is as follows:

Basic construction operators: These operators are used to create or
modify entities of a type. The basic construction operators are essential to
generate all possible element of the type being specified. For example,
‘create’ and ‘append’ are basic construction operators in Example 4.13.

Extra construction operators: These are the construction operators other
than the basic construction operators. For example, the operator ‘remove’ in Example 4.13 is an extra

construction operator, because e ven without using ‘remove’ it is possible to generate all values of the type
being specified.

Basic inspection operators: These operators evaluate attributes of a type
without modifying them, e.g., eval, get, etc. Let S be the set of operators
whose range is not the data type being specified—these are the inspection
operators. The set of the basic operators S1 is a subset of S , such that each
operator from S -S 1 can be expressed in terms of the operators from S 1.

Extra inspection operators: These are the inspection operators that are
not basic inspectors. A simple way to determine whether an operator is a
constructor (basic or extra) or an inspector (basic or extra) is to check the
syntax expression for the operator. If the type being specified appears on the
right hand side of the expression then it is a constructor, otherwise it is an
inspection operator. For example, in Example 4.13, create is a constructor
because point appears on the right hand side of the expression and point is
the data type being specified. But, xcoord is an inspection operator since it
does not modify the point type.

Properties of algebraic specifications

Three important properties that every algebraic specification should
possess are:

Completeness: This property ensures that using the equations, it should be
possible to reduce any arbitrary sequence of operations on the interface
procedures. When the equations are not complete, at some step during the
reduction process, we might not be able to reduce the expression arrived at
that step by using any of the equations. There is no simple procedure to
ensure that an algebraic specification is complete.

Finite termination property: This property essentially addresses the

following question: Do applications of the rewrite rules to arbitrary
expressions involving the interface procedures always terminate? For
arbitrary algebraic equations, convergence (finite termination) is undecidable.

But, if the right hand side of each rewrite rule has fewer terms than the left,
then the rewrite process must terminate.

Unique termination property: This property indicates whether application
of rewrite rules in different orders always result in the same answer.
Essentially, to determine this property, the answer to the following question
needs to be checked—Can all possible sequence of choices in application of
the rewrite rules to an arbitrary expression involving the interface procedures
always give the same answer? Checking the unique termination property is a
very difficult problem.

4.5.1 Structured Specification

Developing algebraic specifications is time consuming. Therefore efforts
have been made to devise ways to ease the task of developing
algebraic specifications. The following are some of the techniques that
have successfully been used to reduce the effort in writing the
specifications.

Incremental specification: The idea behind incremental specification is to
first develop the specifications of the simple types and then specify more
complex types by using the specifications of the simple types.

Specification instantiation: This involves taking an existing specification
which has been developed using a generic parameter and instantiating it with
some other sort.

Pros and Cons of algebraic specifications

Algebraic specifications have a strong mathematical basis and can be
viewed as heterogeneous algebra. Therefore, they are unambiguous
and precise. Using an algebraic specification, the effect of any arbitrary
sequence of operations involving the interface procedures can
automatically be studied. A major shortcoming of algebraic
specifications is that they cannot deal with side effects. Therefore,
algebraic specifications are difficult to integrate with typical
programming languages. Also, algebraic specifications are hard to
understand.

SOFTWARE DESIGN

During the software design phase, the design document is produced, based
on the customer requirements as documented in the SRS document. We can
state the main objectives of the design phase, in other words, as follows.

This view of a design process has been shown schematically in Figure 5.1.
As shown in Figure 5.1, the design process starts using the SRS document and
completes with the production of the design document. The design document
produced at the end of the design phase should be implementable using a
programming language in the subsequent (coding) phase.

Figure 5.1: The design process.

5.1 OVERVIEW OF THE DESIGN PROCESS

The design process essentially transforms the SRS document into a
design document. In the following sections and subsections, we will
discuss a few important issues associated with the design process.

5.1.1 Outcome of the Design Process

The following items are designed and documented during the design
phase.

Different modules required: The different modules in the solution should
be clearly identified. Each module is a collection of functions and the data
shared by the functions of the module. Each module should accomplish some
well-defined task out of the overall responsibility of the software. Each
module should be named according to the task it performs. For example, in
an academic automation software, the module consisting of the functions and

data necessary to accomplish the task of registration of the students should
be named handle student registration.

Control relationships among modules: A control relationship between
two modules essentially arises due to function calls across the two modules.
The control relationships existing among various modules should be identified
in the design document.

Interfaces among different modules: The interfaces between two
modules identifies the exact data items that are exchanged between the two
modules when one module invokes a function of the other module.

Data structures of the individual modules: Each module normally stores
some data that the functions of the module need to share to accomplish the
overall responsibility of the module. Suitable data structures for storing and
managing the data of a module need to be properly designed and
documented.

Algorithms required to implement the individual modules: Each
function in a module usually performs some processing activity. The
algorithms required to accomplish the processing activities of various modules
need to be carefully designed and documented with due considerations given
to the accuracy of the results, space and time complexities.

Starting with the SRS document (as shown in Figure 5.1), the design
documents are produced through iterations over a series of steps that we are
going to discuss in this chapter and the subsequent three chapters. The
design documents are reviewed by the members of the development team to
ensure that the design solution conforms to the requirements specification.

5.1.2 Classification of Design Activities

A good software design is seldom realised by using a single step
procedure, rather it requires iterating over a series of steps called the
design activities. Let us first classify the design activities before
discussing them in detail. Depending on the order in which various
design activities are performed, we can broadly classify them into two
important stages.

• Preliminary (or high-level) design, and

• Detailed design.

The meaning and scope of these two stages can vary considerably from one
design methodology to another. However, for the traditional function-oriented
design approach, it is possible to define the objectives of the high-level

design as follows:

The outcome of high-level design is called the program structure or the
software architecture. High-level design is a crucial step in the overall design
of a software. When the high-level design is complete, the problem should
have been decomposed into many small functionally independent modules
that are cohesive, have low coupling among themselves, and are arranged in
a hierarchy. Many different types of notations have been used to represent a
high-level design. A notation that is widely being used for procedural
development is a tree-like diagram called the structure chart. Another popular
design representation techniques called UML that is being used to document
object-oriented design, involves developing several types of diagrams to
document the object-oriented design of a systems.

5.1.3 Classification of Design Methodologies

The design activities vary considerably based on the specific design

methodology being used. A large number of software design
methodologies are available. We can roughly classify these
methodologies into procedural and object-oriented approaches. These
two approaches are two fundamentally different design paradigms. In
this chapter, we shall discuss the important characteristics of these two
fundamental design approaches. Over the next three chapters, we shall
study these two approaches in detail.

Do design techniques result in unique solutions?

Even while using the same design methodology, different designers
usually arrive at very different design solutions. The reason is that a
design technique often requires the designer to make many subjective
decisions and work out compromises to contradictory objectives. As a
result, it is possible that even the same designer can work out many
different solutions to the same problem. Therefore, obtaining a good
design would involve trying out several alternatives (or candidate
solutions) and picking out the best one. However, a fundamental
question that arises at this point is—how to distinguish superior design
solution from an inferior one? Unless we know what a good software
design is and how to distinguish a superior design solution from an
inferior one, we can not possibly design one. We investigate this issue
in the next section.

5.2 HOW TO CHARACTERISE A GOOD SOFTWARE DESIGN?

Coming up with an accurate characterisation of a good software design
that would hold across diverse problem domains is certainly not easy. In
fact, the definition of a “good” software design can vary depending on
the exact application being designed. However, most researchers and
software engineers agree on a few desirable characteristics that every
good software design for general applications must possess. These
characteristics are listed below:

Correctness: A good design should first of all be correct. That is, it should
correctly implement all the functionalities of the system.

Understandability: A good design should be easily understandable. Unless
a design solution is easily understandable, it would be difficult to implement
and maintain it.

Efficiency: A good design solution should adequately address resource,
time, and cost optimisation issues.

Maintainability: A good design should be easy to change. This is an
important requirement, since change requests usually keep coming from the customer even after product
release.

5.2.1 Understandability of a Design: A Ma jor Concern

While performing the design of a certain problem, assume that we have
arrived at a large number of design solutions and need to choose the best
one. Obviously all incorrect designs have to be discarded first. Out of the
correct design solutions, how can we identify the best one?

Recollect from our discussions in Chapter 1 that a good design should help
overcome the human cognitive limitations that arise due to limited short-term
memory. A large problem overwhelms the human mind, and a poor design
would make the matter worse. Unless a design solution is easily
understandable, it could lead to an implementation having a large number of
defects and at the same time tremendously pushing up the development
costs. Therefore, a good design solution should be simple and easily
understandable. A design that is easy to understand is also easy to develop
and maintain. A complex design would lead to severely increased life cycle
costs. Unless a design is easily understandable, it would require tremendous
effort to implement, test, debug, and maintain it.

An understandable design is modular and layered

How can the understandability of two different designs be compared, so
that we can pick the better one? To be able to compare the
understandability of two design solutions, we should at least have an
understanding of the general features that an easily understandable
design should possess. A design solution should have the following
characteristics to be easily understandable:

 It should assign consistent and meaningful names to various design
components.

 It should make use of the principles of decomposition and abstraction
in good measures to simplify the design.

We had discussed the essential concepts behind the principles of
abstraction and decomposition principles in Chapter 1. But, how can the
abstraction and decomposition principles are used in arriving at a design
solution? These two principles are exploited by design methodologies to
make a design modular and layered. (Though there are also a few other
forms in which the abstraction and decomposition principles can be used in
the design solution, we discuss those later). We can now define the
characteristics of an easily understandable design as follows: A design
solution is understandable, if it is modular and the modules are arranged in
distinct layers.

We now elaborate the concepts of modularity and layering of modules:

Modularity

A modular design is an effective decomposition of a problem. It is a basic
characteristic of any good design solution. A modular design, in simple
words, implies that the problem has been decomposed into a set of
modules that have only limited interactions with each other.
Decomposition of a problem into modules facilitates taking advantage
of the divide and conquer principle. If different modules have either no
interactions or little interactions with each other, then each module can
be understood separately. This reduces the perceived complexity of the
design solution greatly. To understand why this is so, remember that it
may be very difficult to break a bunch of sticks which have been tied
together, but very easy to break the sticks individually.

A design solution should be modular and layered to be understandable.

A design solution is said to be highly modular, if the different modules in the solution
have high cohesion and their inter-module couplings are low.

A software design with high cohesion and low coupling among modules is
the effective problem decomposition we discussed in Chapter 1. Such a
design would lead to increased productivity during program development by
bringing down the perceived problem complexity.

Figure 5.2: Two design solutions to the same problem.

Based on this classification, we would be able to easily judge the cohesion
and coupling existing in a design solution. From a knowledge of the cohesion
and coupling in a design, we can form our own opinion about the modularity
of the design solution. We shall define the concepts of cohesion and coupling
and the various classes of cohesion and coupling in Section 5.3. Let us now
discuss the other important characteristic of a good design solution—layered
design.

Layered design

A layered design is one in which when the call relations among different
modules are represented graphically, it would result in a tree-like
diagram with clear layering. In a layered design solution, the modules
are arranged in a hierarchy of layers. A module can only invoke
functions of the modules in the layer immediately below it. The higher
layer modules can be considered to be similar to managers that invoke
(order) the lower layer modules to get certain tasks done. A layered
design can be considered to be implementing control abstraction, since
a module at a lower layer is unaware of (about how to call) the higher
layer modules.

A layered design can make the design solution easily understandable, since
to understand the working of a module, one would at best have to

understand how the immediately lower layer modules work without having to
worry about the functioning of the upper layer modules.

When a failure is detected while executing a module, it is obvious that the
modules below it can possibly be the source of the error. This greatly
simplifies debugging since one would need to concentrate only on a few
modules to detect the error. We shall elaborate these concepts governing
layered design of modules in Section 5.4.

5.3 COHESION AND COUPLING

We have so far discussed that effective problem decomposition is an
important characteristic of a good design. Good module decomposition
is indicated through high cohesion of the individual modules and low
coupling of the modules with each other. Let us now define what is
meant by cohesion and coupling.

Cohesion is a measure of the functional strength of a module, whereas the
coupling between two modules is a measure of the degree of interaction (or
interdependence) between the two modules.

In this section, we first elaborate the concepts of cohesion and coupling.
Subsequently, we discuss the classification of cohesion and coupling.

Coupling: Intuitively, we can think of coupling as follows. Two modules are
said to be highly coupled, if either of the following two situations arise:

 If the function calls between two modules involve passing large chunks

of shared data, the modules are tightly coupled.

 If the interactions occur through some shared data, then also we say
that they are highly coupled.

If two modules either do not interact with each other at all or at best
interact by passing no data or only a few primitive data items, they are said
to have low coupling.

Cohesion: To understand cohesion, let us first understand an analogy.
Suppose you listened to a talk by some speaker. You would call the speech to
be cohesive, if all the sentences of the speech played some role in giving the
talk a single and focused theme. Now, we can extend this to a module in a
design solution. When the functions of the module co-operate with each other
for performing a single objective, then the module has good cohesion. If the
functions of the module do very different things and do not co-operate with
each other to perform a single piece of work, then the module has very poor

cohesion.

Functional independence

By the term functional independence, we mean that a module performs a
single task and needs very little interaction with other modules.

Functional independence is a key to any good design primarily due to the
following advantages it offers:

Error isolation: Whenever an error exists in a module, functional
independence reduces the chances of the error propagating to the other
modules. The reason behind this is that if a module is functionally
independent, its interaction with other modules is low. Therefore, an error
existing in the module is very unlikely to affect the functioning of other
modules.

Further, once a failure is detected, error isolation makes it very easy to
locate the error. On the other hand, when a module is not functionally
independent, once a failure is detected in a functionality provided by the
module, the error can be potentially in any of the large number of modules
and propagated to the functioning of the module.

Scope of reuse: Reuse of a module for the development of other
applications becomes easier. The reasons for this is as follows. A functionally
independent module performs some well-defined and precise task and the
interfaces of the module with other modules are very few and simple. A
functionally independent module can therefore be easily taken out and
reused in a different program. On the other hand, if a module interacts with
several other modules or the functions of a module perform very different
tasks, then it would be difficult to reuse it. This is especially so, if the module
accesses the data (or code) internal to other modules.

Understandability: When modules are functionally independent, complexity
of the design is greatly reduced. This is because of the fact that different
modules can be understood in isolation, since the modules are independent
of each other. We have already pointed out in Section 5.2 that
understandability is a major advantage of a modular design. Besides the
three we have listed here, there are many other advantages of a modular
design as well. We shall not list those here, and leave it as an assignment to
the reader to identify them.

A module that is highly cohesive and also has low coupling with other modules is said
to be functionally independent of the other modules.

5.3.1 Classification of Cohesiveness

Cohesiveness of a module is the degree to which the different functions of the
module co-operate to work towards a single objective. The different modules
of a design can possess different degrees of freedom. However, the different
classes of cohesion that modules can possess are depicted in Figure 5.3. The
cohesiveness increases from coincidental to functional cohesion. That is,
coincidental is the worst type of cohesion and functional is the best cohesion
possible. These different classes of cohesion are elaborated below.

Figure 5.3: Classification of cohesion.

Coincidental cohesion: A module is said to have coincidental cohesion,
if it performs a set of tasks that relate to each other very loosely, if at
all. In this case, we can say that the module contains a random
collection of functions. It is likely that the functions have been placed in
the module out of pure coincidence rather than through some thought
or design. The designs made by novice programmers often possess this
category of cohesion, since they often bundle functions to modules
rather arbitrarily. An example of a module with coincidental
cohesionhas been shown in Figure 5.4(a).Observe that the different
functions of the module carry out very different and unrelated
activities starting from issuing of library books to creating library
member records on one hand, and handling librarian leave request on
the other.

Figure 5.4: Examples of cohesion.

Logical cohesion: A module is said to be logically cohesive, if all

elements of the module perform similar operations, such as error
handling, data input, data output, etc. As an example of logical
cohesion, consider a module that contains a set of print functions to
generate various types of output reports such as grade sheets, salary
slips, annual reports, etc.

Temporal cohesion: When a module contains functions that are related by
the fact that these functions are executed in the same time span, then the
module is said to possess temporal cohesion. As an example, consider the
following situation. When a computer is booted, several functions need to be
performed. These include initialisation of memory and devices, loading the
operating system, etc. When a single module performs all these tasks, then
the module can be said to exhibit temporal cohesion. Other examples of
modules having temporal cohesion are the following. Similarly, a module
would exhibit temporal cohesion, if it comprises functions for performing
initialisation, or start-up, or shut-down of some process.

Procedural cohesion: A module is said to possess procedural cohesion, if
the set of functions of the module are executed one after the other, though
these functions may work towards entirely different purposes and operate on
very different data. Consider the activities associated with order processing in
a trading house. The functions login(), place-order(), check-order(), print-
bill(), place-order-on-vendor(), update-inventory(), and logout() all do
different thing and operate on different data. However, they are normally
executed one after the other during typical order processing by a sales clerk.

Communicational cohesion: A module is said to have communicational
cohesion, if all functions of the module refer to or update the same data
structure. As an example of procedural cohesion, consider a module named
student in which the different functions in the module such as admitStudent,
enterMarks, printGradeSheet, etc. access and manipulate data stored in an
array named studentRecords defined within the module.

Sequential cohesion: A module is said to possess sequential cohesion, if
the different functions of the module execute in a sequence, and the output
from one function is input to the next in the sequence. As an example
consider the following situation. In an on-line store consider that after a
customer requests for some item, it is first determined if the item is in stock.
In this case, if the functions create-order(), check-item-availability(), place-
order-on-vendor() are placed in a single module, then the module would
exhibit sequential cohesion. Observe that the function create-order() creates
an order that is processed by the function check-item-availability() (whether

the items are available in the required quantities in the inventory) is input to
place-order-on-vendor().

Functional cohesion: A module is said to possess functional cohesion, if
different functions of the module co-operate to complete a single task. For
example, a module containing all the functions required to manage
employees’ pay-roll displays functional cohesion. In this case, all the functions
of the module (e.g., computeOvertime(), computeWorkHours(),
computeDeductions(), etc.) work together to generate the payslips of the
employees. Another example of a module possessing functional cohesion has
been shown in Figure 5.4(b). In this example, the functions issue-book(),
return-book(), query-book(), and find-borrower(), together manage all
activities concerned with book lending. When a module possesses functional
cohesion, then we should be able to describe what the module does using
only one simple sentence. For example, for the module of Figure 5.4(a), we
can describe the overall responsibility of the module by saying “It manages
the book lending procedure of the library.”

5.3.2 Classification of Coupling

The coupling between two modules indicates the degree of interdependence
between them. Intuitively, if two modules interchange large amounts of data,
then they are highly interdependent or coupled. We can alternately state this
concept as follows.

The interface complexity is determined based on the number of parameters
and the complexity of the parameters that are interchanged while one
module invokes the functions of the other module.

Let us now classify the different types of coupling that can exist between
two modules. Between any two interacting modules, any of the following five
different types of coupling can exist. These different types of coupling, in
increasing order of their severities have also been shown in Figure 5.5.

Figure 5.5: Classification of coupling.

Data coupling: Two modules are data coupled, if they communicate using

The degree of coupling between two modules depends on their interface complexity.

an elementary data item that is passed as a parameter between the two, e.g.
an integer, a float, a character, etc. This data item should be problem related
and not used for control purposes.

Stamp coupling: Two modules are stamp coupled, if they communicate
using a composite data item such as a record in PASCAL or a structure in C.

Control coupling: Control coupling exists between two modules, if data
from one module is used to direct the order of instruction execution in
another. An example of control coupling is a flag set in one module and

tested in another module.

Common coupling: Two modules are common coupled, if they share some
global data items.

Content coupling: Content coupling exists between two modules, if they
share code. That is, a jump from one module into the code of another module
can occur. Modern high-level programming languages such as C do not
support such jumps across modules.

The different types of coupling are shown schematically in Figure 5.5. The
degree of coupling increases from data coupling to content coupling. High
coupling among modules not only makes a design solution difficult to
understand and maintain, but it also increases development effort and also
makes it very difficult to get these modules developed independently by
different team members.

5.4 APPROACHES TO SOFTWARE DESIGN

There are two fundamentally different approaches to software design
that are in use today— function-oriented design, and object-oriented
design. Though these two design approaches are radically different,
they are complementary rather than competing techniques. The object-
oriented approach is a relatively newer technology and is still evolving.
For development of large programs, the object- oriented approach is
becoming increasingly popular due to certain advantages that it offers.
On the other hand, function-oriented designing is a mature technology
and has a large following. Salient features of these two approaches are
discussed in subsections 5.5.1 and 5.5.2 respectively.

5.4.1 Function-oriented Design

The following are the salient features of the function-oriented design
approach:

Top-down decomposition: A system, to start with, is viewed as a black
box that provides certain services (also known as high-level functions) to the
users of the system.

In top-down decomposition, starting at a high-level view of the system,
each high-level function is successively refined into more detailed functions.

For example, consider a function create-new-library m e m be r which
essentially creates the record for a new member, assigns a unique
membership number to him, and prints a bill towards his membership charge.
This high-level function may be refined into the following subfunctions:

• assign-membership-number

• create-member-record

• print-bill

Each of these subfunctions may be split into more detailed subfunctions and
so on.

Centralised system state: The system state can be defined as the values
of certain data items that determine the response of the system to a user
action or external event. For example, the set of books (i.e. whether
borrowed by different users or available for issue) determines the state of a
library automation system. Such data in procedural programs usually have
global scope and are shared by many modules.

For example, in the library management system, several functions such as
the following share data such as member-records for reference and updation:

• create-new-member

• delete-member

• update-member-record

A large number of function-oriented design approaches have been proposed
in the past. A few of the well-established function-oriented design
approaches are as following:

• Structured design by Constantine and Yourdon, [1979]

• Jackson’s structured design by Jackson [1975]

• Warnier-Orr methodology [1977, 1981]

The system state is centralised and shared among different functions.

• Step-wise refinement by Wirth [1971]

• Hatley and Pirbhai’s Methodology [1987]

5.4.2 Object-oriented Design

In the object-oriented design (OOD) approach, a system is viewed as
being made up of a collection of objects (i.e. entities). Each object is
associated with a set of functions that are called its methods. Each
object contains its own data and is responsible for managing it. The
data internal to an object cannot be accessed directly by other objects
and only through invocation of the methods of the object. The system
state is decentralised since there is no globally shared data in the
system and data is stored in each object. For example, in a library
automation software, each library member may be a separate object
with its own data and functions to operate on the stored data. The
methods defined for one object cannot directly refer to or change the
data of other objects.

The object-oriented design paradigm makes extensive use of the principles
of abstraction and decomposition as explained below. Objects decompose a
system into functionally independent modules. Objects can also be
considered as instances of abstract data types (ADTs). The ADT concept did
not originate from the object-oriented approach. In fact, ADT concept was
extensively used in the ADA programming language introduced in the 1970s.
ADT is an important concept that forms an important pillar of object-
orientation. Let us now discuss the important concepts behind an ADT. There
are, in fact, three important concepts associated with an ADT—data
abstraction, data structure, data type. We discuss these in the following
subsection:

Data abstraction: The principle of data abstraction implies that how
data is exactly stored is abstracted away. This means that any entity
external to the object (that is, an instance of an ADT) would have no
knowledge about how data is exactly stored, organised, and
manipulated inside the object. The entities external to the object can
access the data internal to an object only by calling certain well-defined
methods supported by the object. Consider an ADT such as a stack. The
data of a stack object may internally be stored in an array, a linearly
linked list, or a bidirectional linked list. The external entities have no
knowledge of this and can access data of a stack object only through
the supported operations such as push and pop.

Data structure: A data structure is constructed from a collection of primitive
data items. Just as a civil engineer builds a large civil engineering structure
using primitive building materials such as bricks, iron rods, and cement; a
programmer can construct a data structure as an organised collection of
primitive data items such as integer, floating point numbers, characters, etc.

Data type: A type is a programming language terminology that refers to
anything that can be instantiated. For example, int, float, char etc., are the
basic data types supported by C programming language. Thus, we can say
that ADTs are user defined data types.

In object-orientation, classes are ADTs. But, what is the advantage of
developing an application using ADTs? Let us examine the three main
advantages of using ADTs in programs:

 The data of objects are encapsulated within the methods. The
encapsulation principle is also known as data hiding. The encapsulation
principle requires that data can be accessed and manipulated only
through the methods supported by the object and not directly. This
localises the errors. The reason for this is as follows. No program
element is allowed to change a data, except through invocation of one
of the methods. So, any error can easily be traced to the code segment
changing the value. That is, the method that changes a data item,
making it erroneous can be easily identified.

 An ADT-based design displays high cohesion and low coupling.
Therefore, object- oriented designs are highly modular.

 Since the principle of abstraction is used, it makes the design solution
easily understandable and helps to manage complexity.

Similar objects constitute a class. In other words, each object is a member
of some class. Classes may inherit features from a super class. Conceptually,
objects communicate by message passing. Objects have their own internal
data. Thus an object may exist in different states depending the values of the
internal data. In different states, an object may behave differently. We shall
elaborate these concepts in Chapter 7 and subsequently we discuss an
object-oriented design methodology in Chapter 8.

O b je c t - o r i e n t e d v e r s u s function-oriented design
approaches

The following are some of the important differences between the

function-oriented and object-oriented design:

 Unlike function-oriented design methods in OOD, the basic abstraction
is not the services available to the users of the system such as issue-
book, display-book-details, find-issued-books, etc., but real-world
entities such as member, book, book-register, etc. For example in
OOD, an employee pay-roll software is not developed by designing
functions such as update-employee-record, get-employee-address,
etc., but by designing objects such as employees, departments, etc.

 In OOD, state information exists in the form of data distributed among
several objects of the system. In contrast, in a procedural design, the
state information is available in a centralised shared data store. For
example, while developing an employee pay-roll system, the employee
data such as the names of the employees, their code numbers, basic
salaries, etc., are usually implemented as global data in a traditional
programming system; whereas in an object-oriented design, these
data are distributed among different employee objects of the system.
Objects communicate by message passing. Therefore, one object may
discover the state information of another object by sending a message
to it. Of course, somewhere or other the real-world functions must be
implemented.

 Function-oriented techniques group functions together if, as a group,
they constitute a higher level function. On the other hand, object-
oriented techniques group functions together on the basis of the data
they operate on.

To illustrate the differences between the object-oriented and the function-
oriented design approaches, let us consider an example—that of an
automated fire-alarm system for a large building.

Automated fire-alarm system—customer requirements

The owner of a large multi-storied building wants to have a
computerised fire alarm system designed, developed, and installed in
his building. Smoke detectors and fire alarms would be placed in each
room of the building. The fire alarm system would monitor the status of
these smoke detectors. Whenever a fire condition is reported by any of
the smoke detectors, the fire alarm system should determine the
location at which the fire has been sensed and then sound the alarms

only in the neighbouring locations. The fire alarm system should also
flash an alarm message on the computer console. Fire fighting
personnel would man the console round the clock. After a fire condition
has been successfully handled, the fire alarm system should support
resetting the alarms by the fire fighting personnel.

Function-oriented approach: In this approach, the different high-level
functions are first identified, and then the data structures are designed.

The functions which operate on the system state are:
interrogate_detectors();

get_detector_location();

determine_neighbour_alarm();

determine_neighbour_sprinkler();

ring_alarm();

activate_sprinkler();

reset_alarm();

reset_sprinkler();

report_fire_location();

Object-oriented approach: In the object-oriented approach, the different
classes of objects are identified. Subsequently, the methods and data for
each object are identified. Finally, an appropriate number of instances of each
class is created.

class detector

attributes: status, location, neighbours

operations: create, sense-status, get-location,

find-neighbours

class alarm

attributes: location, status

operations: create, ring-alarm, get_location, reset-

alarm

class sprinkler

attributes: location, status

operations: create, activate-sprinkler, get_location,

reset-sprinkler

We can now compare the function-oriented and the object-oriented
approaches based on the two examples discussed above, and easily observe
the following main differences:

 In a function-oriented program, the system state (data) is centralised
and several functions access and modify this central data. In case of an
object-oriented program, the state information (data) is distributed
among various objects.

 In the object-oriented design, data is private in different objects and
these are not available to the other objects for direct access and
modification.

 The basic unit of designing an object-oriented program is objects,
whereas it is functions and modules in procedural designing. Objects
appear as nouns in the problem description; whereas functions appear
as verbs.

FUNCTION-ORIENTED SOFTWARE

DESIGN

6.1 OVERVIEW OF SA/SD METHODOLOGY

As the name itself implies, SA/SD methodology involves carrying out two
distinct activities:

 Structured analysis (SA)

 Structured design (SD)

The roles of structured analysis (SA) and structured design (SD) have been
shown schematically in Figure 6.1. Observe the following from the figure:

 During structured analysis, the SRS document is transformed into a
data flow diagram (DFD) model.

 During structured design, the DFD model is transformed into a
structure chart.

Figure 6.1: Structured analysis and structured design methodology.

As shown in Figure 6.1, the structured analysis activity transforms the SRS
document into a graphic model called the DFD model. During structured
analysis, functional decomposition of the system is achieved. That is, each

function that the system needs to perform is analysed and hierarchically
decomposed into more detailed functions. On the other hand, during
structured design, all functions identified during structured analysis are
mapped to a module structure. This module structure is also called the high-
level design or the software architecture for the given problem. This is
represented using a structure chart.

The high-level design stage is normally followed by a detailed design stage.
During the detailed design stage, the algorithms and data structures for the
individual modules are designed. The detailed design can directly be
implemented as a working system using a conventional programming
language.

The results of structured analysis can therefore, be easily understood by
the user. In fact, the different functions and data in structured analysis are
named using the user’s terminology. The user can therefore even review the
results of the structured analysis to ensure that it captures all his
requirements.

In the following section, we first discuss how to carry out structured analysis
to construct the DFD model. Subsequently, we discuss how the DFD model
can be transformed into structured design.

6.2 STRUCTURED ANALYSIS

We have already mentioned that during structured analysis, the major
processing tasks (high-level functions) of the system are analysed, and
t h e data flow among these processing tasks are represented
graphically. The structured analysis technique is based on the following
underlying principles:

 Top-down decomposition approach.

 Application of divide and conquer principle. Through this each high-
level function is independently decomposed into detailed functions.

 Graphical representation of the analysis results us i ng data flow
diagrams (DFDs).

DFD representation of a problem, as we shall see shortly, is very easy to
construct. Though extremely simple, it is a very powerful tool to tackle the
complexity of industry standard problems.

Please note that a DFD model only represents the data flow aspects and
does not show the sequence of execution of the different functions and the
conditions based on which a function may or may not be executed. In fact, it
completely ignores aspects such as control flow, the specific algorithms used

It is important to understand that the purpose of structured analysis is to capture the
detailed structure of the system as perceived by the user, whereas the purpose of
structured design is to define the structure of the solution that is suitable for
implementation in some programming language.

by the functions, etc. In the DFD terminology, each function is called a
process or a bubble. It is useful to consider each function as a processing
station (or process) that consumes some input data and produces some
output data.

DFD is an elegant modelling technique that can be used not only to
represent the results of structured analysis of a software problem, but also
useful for several other applications such as showing the flow of documents
or items in an organisation.

6.2.1 Data Flow Diagrams (DFDs)

The DFD (also known as the bubble chart) is a simple graphical
formalism that can be used to represent a system in terms of the input
data to the system, various processing carried out on those data, and
the output data generated by the system. The main reason why the
DFD technique is so popular is probably because of the fact that DFD is
a very simple formalism— it is simple to understand and use. A DFD
model uses a very limited number of primitive symbols (shown in Figure
6.2) to represent the functions performed by a system and the data
flow among these functions.

Starting with a set of high-level functions that a system performs, a DFD
model represents the subfunctions performed by the functions using a
hierarchy of diagrams. We had pointed out while discussing the principle of
abstraction in Section 1.3.2 that any hierarchical representation is an

effective means to tackle complexity. Human mind is such that it can easily
understand any hierarchical model of a system—because in a hierarchical
model, starting with a very abstract model of a system, various details of the
system are slowly introduced through different levels of the hierarchy. The
DFD technique is also based on a very simple set of intuitive concepts and
rules. We now elaborate the different concepts associated with building a
DFD model of a system.

Primitive symbols used for constructing DFDs

There are essentially five different types of symbols used for constructing
DFDs. These primitive symbols are depicted in Figure 6.2. The meaning of
these symbols are explained as follows:

Figure 6.2: Symbols used for designing DFDs.

Function symbol: A function is represented using a circle. This symbol is

called a process or a bubble. Bubbles are annotated with the names of

the corresponding functions (see Figure 6.3).

External entity symbol: An external entity such as a librarian, a library
member, etc. is represented by a rectangle. The external entities are
essentially those physical entities external to the software system which
interact with the system by inputting data to the system or by consuming the
data produced by the system. In addition to the human users, the external
entity symbols can be used to represent external hardware and software such
as another application software that would interact with the software being
modelled.

Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol.
A data flow symbol represents the data flow occurring between two processes
or between an external entity and a process in the direction of the data flow
arrow. Data flow symbols are usually annotated with the corresponding data
names. For example the DFD in Figure 6.3(a) shows three data flows—the

data item number flowing from the process read-number to validate-number, data-

item flowing into read-number, and valid-number flowing out of validate-number.

Data store symbol: A data store is represented using two parallel lines. It
represents a logical file. That is, a data store symbol can represent either a
data structure or a physical file on disk. Each data store is connected to a
process by means of a data flow symbol. The direction of the data flow arrow
shows whether data is being read from or written into a data store. An arrow
flowing in or out of a data store implicitly represents the entire data of the
data store and hence arrows connecting t o a data store need not be
annotated with the name of the corresponding data items. As an example of
a data store, number is a data store in Figure 6.3(b).

Output symbol: The output symbol i s as shown in Figure 6.2. The output

symbol is used when a hard copy is produced.
The notations that we are following in this text are closer to the Yourdon’s

notations than to the other notations. You may sometimes find notations in
other books that are slightly different than those discussed here. For
example, the data store may look like a box with one end open. That is
because, they may be following notations such as those of Gane and Sarson
[1979].

Important concepts associated with constructing DFD models

Before we discuss how to construct the DFD model of a system, let us
discuss some important concepts associated with DFDs:

Synchronous and asynchronous operations

If two bubbles are directly connected by a data flow arrow, then they are
synchronous. This means that they operate at t he same speed. An
example of such an arrangement is shown in Figure 6.3(a). Here, the

validate-number bubble can start processing only after t h e read-

number bubble has supplied data to it; and the read-number bubble

has to wait until the validate-number bubble has consumed its

data.
However, if two bubbles are connected through a data store, as in Figure

6.3(b) then the speed of operation of the bubbles are independent. This
statement can be explained using the following reasoning. The data produced
by a producer bubble gets stored in the data store. It is therefore possible
that the producer bubble stores several pieces of data items, even before the

consumer bubble consumes any of them.

Figure 6.3: Synchronous and asynchronous data flow.

Data dictionary

Every DFD model of a system must be accompanied by a data dictionary. A

data dictionary lists all data items that appear in a DFD model. The data
items listed include all data flows and the contents of all data stores
appearing on all the DFDs in a DFD model. Please remember that the DFD
model of a system typically consists of several DFDs, viz., level 0 DFD, level 1
DFD, level 2 DFDs, etc., as shown in Figure 6.4 discussed in new subsection.
However, a single data dictionary should capture all the data appearing in all
the DFDs constituting the DFD model of a system.

For example, a data dictionary entry may represent that the data grossPay
consists of the components regularPay and overtimePay.

grossP ay = regularP ay + overtimeP ay

For the smallest units of data items, the data dictionary simply lists their
name and their type. Composite data items are expressed in terms of
the component data items using certain operators. The operators using
which a composite data item can be expressed in terms of its
component data items are discussed subsequently.

The dictionary plays a very important role in any software development
process, especially for the following reasons:

 A data dictionary provides a standard terminology for all relevant data
for use by the developers working in a project. A consistent vocabulary
for data items is very important, since in large projects different
developers of the project have a tendency to use different terms to
refer to the same data, which unnecessarily causes confusion.

 The data dictionary helps the developers to determine the definition of
different data structures in terms of their component elements while
implementing the design.

 The data dictionary helps to perform impact analysis. That is, it is
possible to determine the effect of some data on various processing
activities and vice versa. Such impact analysis is especially useful when
one wants to check the impact of changing an input value type, or a
bug in some functionality, etc.

For large systems, the data dictionary can become extremely complex and
voluminous. Even moderate-sized projects can have thousands of entries in

A data dictionary lists the purpose of all data items and the definition of all composite
data items in terms of their component data items.

the data dictionary. It becomes extremely di fficult to maintain a voluminous
dictionary manually. Computer-aided software engineering (CASE) tools come
handy to overcome this problem. Most CASE tools usually capture the data
items appearing in a DFD as the DFD is drawn, and automatically generate
the data dictionary. As a result, the designers do not have to spend almost
any effort in creating the data dictionary. These CASE tools also support some
query language facility to query about the definition and usage of data items.
For example, queries may be formulated to determine which data item
affects which processes, or a process affects which data items, or the
definition and usage of specific data items, etc. Query handling is facilitated
by storing the data dictionary in a relational database management system
(RDBMS).

Data definition

Composite data items can be defined in terms of primitive data items
using the following data definition operators.

+: denotes composition of two data items, e.g. a+b represents data a and b.

[,,]: represents selection, i.e. any one of the data items listed inside the

square bracket can occur For example, [a,b] represents either a occurs or b

occurs.

(): the contents inside the bracket represent optional data which may or may

not appear.

a+(b) represents either a or a+b occurs.

{}: represents iterative data definition, e.g. {name}5 represents five name data.

{name}* represents zero or more instances of name data.

=: represents equivalence, e.g. a=b+c means that a is a composite data item

comprising of both b and c.

/* */: Anything appearing within /* and */ is considered as comment.

6.3 DEVELOPING THE DFD MODEL OF A SYSTEM

A DFD model of a system graphically represents how each input data is
transformed to its corresponding output data through a hierarchy of DFDs.

The DFD model of a system i s constructed by using a hierarchy of DFDs
(see Figure 6.4). The top level DFD is called the level 0 DFD or the context
diagram. This is the most abstract (simplest) representation of the system

The DFD model of a problem consists of many of DFDs and a single data dictionary.

(highest level). It is the easiest to draw and understand. At each successive
lower level DFDs, more and more details are gradually introduced. To
develop a higher-level DFD model, processes are decomposed into their
subprocesses and the data flow among these subprocesses are identified.

To develop the data flow model of a system, first the most abstract
representation (highest level) of the problem is to be worked out.
Subsequently, the lower level DFDs are developed. Level 0 and Level 1
consist of only one DFD each. Level 2 may contain up to 7 separate DFDs,
and level 3 up to 49 DFDs, and so on. However, there is only a single data
dictionary for the entire DFD model. All the data names appearing in all DFDs
are populated in the data dictionary and the data dictionary contains the
definitions of all the data items.

6.3.1 Context Diagram

The context diagram is the most abstract (highest level) data flow
representation of a system. It represents the entire system as a single
bubble. The bubble in the context diagram is annotated with the name of the
software system being developed (usually a noun). This is the only bubble in
a DFD model, where a noun is used for naming the bubble. The bubbles at all
other levels are annotated with verbs according to the main function
performed by the bubble. This is expected since the purpose of the context
diagram is to capture the context of the system rather than its functionality.
As an example of a context diagram, consider the context diagram a software
developed to automate the book keeping activities of a supermarket (see
Figure 6.10). The context diagram has been labelled as ‘Supermarket
software’.

Figure 6.4: DFD model of a system consists of a hierarchy of DFDs and a single data dictionary.

The name context diagram of the level 0 DFD is justified because it
represents the context in which the system would exist; that is, the external
entities who would interact with the system and the specific data items that
they would be supplying the system and the data items they would be
receiving from the system. The various external entities with which the
system interacts and the data flow occurring between the system and the
external entities are represented. The data input to the system and the data
output from the system are represented as incoming and outgoing arrows.
These data flow arrows should be annotated with the corresponding data

The context diagram establishes the context in which the system operates; that is,
who are the users, what data do they input to the system, and what data they
received by the system.

names.

To develop the context diagram of the system, we have to analyse the SRS
document to identify the different types o f users who would be using the
system and the kinds of data they would be inputting to the system and the
data they would be receiving from the system. Here, the term users of the
system also includes any external systems which supply data to or receive
data from the system.

6.3.2 Level 1 DFD

The level 1 DFD usually contains three to seven bubbles. That is, the
system is represented as performing three to seven important functions.
To develop the level 1 DFD, examine the high-level functional
requirements in the SRS document. If there are three to seven high-
level functional requirements, then each of these can be directly
represented as a bubble in the level 1 DFD. Next, examine the input
data to these functions and the data output by these functions as
documented in the SRS document and represent them appropriately in
the diagram.

What if a system has more than seven high-level requirements identified in
the SRS document? In this case, some of the related requirements have to be
combined and represented as a single bubble in the level 1 DFD. These can
be split appropriately in the lower DFD levels. If a system has less than three
high-level functional requirements, then some of the high-level requirements
need to be split into their subfunctions so that we have roughly about five to
seven bubbles represented on the diagram. We illustrate construction of level
1 DFDs in Examples 6.1 to 6.4.

Decomposition

Each bubble in the DFD represents a function performed by the system.
The bubbles are decomposed into subfunctions at the successive levels
of the DFD model. Decomposition of a bubble is also known as factoring
o r exploding a bubble. Each bubble at any level of DFD is usually
decomposed to anything three to seven bubbles. A few bubbles at any
level m a k e that level superfluous. For example, if a bubble is
decomposed to just one bubble or two bubbles, then this decomposition
becomes trivial and redundant. On the other hand, too many bubbles
(i.e. more than seven bubbles) at any level o f a DFD makes the DFD
model hard to understand. Decomposition of a bubble should be carried

on until a level is reached at which the function of the bubble can be
described using a simple algorithm.

We can now describe how to go about developing the DFD model of a
system more systematically.

1. Construction of context diagram: Examine the SRS document to

determine:

• Different high-level functions that the system needs to perform.

• Data input to every high-level function.

• Data output from every high-level function.

• Interactions (data flow) among the identified high-level functions.

Represent these aspects of the high-level functions in a diagrammatic

form. This would form the top-level data flow diagram (DFD), usually

called the DFD 0.

Construction of level 1 diagram: Examine the high-level functions

described in the SRS document. If there are three to seven high-level
requirements in the SRS document, then represent each of the high-level
function in the form of a bubble. If there are more than seven bubbles,
then some of them have to be combined. If there are less than three
bubbles, then some of these have to be split.

Construction of lower-level diagrams: Decompose each high-level function

into its constituent subfunctions through the following set of activities:

• Identify the different subfunctions of the high-level function.

• Identify the data input to each of these subfunctions.

• Identify the data output from each of these subfunctions.

• Identify the interactions (data flow) among these subfunctions.

Represent these aspects in a diagrammatic form using a DFD.

Recursively repeat Step 3 for each subfunction until a subfunction can be
represented by using a simple algorithm.

Numbering of bubbles

It is necessary to number the different bubbles occurring in the DFD.
These numbers help in uniquely identifying any bubble in the DFD from
its bubble number. The bubble at the context level is usually assigned
the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1
are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is

decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this
numbering scheme, by looking at the number of a bubble we can
unambiguously determine its level, its ancestors, and its successors.

Balancing DFDs

The DFD model of a system usually consists of many DFDs that are organised
in a hierarchy. In this context, a DFD is required to be balanced with respect
to the corresponding bubble of the parent DFD.

We illustrate the concept of balancing a DFD in Figure 6.5. In the level 1
DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2
flows into the bubble 0.1 (shown by the dotted circle). In the next level,
bubble 0.1 is decomposed into three DFDs (0.1.1,0.1.2,0.1.3). The
decomposition is balanced, as d1 and d3 flow out of the level 2 diagram and
d 2 flows in. Please note that dangling arrows (d1,d2,d3) represent the data
flows into or out of a diagram.

How far to decompose?

A bubble should not be decomposed any further once a bubble is found to
represent a simple set of instructions. For simple problems, decomposition up
to level 1 should suffice. However, large industry standard problems may
need decomposition up to level 3 or level 4. Rarely, if ever, decomposition
beyond level 4 is needed.

The data that flow into or out of a bubble must match the data flow at the next level
of DFD. This is known as balancing a DFD.

Figure 6.5: An example showing balanced decomposition.

Commonly made errors while constructing a DFD model

Although DFDs are simple to understand and draw, students and
practitioners alike encounter similar types of problems while modelling
software problems using DFDs. While learning from experience is a
powerful thing, it is an expensive pedagogical technique in the business
world. It is therefore useful to understand the different types of
mistakes that beginners usually make while constructing the DFD model

of systems, so that you can consciously try to avoid them.The errors are
as follows:

 Many beginners commit the mistake of drawing more than one bubble
in the context diagram. Context diagram should depict the system as a
single bubble.

 Many beginners create DFD models in which external entities
appearing at all levels of DFDs. All external entities interacting with the
system should be represented only in the context diagram. The
external entities should not appear in the DFDs at any other level.

 It is a common oversight to have either too few or too many bubbles in
a DFD. Only three to seven bubbles per diagram should be allowed.
This also means that each bubble in a DFD should be decomposed
three to seven bubbles in the next level.

 Many beginners leave the DFDs at the different levels of a DFD model
unbalanced.

 A common mistake committed by many beginners while developing a
DFD model is attempting to represent control information in a DFD.

The following are some illustrative mistakes of trying to represent control
aspects such as:

Illustration 1. A book can be searched in the library catalog by inputting its

name. If the book is available in the library, then the details of the book are
displayed. If the book is not listed in the catalog, then an error message is
generated. While developing the DFD model for this simple problem, many
beginners commit the mistake of drawing an arrow (as shown in Figure 6.6)
to indicate that the error function is invoked after the search book. But, this is
a control information and should not be shown on the DFD.

Figure 6.6: It is incorrect to show control information on a DFD.

Illustration 2. Another type of error occurs when one tries to represent

when or in what order different functions (processes) are invoked. A
DFD similarly should not represent the conditions under which different

functions are invoked.

Illustration 3. If a bubble A invokes either the bubble B or the bubble C

It is important to realise that a DFD represents only data flow, and it does not
represent any control information.

depending upon some conditions, we need only to represent the data that

flows between bubbles A and B or bubbles A and C and not the conditions
depending on which the two modules are invoked.

 A data flow arrow should not connect two data stores or even a data
store with an external entity. Thus, data cannot flow from a data store
to another data store or to an external entity without any intervening
processing. As a result, a data store should be connected only to
bubbles through data flow arrows.

 All the functionalities of the system must be captured by the DFD
model. No function of the system specified in the SRS document of the
system should be overlooked.

 Only those functions of the system specified in the SRS document
should be represented. That is, the designer should not assume
functionality of the system not specified by the SRS document and then
try to represent them in the DFD.

 Incomplete data dictionary and data dictionary showing incorrect
composition of data items are other frequently committed mistakes.

 The data and function names must be intuitive. Some students and
even practicing developers use meaningless symbolic data names such
as a,b,c, etc. Such names hinder understanding the DFD model.

 Novices usually clutter their DFDs with too many data flow arrow. It
becomes difficult to understand a DFD if any bubble is associated with
more than seven data flows. When there are too many data flowing in
or out of a DFD, it is better to combine these data items into a high-
level data item. Figure 6.7 shows an example concerning how a DFD
can be simplified by combining several data flows into a single high-
level data flow.

Figure 6.7: Illustration of how to avoid data cluttering.

Figure 6.16: Level 1 DFD for Example 6.5.

The level 2 DFD for the manageOwnBook bubble is shown in Figure 6.17.

Figure 6.17: Level 2 DFD for Example 6.5.

6.3.3 Extending DFD Technique to Make it Applicable to Real-time

Systems

In a real-time system, some of the high-level functions are associated
with deadlines. Therefore, a function must not only produce correct
results but also should produce them by some prespecified time. For
real-time systems, execution time is an important consideration for
arriving at a correct design. Therefore, explicit representation of control
and event flow aspects are essential. One of the widely accepted
techniques for extending the DFD technique to real-time system
analysis is the Ward and Mellor technique [1985]. In the Ward and
Mellor notation, a type of process that handles only control flows is
introduced. These processes representing control processing are
denoted using dashed bubbles. Control flows are shown using dashed
lines/arrows.

Unlike Ward and Mellor, Hatley and Pirbhai [1987] show the dashed and
solid representations on separate diagrams. To be able to separate the data
processing and the control processing aspects, a control flow diagram (CFD)
is defined. This reduces the complexity of the diagrams. In order to link the
data processing and control processing diagrams, a notational reference
(solid bar) to a control specification is used. The CSPEC describes the
following:

 The effect of an external event or control signal.

 The processes that are invoked as a consequence of an event.

Control specifications represents the behavior of the system in two
different ways:

 It contains a state transition diagram (STD). The STD is a sequential
specification of behaviour.

 It contains a progra m activation table (PAT). The PAT is a
combinatorial specification of behaviour. PAT represents invocation

sequence of bubbles in a DFD.

6.4 STRUCTURED DESIGN

The aim of structured design is to transform the results of the structured
analysis (that i s, the DFD model) into a structure chart. A structure

chart represents the software architecture. The various modules making
up the system, the module dependency (i.e. which module calls which
other modules), and the parameters that are passed among the
different modules. The structure chart representation can be easily
implemented using some programming language. Since the main focus
in a structure chart representation is on module structure of a software
and the interaction among the different modules, the procedural
aspects (e.g. how a particular functionality is achieved) are not
represented.

The basic building blocks using which structure charts are designed are as
following:

Rectangular boxes: A rectangular box represents a module. Usually, every

rectangular box is annotated with the name of the module it represents.

Module invocation arrows: An arrow connecting two modules implies that

during program execution control is passed from one module to the other in
the direction of the connecting arrow. However, just by looking at the
structure chart, we cannot say whether a modules calls another module just
once or many times. Also, just by looking at the structure chart, we cannot
tell the order in which the different modules are invoked.

Data flow arrows: These are small arrows appearing alongside the module

invocation arrows. The data flow arrows are annotated with the
corresponding data name. Data flo w arrows represent the fact that the
named data passes from one module to the other in the direction of the
arrow.

Library modules: A library module is usually represented by a rectangle with

double edges. Libraries comprise the frequently called modules. Usually,

when a module is invoked by many other modules, it is made into a library
module.

Selection: The diamond symbol represents the fact that one module of several

modules connected with the diamond symbol i s invoked depending on the

outcome of the condition attached with the diamond symbol.

Repetition: A loop around the control flow arrows denotes that the respective

modules are invoked repeatedly.
In any structure chart, there should be one and only one module at the top,

called the root. There should be at most one control relationship between any
two modules in the structure chart. This means that if module A invokes
module B, module B cannot invoke module A. The main reason behind this

restriction is that we can consider the different modules of a structure chart
to be arranged in layers or levels. The principle of abstraction does not allow
lower-level modules to be aware of the existence of the high-level modules.
However, it is possible for t wo higher-level modules to invoke the same
lower-level module. An example of a properly layered design and another of a
poorly layered design are shown in Figure 6.18.

Figure 6.18: Examples of properly and poorly layered designs.

Flow chart versus structure chart

We are all familiar with the flow chart representation of a program. Flow
chart is a convenient technique to represent the flo w of control in a
program. A structure chart differs from a flow chart in three principal
ways:

 It is usually difficult to identify the different modules of a program from
its flow chart representation.

 Data interchange among different modules is not represented in a flow
chart.

 Sequential ordering of tasks that i s inherent to a flow chart is
suppressed in a structure chart.

6.4.1 Transformation of a DFD Model into Structure Chart

Systematic techniques are available to transform the DFD representation
of a problem into a module structure represented by as a structure
chart. Structured design provides two strategies to guide transformation
of a DFD into a structure chart:

 Transform analysis
 Transaction analysis

At each level of transformation, it is important to first determine whether
the transform or the transaction analysis is applicable to a particular DFD.

Transform analysis

Transform analysis identifies the primary functional components
(modules) and the input and output data for these components. The
first step in transform analysis is to divide the DFD into three types of
parts:

• Input.

• Processing.

• Output.

The input portion in the DFD includes processes that transform input data
from physical (e.g, character from terminal) to logical form (e.g. internal
tables, lists, etc.). Each input portion is called an afferent branch.

The output portion of a DFD transforms output data from logical form to
physical form. Each output portion is called an efferent branch. The remaining
portion of a DFD is called central transform.

In the next step of transform analysis, the structure chart is derived by
drawing one functional component each for the central transform, the
afferent and efferent branches. These are drawn below a root module, which
would invoke these modules.

Identifying the input and output parts requires experience and skill. One
possible approach is to trace the input data until a bubble is found whose
output data cannot be deduced from its inputs alone. Processes which
validate input are not central transforms. Processes which sort input or filter
data from it are central tansforms. T h e first level o f structure chart is
produced by representing each input and output unit as a box and each
central transform as a single box.

In the third step of transform analysis, the structure chart is refined by
adding subfunctions required by each of the high-level functional components.
Many levels of functional components may be added. This process of breaking
functional components into subcomponents is called factoring. Factoring
includes adding read and write modules, error-handling modules, initialisation
and termination process, identifying consumer modules etc. The factoring
process is continued until all bubbles in the DFD are represented in the
structure chart.

Figure 6.19: Structure chart for Example 6.6.

Transaction analysis

Transaction analysis is an alternative to transform analysis and is useful while
designing transaction processing programs. A transaction allows the user to
perform some specific type of work by using the software. For example, ‘issue
book’, ‘return book’, ‘query book’, etc., are transactions.

Figure 6.20: Structure chart for Example 6.7.

As in transform analysis, first all data entering into the DFD need to be
identified. In a transaction-driven system, different data items may pass
through different computation paths through the DFD. This is in contrast to a
transform centered system where each data item entering the DFD goes
through the same processing steps. Each different way in which input data is
processed is a transaction. A simple way to identify a transaction is the
following. Check the input data. The number of bubbles on which the input
data to the DFD are incident defines the number of transactions. However,
some transactions may not require any input data. These transactions can be
identified based on the experience gained from solving a large number of
examples.

For each identified transaction, trace the input data to the output. All the
traversed bubbles belong to the transaction. These bubbles should be
mapped to the same module on the structure chart. In the structure chart,
draw a root module and below this module draw each identified transaction
as a module. Every transaction carries a tag identifying its type. Transaction
analysis uses this tag to divide the system into transaction modules a nd a
transaction-center module.

6.5 DETAILED DESIGN

During detailed design the pseudo code description of the processing and
the different data structures are designed for the different modules of
the structure chart. These are usually described in the form of module
specifications (MSPEC). MSPEC is usually written using structured
English. The MSPEC for the non-leaf modules describe the different
conditions under which the responsibilities are delegated to the lower-
level modules. The MSPEC for the leaf-level modules should describe in
algorithmic form how the primitive processing steps are carried out. To
develop the MSPEC of a module, it is usually necessary to refer to the
DFD model and the SRS document to determine the functionality of the
module.

6.6 DESIGN REVIEW

After a design is complete, the design is required to be reviewed. The
review team usually consists of members with design, implementation,
testing, and maintenance perspectives, who may or may not be the
members of the development team. Normally, members of the team

who would code the design, and test the code, the analysts, and the
maintainers attend the review meeting. The review team checks the
design documents especially for the following aspects:

Traceability: Whether each bubble of the DFD can be traced to some module

in the structure chart a nd vice versa. They check whether each functional

requirement in the SRS document can be traced to some bubble in the DFD
model and vice versa.

Correctness: Whether all the algorithms and data structures of the detailed

design are correct.

Maintainability: Whether the design can be easily maintained in future.

Implementation: Whether the design can be easily and efficiently be

implemented.
After the points raised by the reviewers is addressed by the designers, the

design document becomes ready for implementation.

CODING AND TESTING

10.1 CODING

The input to the coding phase is the design document produced at the end of
the design phase. Please recollect that the design document contains not only
the high-level design of the system in the form of a module structure (e.g., a
structure chart), but also the detailed design. The detailed design is usually
documented in the form of module specifications where the data structures
and algorithms for each module are specified. During the coding phase,
different modules identified in the design document are coded according to
their respective module specifications. We can describe the overall objective
of the coding phase to be the following.

Normally, good software development organisations require their
programmers to adhere to some well-defined and standard style of coding
which is called their coding standard. These software development
organisations formulate their own coding standards that suit them the most,
and require their developers to follow the standards rigorously because of the
significant business advantages it offers. The main advantages of adhering to
a standard style of coding are the following:

 A coding standard gives a uniform appearance to the codes written by
different engineers.

 It facilitates code understanding and code reuse.

 It promotes good programming practices.

A coding standard lists several rules to be followed during coding, such as
the way variables are to be named, the way the code is to be laid out, the
error return conventions, etc. Besides the coding standards, several coding
guidelines are also prescribed by software companies. But, what is the
difference between a coding guideline and a coding standard?

After a module has been coded, usually code review is carried out to ensure
that the coding standards are followed and also to detect as many errors as
possible before testing. It is important to detect as many errors as possible

The objective of the coding phase is to transform the design of a system into code in
a high-level language, and then to unit test this code.

during code reviews, because reviews are an efficient way of removing errors
from code as compared to defect elimination using testing. We first discuss a
few representative coding standards and guidelines.

10.2 CODE REVIEW

Testing is an effective defect removal mechanism. However, testing is
applicable to only executable code. Review is a very effective technique
to remove defects from source code. In fact, review has been
acknowledged to be more cost-effective in removing defects as
compared to testing. Over the years, review techniques have become
extremely popular and have been generalised for use with other work
products.

Code review for a module is undertaken after the module successfully
compiles. That is, all the syntax errors have been eliminated from the
module. Obviously, code review does not target to design syntax errors in a
program, but is designed to detect logical, algorithmic, and programming
errors. Code review has been recognised as an extremely cost-effective
strategy for eliminating coding errors and for producing high quality code.

The reason behind why code review is a much more cost-effective strategy
to eliminate errors from code compared to testing is that reviews directly
detect errors. On the other hand, testing only helps detect failures and
significant effort is needed to locate the error during debugging.

The rationale behind the above statement is explained as follows.
Eliminating an error from code involves three main activities—testing,
debugging, and then correcting the errors. Testing is carried out to detect if

the system fails to work satisfactorily for certain types of inputs and under
certain circumstances. Once a failure is detected, debugging is carried out to
locate the error that is causing the failure and to remove it. Of the three

testing activities, debugging is possibly the most laborious and time
consuming activity. In code inspection, errors are directly detected, thereby

saving the significant effort that would have been required to locate the error.

Normally, the following two types of reviews are carried out on the code of
a module:

 Code inspection.

 Code walkthrough.

The procedures for conduction and the final objectives of these two review
techniques are very different. In the following two subsections, we discuss

these two code review techniques.

10.2.1 Code Walkthrough

Code walkthrough is an informal code analysis technique. In this technique,
a module is taken up for review after the module has been coded,
successfully compiled, and all syntax errors have been eliminated. A few
members of the development team are given the code a couple of days
before the walkthrough meeting. Each member selects some test cases and
simulates execution of the code by hand (i.e., traces the execution through
different statements and functions of the code).

The members note down their findings of their walkthrough and discuss
those in a walkthrough meeting where the coder of the module is present.

Even though code walkthrough is an informal analysis technique, several
guidelines have evolved over the years for making this naive but useful
analysis technique more effective. These guidelines are based on personal
experience, common sense, several other subjective factors. Therefore, these
guidelines should be considered as examples rather than as accepted rules to
be applied dogmatically. Some of these guidelines are following:

 The team performing code walkthrough should not be either too big or
too small. Ideally, it should consist of between three to seven
members.

 Discussions should focus on discovery of errors and avoid deliberations
on how to fix the discovered errors.

 In order to foster co-operation and to avoid the feeling among the
engineers that they are being watched and evaluated in the code
walkthrough meetings, managers should not attend the walkthrough
meetings.

10.2.2 Code Inspection

During code inspection, the code is examined for the presence of some
common programming errors. This is in contrast to the hand simulation of
code execution carried out during code walkthroughs. We can state the
principal aim of the code inspection to be the following:

The inspection process has several beneficial side effects, other than
finding errors. The programmer usually receives feedback on programming
style, choice of algorithm, and programming techniques. The other
participants gain by being exposed to another programmer’s errors.

As an example of the type of errors detected during code inspection,
consider the classic error of writing a procedure that modifies a formal
parameter and then calls it with a constant actual parameter. It is more lik ely
that such an error can be discovered by specifically looking for this kinds of
mistakes in the code, rather than by simply hand simulating execution of the
code. In addition to the commonly made errors, adherence to coding
standards is also checked during code inspection.

Good software development companies collect statistics regarding different
types of errors that are commonly committed by their engineers and identify
the types of errors most frequently committed. Such a list of commonly
committed errors can be used as a checklist during code inspection to look
out for possible errors.

Following is a list of some classical programming errors which can be
checked during code inspection:

 Use of uninitialised variables.
 Jumps into loops.
 Non-terminating loops.

 Incompatible assignments.
 Array indices out of bounds.
 Improper storage allocation and deallocation.
 Mismatch between actual and formal parameter in procedure calls.

 Use of incorrect logical operators or incorrect precedence among
operators.

 Improper modification of loop variables.
 Comparison of equality of floating point values.

 Dangling reference caused when the referenced memory has not been
allocated.

10.2.3 Clean Room Testing

Clean room testing was pioneered at IBM. This type of testing relies

heavily on walkthroughs, inspection, and formal verification. The
programmers are not allowed to test any of their code by executing the
code other than doing some syntax testing using a compiler. It is
interesting to note that the term cleanroom was first coined at IBM by
drawing analogy to the semiconductor fabrication units where defects
are avoided by manufacturing in an ultra-clean atmosphere.

This technique reportedly produces documentation and code that is more
reliable and maintainable than other development methods relying heavily on
code execution-based testing. The main problem with this approach is that
testing effort is increased as walkthroughs, inspection, and verification are
time consuming for detecting all simple errors. Also testing- based error
detection is efficient for detecting certain errors that escape manual
inspection.

10.3 SOFTWARE DOCUMENTATION

When a software is developed, in addition to the executable files and the
source code, several kinds of documents such as users’ manual,
software requirements specification (SRS) document, design document,
test document, installation manual, etc., are developed as part of the
software engineering process. All these documents are considered a
vital part of any good software development practice. Good documents
are helpful in the following ways:

 Good documents help enhance understandability of code. As a result,
the availability of good documents help to reduce the effort and time
required for maintenance.

 Documents help the users to understand and effectively use the
system.

 Good documents help to effectively tackle the manpower turnover1

problem. Even when an engineer leaves the organisation, and a new
engineer comes in, he can build up the required knowledge easily by
referring to the documents.

 Production of good documents helps the manager to effectively track
the progress of the project. The project manager would know that
some measurable progress has been achieved, if the results of some
pieces of work has been documented and the same has been
reviewed.

Different types of software documents can broadly be classified into the
following:

We discuss these two types of documentation in the next section.

10.3.1 Internal Documentation

Internal documentation is the code comprehension features provided in
the source code itself. Internal documentation can be provided in the
code in several forms. The important types of internal documentation
are the following:

 Comments embedded in the source code.
 Use of meaningful variable names.
 Module and function headers.
 Code indentation.
 Code structuring (i.e., code decomposed into modules and functions).
 Use of enumerated types.
 Use of constant identifiers.
 Use of user-defined data types.

Out of these different types of internal documentation, which one is the
most valuable for understanding a piece of code?

The above assertion, of course, is in contrast to the common expectation
that code commenting would be the most useful. The research finding is
obviously true when comments are written without much thought. For
example, the following style of code commenting is not much of a help in
understanding the code.

a=10; /* a made 10 */

A good style of code commenting is to write to clarify certain non-obvious
aspects of the working of the code, rather than cluttering the code with trivial
comments. Good software development organisations usually ensure good
internal documentation by appropriately formulating their coding standards

Internal documentation: These are provided in the source code itself.

External documentation: These are the supporting documents such as SRS
document, installation document, user manual, design document, and test document.

and coding guidelines. Even when a piece of code is carefully commented,
meaningful variable names has been found to be the most helpful in
understanding the code.

10.3.2 External Documentation

External documentation is provided through various types of supporting
documents such as users’ manual, software requirements specification
document, design document, test document, etc. A systematic software
development style ensures that all these documents are of good quality
and are produced in an orderly fashion.

An important feature that is requierd of any good external documentation is
consistency with the code. If the different documents are not consistent, a lot
of confusion is created for somebody trying to understand the software. In
other words, all the documents developed for a product should be up-to-date
and every change made to the code should be reflected in the relevant
external documents. Even if only a few documents are not up-to-date, they
create inconsistency and lead to confusion. Another important feature
required for external documents is proper understandability by the category
of users for whom the document is designed. For achieving this, Gunning’s fog
index is very useful. We discuss this next.

Gunning’s fog index

Gunning’s fog index (developed by Robert Gunning in 1952) is a metric
that has been designed to measure the readability of a document. The
computed metric value (fog index) of a document indicates the number
of years of formal education that a person should have, in order to be
able to comfortably understand that document. That is, if a certain
document has a fog index of 12, any one who has completed his 12th
class would not have much difficulty in understanding that document.

The Gunning’s fog index of a document D can be computed as follows:

Observe that the fog index is computed as the sum of two different factors.
The first factor computes the average number of words per sentence (total
number of words in the document divided by the total number of sentences).
This factor therefore accounts for the common observation that long
sentences are difficult to understand. The second factor measures the
percentage of complex words in the document. Note that a syllable is a group

o f words that can be independently pronounced. For example, the word
“sentence” has three syllables (“sen”, “ten”, and “ce”). Words having more
than three syllables are complex words and presence of many such words
hamper readability of a document.

10.4 TESTING

The aim of program testing is to help realize identify all defects in a
program. However, in practice, even after satisfactory completion of the
testing phase, it is not possible to guarantee that a program is error
free. This is because the input data domain of most programs is very
large, and it is not practical to test the program exhaustively with
respect to each value that the input can assume. Consider a function
taking a floating point number as argument. If a tester takes 1sec to
type in a value, then even a million testers would not be able to
exhaustively test it after trying for a million number of years. Even with
this obvious limitation of the testing process, we should not
underestimate the importance of testing. We must remember that
careful testing can expose a large percentage of the defects existing in
a program, and therefore provides a practical way of reducing defects in
a system.

10.4.1 Basic Concepts and Terminologies

In this section, we will discuss a few basic concepts in program testing
on which our subsequent discussions on program testing would be
based.

How to test a program?

Testing a program involves executing the program with a set of test
inputs and observing if the program behaves as expected. If the
program fails to behave as expected, then the input data and the
conditions under which it fails are noted for later debugging and error
correction. A highly simplified view of program testing is schematically
shown in Figure 10.1. The tester has been shown as a stick icon, who
inputs several test data to the system and observes the outputs
produced by it to check if the system fails on some specific inputs.
Unless the conditions under which a software fails are noted down, it
becomes difficult for the developers to reproduce a failure observed by
the testers. For examples, a software might fail for a test case only

when a network connection is enabled.

Terminologies

Figure 10.1: A simplified view of program testing.

As is true for any specialised domain, the area of software testing has
come to be associated with its own set of terminologies. In the
following, we discuss a few important terminologies that have been
standardised by the IEEE Standard Glossary of Software Engineering
Terminology [IEEE90]:

 A mistake is essentially any programmer action that later shows up as
an incorrect result during program execution. A programmer may
commit a mistake in almost any development activity. For example,
during coding a programmer might commit the mistake of not
initializing a certain variable, or might overlook the errors that might
arise in some exceptional situations such as division by zero in an
arithmetic operation. Both these mistakes can lead to an incorrect
result.

 An error is the result of a mistake committed by a developer in any of
the development activities. Among the extremely large variety of
errors that can exist in a program. One example of an error is a call
made to a wrong function.

Though the terms error, fault, bug, and defect are all used interchangeably
by the program testing community. Please note that in the domain of
hardware testing, the term fault is used with a slightly different connotation
[IEEE90] as compared to the terms error and bug.

Verification versus validation

The objectives of both verification and validation techniques are very
similar since both these techniques are designed to help remove errors
in a software. In spite of the apparent similarity between their
objectives, the underlying principles of these two bug detection
techniques and their applicability are very different. We summarise the
main differences between these two techniques in the following:

 Verification is the process of determining whether the output of one
phase of software development conforms to that of its previous phase;
whereas validation is the process of determining whether a fully
developed software conforms to its requirements specification. Thus,
the objective of verification is to check if the work products produced
after a phase conform to that which was input to the phase. For
example, a verification step can be to check if the design documents
produced after the design step conform to the requirements
specification. On the other hand, validation is applied to the fully
developed and integrated software to check if it satisfies the
customer’s requirements.

 The primary techniques used for verification include review, simulation,
formal verification, and testing. Review, simulation, and testing are
usually considered as informal verification techniques. Formal
verification usually involves use of theorem proving techniques or use
of automated tools such as a model checker. On the other hand,
validation techniques are primarily based on product testing. Note that
we have categorised testing both under program verification and
validation. The reason being that unit and integration testing can be
considered as verification steps where it is verified whether the code is
a s per the module and module interface specifications. On the other
hand, system testing can be considered as a validation step where it is
determined whether the fully developed code is as per its requirements
specification.

 Verification does not require execution of the software, whereas

validation requires execution of the software.

 Verification is carried out during the development process to check if
the development activities are proceeding alright, whereas validation is
carried out to check if the right as required by the customer has been
developed.

10.4.2 Testing Activities

Testing involves performing the following main activities:

Test suite design: The set of test cases using which a program is to be
tested is designed possibly using several test case design techniques. We
discuss a few important test case design techniques later in this Chapter.

Running test cases and checking the results to detect failures: Each
test case is run and the results are compared with the expected results. A
mismatch between the actual result and expected results indicates a failure.
The test cases for which the system fails are noted down for later debugging.

Locate error: In this activity, the failure symptoms are analysed to locate
the errors. For each failure observed during the previous activity, the
statements that are in error are identified.

Error correction: After the error is located during debugging, the code is
appropriately changed to correct the error.

The testing activities have been shown schematically in Figure 10.2. As can
be seen, the test cases are first designed, the test cases are run to detect
failures. The bugs causing the failure are identified through debugging, and
the identified error is corrected.Of all the above mentioned testing activities,
debugging often turns out to be the most time-consuming activity.

Figure 10.2: Testing process.

10.4.3 Why Design Test Cases?

Before discussing the various test case design techniques, we need to
convince ourselves on the following question. Would it not be sufficient to
test a software using a large number of random input values? Why design
test cases? The answer to this question—this would be very costly and at the
same time very ineffective way of testing due to the following reasons:

There are essentially two main approaches to systematically design test
cases:

 Black-box approach
 White-box (or glass-box) approach

In the black-box approach, test cases are designed using only the functional
specification of the software. That is, test cases are designed solely based on
an analysis of the input/out behaviour (that is, functional behaviour) and
does not require any knowledge of the internal structure of a program. For
this reason, black-box testing is also known as functional testing. On the
other hand, designing white-box test cases requires a thorough knowledge of
the internal structure of a program, and therefore white-box testing is also
called structural testing. Black- box test cases are designed solely based on
the input-output behaviour of a program. In contrast, white-box test cases
are based on an analysis of the code. These two approaches to test case
design are complementary. That is, a program has to be tested using the test
cases designed by both the approaches, and one testing using one approach
does not substitute testing using the other.

10.4.4 Testing in the Large versus Testing in the Small

A software product is normally tested in three levels or stages:

 Unit testing
 Integration testing
 System testing

During unit testing, the individual functions (or units) of a program are
tested.

After testing all the units individually, the units are slowly integrated and
tested after each step of integration (integration testing). Finally, the fully

integrated system is tested (system testing). Integration and system testing
are known as testing in the large.

Often beginners ask the question—“Why test each module (unit) in
isolation first, then integrate these modules and test, and again test the
integrated set of modules—why not just test the integrated set of modules
once thoroughly?” The answer to this question is the following—There are
two main reasons to it. First while testing a module, other modules with
which this module needs to interface may not be ready. Moreover, it is
always a good idea to first test the module in isolation before integration
because it makes debugging easier. If a failure is detected when an
integrated set of modules is being tested, it would be difficult to determine
which module exactly has the error.

10.5 BLACK-BOX TESTING

In black-box testing, test cases are designed from an examination of the
input/output values only and no knowledge of design or code is
required. The following are the two main approaches available to
design black box test cases:

 Equivalence class partitioning
 Boundary value analysis

In the following subsections, we will elaborate these two test case
design techniques.

10.5.1 Equivalence Class Partitioning

In the equivalence class partitioning approach, the domain of input values to
the program under test is partitioned into a set of equivalence classes. The
partitioning is done such that for every input data belonging to the same
equivalence class, the program behaves similarly.

Equivalence classes for a unit under test can be designed by examining the
input data and output data. The following are two general guidelines for
designing the equivalence classes:

1. If the input data values to a system can be specified by a range of
values, then one valid and two invalid equivalence classes need to be
defined. For example, if the equivalence class is the set of integers in

the range 1 to 10 (i.e., [1,10]), then the invalid equivalence classes
are [−∞,0], [11,+∞].

2. If the input data assumes values from a set of discrete members of
some domain, then one equivalence class for the valid input values
and another equivalence class for the invalid input values should be
defined. For example, if the valid equivalence classes are {A,B,C},
then the invalid equivalence class is □-{A,B,C}, where □ is the
universe of possible input values.

In the following, we illustrate equivalence class partitioning-based test case
generation through four examples.

Figure 10.4: Equivalence classes for Example 10.6.

10.5.2 Boundary Value Analysis

A type of programming error that is frequently committed by programmers is
missing out on the special consideration that should be given to the values at
the boundaries of different equivalence classes of inputs. The reason behind
programmers committing such errors might purely be due to psychological
factors. Programmers often fail to properly address the special processing
required by the input values that lie at the boundary of the different
equivalence classes. For example, programmers may improperly use <
instead of <=, or conversely <= for <, etc.

To design boundary value test cases, it is required to examine the

Boundary value analysis-based test suite design involves designing test cases using
the values at the boundaries of different equivalence classes.

equivalence classes to check if any of the equivalence classes contains a
range of values. For those equivalence classes that are not a range of
values(i.e., consist of a discrete collection of values) no boundary value test
cases can be defined. For an equivalence class that is a range of values, the
boundary values need to be included in the test suite. For example, if an
equivalence class contains the integers in the range 1 to 10, then the
boundary value test suite is {0,1,10,11}.

10.5.3 Summary of the Black-box Test Suite Design
Approach

We now summarise the important steps in the black-box test suite
design approach:

 Examine the input and output values of the program.
 Identify the equivalence classes.
 Design equivalence class test cases by picking one representative

value from each equivalence class.

 Design the boundary value test cases as follows. Examine if any
equivalence class is a range of values. Include the values at the
boundaries of such equivalence classes in the test suite.

The strategy for black-box testing is intuitive and simple. For black-box
testing, the most important step is the identification of the equivalence
classes. Often, the identification of the equivalence classes is not
straightforward. However, with little practice one would be able to identify all
equivalence classes in the input data domain. Without practice, one may
overlook many equivalence classes in the input data set. Once the
equivalence classes are identified, the equivalence class and boundary value
test cases can be selected almost mechanically.

10.6 WHITE-BOX TESTING

White-box testing is an important type of unit testing. A large number of
white-box testing strategies exist. Each testing strategy essentially
designs test cases based on analysis of some aspect of source code and
is based on some heuristic. We first discuss some basic concepts
associated with white-box testing, and follow it up with a discussion on
specific testing strategies.

10.6.1 Basic Concepts

A white-box testing strategy can either be coverage-based or fault-
based.

Fault-based testing

A fault-based testing strategy targets to detect certain types of faults.
These faults that a test strategy focuses on constitutes the fault
model of the strategy. An example of a fault-based strategy is
mutation testing, which is discussed later in this section.

Coverage-based testing

A coverage-based testing strategy attempts to execute (or cover) certain
elements of a program. Popular examples of coverage-based testing
strategies are statement coverage, branch coverage, multiple condition
coverage, and path coverage-based testing.

Testing criterion for coverage-based testing

A coverage-based testing strategy typically targets to execute (i.e., cover)
certain program elements for discovering failures.

For example, if a testing strategy requires all the statements of a program
to be executed at least once, then we say that the testing criterion of the
strategy is statement coverage. We say that a test suite is adequate with
respect to a criterion, if it covers all elements of the domain defined by that
criterion.

Stronger versus weaker testing

We have mentioned that a large number of white-box testing strategies have
been proposed. It therefore becomes necessary to compare the effectiveness
of different testing strategies in detecting faults. We can compare two testing
strategies by determining whether one is stronger, weaker, or
complementary to the other.

The set of specific program elements that a testing strategy targets to execute is
called the testing criterion of the strategy.

A white-box testing strategy is said to be stronger than another strategy, if the
stronger testing strategy covers all program elements covered by the weaker testing
strategy, and the stronger strategy additionally covers at least one program element
that is not covered by the weaker strategy.

When none of two testing strategies fully covers the program elements
exercised by the other, then the two are called complementary testing
strategies. The concepts of stronger, weaker, and complementary testing are
schematically illustrated in Figure 10.6. Observe in Figure 10.6(a) that testing
strategy A is stronger than B since B covers only a proper subset of elements
covered by B. On the other hand, Figure 10.6(b) shows A and B are
complementary testing strategies since some elements of A are not covered
by B and vice versa.

10.6.2 Statement Coverage

The statement coverage strategy aims to design test cases so as to execute
every statement in a program at least once.

It is obvious that without executing a statement, it is difficult to determine
whether it causes a failure due to illegal memory access, wrong result
computation due to improper arithmetic operation, etc. It can however be
pointed out that a weakness of the statement- coverage strategy is that
executing a statement once and observing that it behaves properly for one
input value is no guarantee that it will behave correctly for all input values.
Never the less, statement coverage is a very intuitive and appealing testing
technique. In the following, we illustrate a test suite that achieves statement
coverage.

10.6.3 Branch Coverage

A test suite satisfies branch coverage, if it makes each branch condition
in the program to assume true and false values in turn. In other words,
for branch coverage each branch in the CFG representation of the
program must be taken at least once, when the test suite is executed.
Branch testing is also known as edge testing, since in this testing
scheme, each edge of a program’s control flow graph is traversed at
least once.

If a stronger testing has been performed, then a weaker testing need not be carried
out.

10.6.4 Multiple Condition Coverage

In the multiple condition (MC) coverage-based testing, test cases are
designed to make each component of a composite conditional
expression to assume both true and false values. For example, consider
the composite conditional expression ((c1 .and.c2).or.c3). A test suite

would achieve MC coverage, if all the component conditions c1, c2 and

c3 are each made to assume both true and false values. Branch testing

can be considered to be a simplistic condition testing strategy where
only the compound conditions appearing in the different branch
statements are made to assume the true and false values. It is easy to
prove that condition testing is a stronger testing strategy than branch
testing. For a composite conditional expression of n components, 2n
test cases are required for multiple condition coverage. Thus, for
multiple condition coverage, the number of test cases increases
exponentially with the number of component conditions. Therefore,
multiple condition coverage-based testing technique is practical only if n
(the number of conditions) is small.

10.6.5 Path Coverage

A test suite achieves path coverage if it exeutes each linearly
independent paths (o r basis paths) at least once. A linearly
independent path can be defined in terms of the control flow graph
(CFG) of a program. Therefore, to understand path coverage-based
testing strategy, we need to first understand how the CFG of a program
can be drawn.

Control flow graph (CFG)

A control flow graph describes how the control flows through the program.
We can define a control flow graph as the following:

In order to draw the control flow graph of a program, we need to first
number all the statements of a program. The different numbered statements
serve as nodes of the control flow graph (see Figure 10.5). There exists an
edge from one node to another, if the execution of the statement
representing the first node can result in the transfer of control to the other

A control flow graph describes the sequence in which the different instructions of a
program get executed.

node.

More formally, we can define a CFG as follows. A CFG is a directed graph
consisting of a set of nodes and edges (N, E), such that each node n ◻ N

corresponds to a unique program statement and an edge exists between two
nodes if control can transfer from one node to the other.

10.6.6 McCabe’s Cyclomatic Complexity Metric

McCabe obtained his results by applying graph-theoretic techniques to
the control flow graph ofa program. McCabe’s cyclomatic complexity
defines an upper bound on the number of independent paths in a
program. We discuss three different ways to compute the cyclomatic
complexity. For structured programs, the results computed by all the
three methods are guaranteed to agree.

How is path testing carried out by using computed
McCabe’s cyclomatic metric value?

Knowing the number of basis paths in a program does not make it any
easier to design test cases for path coverage, only it gives an indication
of the minimum number of test cases required for path coverage. For
the CFG of a moderately complex program segment of say 20 nodes
and 25 edges, you may need several days of effort to identify all the
linearly independent paths in it and to design the test cases. It is
therefore impractical to require the test designers to identify all the
linearly independent paths in a code, and then design the test cases to
force execution along each of the identified paths. In practice, for path
testing, usually the tester keeps on forming test cases with random
data and executes those until the required coverage is achieved. A
testing tool such as a dynamic program analyser (see Section 10.8.2) is
used to determine the percentage of linearly independent paths
covered by the test cases that have been executed so far. If the
percentage of linearly independent paths covered is below 90 per cent,
more test cases (with random inputs) are added to increase the path
coverage. Normally, it is not practical to target achievement of 100 per
cent path coverage, since, the McCabe’s metric is only an upper bound
and does not give the exact number of paths.

Steps to carry out path coverage-based testing

The following is the sequence of steps that need to be undertaken for
deriving the path coverage-based test cases for a program:

1. Draw control flow graph for the program.
2. Determine the McCabe’s metric V(G).

3. Determine the cyclomatic complexity. This gives the minimum number
of test cases required to achieve path coverage.

4. Repeat Test using a randomly designed set of test cases.
Perform dynamic analysis to check the path coverage achieved.
until at least 90 per cent path coverage is achieved.

10.6.7 Data Flow-based Testing

Data flow based testing method selects test paths of a program

according to the definitions and uses of different variables in a program.

Consider a program P . For a statement numbered S of P , let

DEF(S) = {X /statement S contains a definition of X } and

USES(S)= {X /statement S contains a use of X }

For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}. The definition
of variable X at statement S is said to be live at statement S1 , if there exists
a path from statement S to statement S1 which does not contain any
definition of X .

All definitions criterion is a test coverage criterion that requires that an
adequate test set should cover all definition occurrences in the sense that, for
each definition occurrence, the testing paths should cover a path through
which the definition reaches a use of the definition. All use criterion requires
that all uses of a definition should be covered. Clearly, all-uses criterion is
stronger than all-definitions criterion. An even stronger criterion is all
definition-use-paths criterion, which requires the coverage of all possible
definition-use paths that either are cycle-free or have only simple cycles. A
simple cycle is a path in which only the end node and the start node are the
same.

10.6.8 Mutation Testing

All white-box testing strategies that we have discussed so far, are
coverage-based testing techniques. In contrast, mutation testing is a
fault-based testing technique in the sense that mutation test cases are
designed to help detect specific types of faults in a program. In
mutation testing, a program is first tested by using an initial test suite
designed by using various white box testing strategies that we have
discussed. After the initial testing is complete, mutation testing can be
taken up.

The idea behind mutation testing is to make a few arbitrary changes to a
program at a time. Each time the program is changed, it is called a mutated

program and the change effected is called a mutant. An underlying
assumption behind mutation testing is that all programming errors can be

expressed as a combination of simple errors. A mutation operator makes
specific changes to a program. For example, one mutation operator may
randomly delete a program statement. A mutant may or may not cause an
error in the program. If a mutant does not introduce any error in the program,
then the original program and the mutated program are called equivalent
programs.

10.7 DEBUGGING

After a failure has been detected, it is necessary to first identify the
program statement(s) that are in error and are responsible for the
failure, the error can then be fixed. In this Section, we shall summarise
the important approaches that are available to identify the error
locations. Each of these approaches has its own advantages
anddisadvantages and therefore each will be useful in appropriate
circumstances. We also provide some guidelines for effective
debugging.

10.7.1 Debugging Approaches

The following are some of the approaches that are popularly adopted by
the programmers for debugging:

Brute force method

This is the most common method of debugging but is the least efficient
method. In this approach, print statements are inserted throughout the
program to print the intermediate values with the hope that some of
the printed values will help to identify the statement in error. This
approach becomes more systematic with the use of a symbolic
debugger (also called a source code debugger), because values of
different variables can be easily checked and break points and watch
points can be easily set to test the values of variables effortlessly.
Single stepping using a symbolic debugger is another form of this
approach, where the developer mentally computes the expected result
after every source instruction and checks whether the same is
computed by single stepping through the program.

Backtracking

This is also a fairly common approach. In this approach, starting from the
statement at which an error symptom has been observed, the source
code is traced backwards until the error is discovered. Unfortunately, as
the number of source lines to be traced back increases, the number of
potential backward paths increases and may become unmanageably
large for complex programs, limiting the use of this approach.

Cause elimination method

In this approach, once a failure is observed, the symptoms of the failure
(i.e., certain variable is having a negative value though it should be
positive, etc.) are noted. Based on the failure symptoms, the causes
which could possibly have contributed to the symptom is developed and
tests are conducted to eliminate each. A related technique of
identification of the error from the error symptom is the software fault
tree analysis.

Program slicing

This technique is similar to back tracking. In the backtracking approach,
one often has to examine a large number of statements. However, the
search space is reduced by defining slices. A slice of a program for a
particular variable and at a particular statement is the set of source
lines preceding this statement that can influence the value of that
variable [Mund2002]. Program slicing makes use of the fact that an
error in the value of a variable can be caused by the statements on
which it is data dependent.

10.7.2 Debugging Guidelines

Debugging is often carried out by programmers based on their ingenuity
and experience. The following are some general guidelines for effective
debugging:

 Many times debugging requires a thorough understanding of the
program design. Trying to debug based on a partial understanding of
the program design may require an inordinate amount of effort to be
put into debugging even for simple problems.

 Debugging may sometimes even require full redesign of the system. In
such cases, a common mistakes that novice programmers often make
is attempting not to fix the error but its symptoms.

 One must be beware of the possibility that an error correction may

introduce new errors. Therefore after every round of error-fixing,
regression testing (see Section 10.13) must be carried out.

10.8 INTEGRATION TESTING

Integration testing is carried out after all (or at least some of) the modules
have been unit tested. Successful completion of unit testing, to a large
extent, ensures that the unit (or module) as a whole works satisfactorily. In
this context, the objective of integration testing is to detect the errors at the
module interfaces (call parameters). For example, it is checked that no
parameter mismatch occurs when one module invokes the functionality of
another module. Thus, the primary objective of integration testing is to test
the module interfaces, i.e., there are no errors in parameter passing, when
one module invokes the functionality of another module. During integration
testing, different modules of a system are integrated in a planned manner
using an integration plan. The integration plan specifies the steps and the
order in which modules are combined to realise the full system. After each
integration step, the partially integrated system is tested.

An important factor that guides the integration plan is the module
dependency graph.

We have already discussed in Chapter 6 that a structure chart (or module
dependency graph) specifies the order in which different modules call each
other. Thus, by examining the structure chart, the integration plan can be
developed. Any one (or a mixture) of the following approaches can be used to
develop the test plan:

 Big-bang approach to integration testing
 Top-down approach to integration testing
 Bottom-up approach to integration testing
 Mixed (also called sandwiched) approach to integration testing

In the following subsections, we provide an overview of these approaches
to integration testing.

Big-bang approach to integration testing

Big-bang testing is the most obvious approach to integration testing. In
this approach, all the modules making up a system are integrated in a
single step. In simple words, all the unit tested modules of the system
are simply linked together and tested. However, this technique can
meaningfully be used only for very small systems. The main problem

with this approach is that once a failure has been detected during
integration testing, it is very difficult to localise the error as the error
may potentially lie in any of the modules. Therefore, debugging errors
reported during big-bang integration testing are very expensive to fix.
As a result, big-bang integration testing is almost never used for large
programs.

Bottom-up approach to integration testing

Large software products are often made up of several subsystems. A
subsystem might consist of many modules which communicate among
each other through well-defined interfaces. In bottom-up integration
testing, first the modules for the each subsystem are integrated. Thus,
the subsystems can be integrated separately and independently.

The primary purpose of carrying out the integration testing a subsystem is
to test whether the interfaces among various modules making up the
subsystem work satisfactorily. The test cases must be carefully chosen to
exercise the interfaces in all possible manners.

In a pure bottom-up testing no stubs are required, and only test-drivers are
required. Large software systems normally require several levels of
subsystem testing, lower-level subsystems are successively combined to form
higher-level subsystems. The principal advantage of bottom- up integration
testing is that several disjoint subsystems can be tested simultaneously.
Another advantage of bottom-up testing is that the low-level modules get
tested thoroughly, since they are exercised in each integration step. Since the
low-level modules do I/O and other critical functions, testing the low-level
modules thoroughly increases the reliability of the system. A disadvantage of
bottom-up testing is the complexity that occurs when the system is made up
of a large number of small subsystems that are at the same level. This
extreme case corresponds to the big-bang approach.

Top-down approach to integration testing

Top-down integration testing starts with the root module in the structure
chart and one or two subordinate modules of the root module. After the
top-level ‘skeleton’ has been tested, the modules that are at the
immediately lower layer of the ‘skeleton’ are combined with it and
tested. Top-down integration testing approach requires the use of
program stubs to simulate the effect of lower-level routines that are
called by the routines under test. A pure top-down integration does not

require any driver routines. An advantage of top-down integration
testing is that it requires writing only stubs, and stubs are simpler to
write compared to drivers. A disadvantage of the top-down integration
testing approach is that in the absence of lower-level routines, it
becomes difficult to exercise the top-level routines in the desired
manner since the lower level routines usually perform input/output
(I/O) operations.

Mixed approach to integration testing

The mixed (also called sandwiched) integration testing follows a
combination of top-down and bottom-up testing approaches. In top-
down approach, testing can start only after the top-level modules have
been coded and unit tested. Similarly, bottom-up testing can start only

after the bottom level modules are ready. The mixed approach
overcomes this shortcoming of the top-down and bottom-up
approaches. In the mixed testing approach, testing can start as and
when modules become available after unit testing. Therefore, this is
one of the most commonly used integration testing approaches. In this
approach, both stubs and drivers are required to be designed.

10.8.1 Phased versus Incremental Integration Testing

Big-bang integration testing is carried out in a single step of integration.
In contrast, in the other strategies, integration is carried out over
several steps. In these later strategies, modules can be integrated
either in a phased or incremental manner. A comparison of these two
strategies is as follows:

 In incremental integration testing, only one new module is added to
the partially integrated system each time.

 In phased integration, a group of related modules are added to the
partial system each time.

Obviously, phased integration requires less number of integration steps
compared to the incremental integration approach. However, when failures
are detected, it is easier to debug the system while using the incremental
testing approach since the errors can easily be traced to the interface of the
recently integrated module. Please observe that a degenerate case of the
phased integration testing approach is big-bang testing.

10.9 TESTING OBJECT-ORIENTED PROGRAMS

During the initial years of object-oriented programming, it was believed
that object-orientation would, to a great extent, reduce the cost and
effort incurred on testing. This thinking was based on the observation
that object-orientation incorporates several good programming features
such as encapsulation, abstraction, reuse through inheritance,
polymorphism, etc., thereby chances of errors in the code is minimised.
However, it was soon realised that satisfactory testing object-oriented
programs is much more difficult and requires much more cost and effort
as compared to testing similar procedural programs. The main reason
behind this situation is that various object-oriented features introduce
additional complications and scope of new types of bugs that
arepresent in procedural programs. Therefore additional test cases are
needed to be designed to detect these. We examine these issues as
well as some other basic issues in testing object-oriented programs in
the following subsections.

10.9.1 What is a Suitable Unit for Testing

Object-oriented Programs?

For procedural programs, we had seen that procedures are the basic units of
testing. That is, first all the procedures are unit tested. Then various tested
procedures are integrated together and tested. Thus, as far as procedural
programs are concerned, procedures are the basic units of testing. Since
methods in an object-oriented program are analogous to procedures in a
procedural program, can we then consider the methods of object-oriented
programs as the basic unit of testing? Weyuker studied this issue and
postulated his anticomposition axiom as follows:

The main intuitive justification for the anticomposition axiom is the
following. A method operates in the scope of the data and other methods of
its object. That is, all the methods share the data of the class. Therefore, it is
necessary to test a method in the context of these. Moreover, objects can
have significant number of states. The behaviour of a method can be different
based on the state of the corresponding object. Therefore, it is not enough to
test all the methods and check whether they can be integrated satisfactorily.
A method has to be tested with all the other methods and data of the

Adequate testing of individual methods does not ensure that a class has been
satisfactorily tested.

corresponding object. Moreover, a method needs to be tested at all the
states that the object can assume. As a result, it is improper to consider a
method as the basic unit of testing an object-oriented program.

Thus, in an object oriented program, unit testing would mean testing each
object in isolation. During integration testing (called cluster testing in the
object-oriented testing literature) various unit tested objects are integrated
and tested. Finally, system-level testing is carried out.

10.9.2 Do Various Object-orientation Features Make
Testing Easy?

In this section, we discuss the implications of different object-orientation
features in testing.

Encapsulation: We had discussed in Chapter 7 that the encapsulation
feature helps in data abstraction, error isolation, and error prevention.
However, as far as testing is concerned, encapsulation is not an obstacle to
testing, but leads to difficulty during debugging. Encapsulation prevents the
tester from accessing the data internal to an object. Of course, it is possible
that one can require classes to support state reporting methods to print out
all the data internal to an object. Thus, the encapsulation feature though
makes testing difficult, the difficulty can be overcome to some extent through
use of appropriate state reporting methods.

Inheritance: The inheritance feature helps in code reuse and was expected
to simplify testing. It was expected that if a class is tested thoroughly, then
the classes that are derived from this class would need only incremental
testing of the added features. However, this is not the case.

The reason for this is that the inherited methods would work in a new
context (new data and method definitions). As a result, correct behaviour of a
method at an upper level, does not guarantee correct behaviour at a lower
level. Therefore, retesting of inherited methods needs to be followed as a
rule, rather as an exception.

Dynamic binding: Dynamic binding was introduced to make the code
compact, elegant, and easily extensible. However, as far as testing is
concerned all possible bindings of a method call have to be identified and
tested. This is not easy since the bindings take place at run-time.

Object states: In contrast to the procedures in a procedural program,

An object is the basic unit of testing of object-oriented programs.

objects store data permanently. As a result, objects do have significant
states. The behaviour of an object is usually different in different states. That
is, some methods may not be active in some of its states. Also, a method
may act differently in different states. For example, when a book has been
issued out in a library information system, the book reaches the issuedOut
state. In this state, if the issue method is invoked, then it may not exhibit its
normal behaviour.

In view of the discussions above, testing an object in only one of its states
is not enough. The object has to be tested at all its possible states. Also,

whether all the transitions between states (as specified in the object model)
function properly or not should be tested. Additionally, it needs to be tested
that no extra (sneak) transitions exist, neither are there extra states present
other than those defined in the state model. For state-based testing, it is
therefore beneficial to have the state model of the objects, so that the
conformance of the object to its state model can be tested.

10.9.3 Why are Traditional Techniques Considered Not
Satisfactory for Testing Object-oriented Programs?

We have already seen that in traditional procedural programs,
procedures are the basic unit of testing. In contrast, objects are the
basic unit of testing for object-oriented programs. Besides this, there
are many other significant differences as well between testing
procedural and object-oriented programs. For example, statement
coverage-based testing which is popular for testing procedural programs
is not meaningful for object-oriented programs. The reason is that
inherited methods have to be retested in the derived class. In fact, the
different object- oriented features (inheritance, polymorphism, dynamic
binding, state-based behaviour, etc.) require special test cases to be
designed compared to the traditional testing as discussed in Section

10.11.4. The various object-orientation features are explicit in the
design models, and it is usually difficult to extract from and analysis of
the source code. As a result, the design model is a valuable artifact for
testing object-oriented programs. Test cases are designed based on the
design model. Therefore, this approach is considered to be intermediate
between a fully white-box and a fully black-box approach, and is called
a grey-box approach. Please note that grey-box testing is considered
important for object-oriented programs. This is in contrast to testing
procedural programs.

10.9.4 Grey-Box Testing of Object-oriented Programs

As we have already mentioned, model-based testing is important for object-
oriented programs, as these test cases help detect bugs that are specific to
the object-orientation constructs.The following are some important types of
grey-box testing that can be carried on based on UML models:

State-model-based testing

State coverage: Each method of an object are tested at each state of
the object.

State transition coverage: It is tested whether all transitions depicted in
the state model work satisfactorily.

State transition path coverage: All transition paths in the state model are
tested.

Use case-based testing

Scenario coverage: Each use case typically consists of a mainline
scenario and several alternate scenarios. For each use case, the
mainline and all alternate sequences are tested to check if any errors
show up.

Class diagram-based testing

Testing derived classes: All derived classes of the base class have to
be instantiated and tested. In addition to testing the new methods
defined in the derivec. lass, the inherited methods must be retested.

Association testing: All association relations are tested.

Aggregation testing: Various aggregate objects are created and tested.

Sequence diagram-based testing

Method coverage: All methods depicted in the sequence diagrams are
covered. Message path coverage: All message paths that can be
constructed from the sequence diagrams are covered.

10.9.5 Integration Testing of Object-oriented Programs

There are two main approaches to integration testing of object-oriented
programs:

• Thread-based

• Use based

Thread-based approach: In this approach, all classes that need to
collaborate to realise the behaviour of a single use case are integrated and
tested. After all the required classes for a use case are integrated and tested,

another use case is taken up and other classes (if any) necessary for
execution of the second use case to run are integrated and tested. This is
continued till all use cases have been considered.

Use-based approach: Use-based integration begins by testing classes that
either need no service from other classes or need services from at most a few
other classes. After these classes have been integrated and tested, classes
that use the services from the already integrated classes are integrated and
tested. This is continued till all the classes have been integrated and tested.

10.9.6 Smoke Testing

Smoke testing is carried out before initiating system testing to ensure
that system testing would be meaningful, or whether many parts of the
software would fail. The idea behind smoke testing is that if the
integrated program cannot pass even the basic tests, it is not ready for
a vigorous testing. For smoke testing, a few test cases are designed to
check whether the basic functionalities are working. For example, for a
library automation system, the smoke tests may check whether books
can be created and deleted, whether member records can be created
and deleted, and whether books can be loaned and returned.

10.10 SOME GENERAL ISSUES ASSOCIATED WITH TESTING

In this section, we shall discuss two general issues associated with
testing. These are—how to document the results of testing and how to
perform regression testing.

Test documentation

A piece of documentation that is produced towards the end of testing is
the test summary report. This report normally covers each subsystem
and represents a summary of tests which have been applied to the
subsystem and their outcome. It normally specifies the following:

 What is the total number of tests that were applied to a subsystem.
 Out of the total number of tests how many tests were successful.
 How many were unsuccessful, and the degree to which they were
unsuccessful, e.g., whether a test was an outright failure or whether

USER INTERFACE DESIGN

9.1 CHARACTERISTICS OF A GOOD USER INTERFACE

Before we start discussing anything about how to develop user
interfaces, it is important to identify the different characteristics that
are usually desired of a good user interface. Unless we know what
exactly is expected of a good user interface, we cannot possibly design
one. In the following subsections, we identify a few important
characteristics of a good user interface:

Speed of learning: A good user interface should be easy to learn. Speed of
learning is hampered by complex syntax and semantics of the command issue
procedures. A good user interface should not require its users to memorise
commands. Neither should the user be asked to remember information from
one screen to another while performing various tasks using the interface.
Besides, the following three issues are crucial to enhance the speed of
learning:

— U s e of metaphors1 and intuitive command names: Speed of
learning an interface is greatly facilitated if these are based on some day-
to-day real-life examples or some physical objects with which the users
are familiar with. The abstractions of real-life objects or concepts used in
user interface design are called metaphors. If the user interface of a text
editor uses concepts similar to the tools used by a writer for text editing
such as cutting lines and paragraphs and pasting it at other places, users
can immediately relate to it. Another popular metaphor is a shopping cart.

— Consistency: Once, a user learns about a command, he should be able
to use the similar commands in different circumstances for carrying out
similar actions. This makes it easier to learn the interface since the user
can extend his knowledge about one part of the interface to the other
parts. Thus, the different commands supported by an interface should be
consistent.

— Component-based interface: Users can learn an interface faster if the
interaction style of the interface is very similar to the interface of other
applications with which the user is already familiar with. This can be
achieved if the interfaces of different applications are developed using
some standard user interface components. This, in fact, is the theme of
the component-based user interface discussed in Section 9.5.

The speed of learning characteristic of a user interface can be determined
by measuring the training time and practice that users require before they
can effectively use the software.

Speed of use: Speed of use of a user interface is determined by the time
and user effort necessary to initiate and execute different commands. This
characteristic of the interface is some times referred to as productivity
support of the interface. It indicates how fast the users can perform their
intended tasks. The time and user effort necessary to initiate and execute
different commands should be minimal. This can be achieved through careful
design of the interface.

Speed of recall: Once users learn how to use an interface, the speed with
which they can recall the command issue procedure should be maximised.
This characteristic is very important for intermittent users. Speed of recall is
improved if the interface is based on some metaphors, symbolic command
issue procedures, and intuitive command names.

Error prevention: A good user interface should minimise the scope of
committing errors while initiating different commands. The error rate of an
interface can be easily determined by monitoring the errors committed by an

average users while using the interface. This monitoring can be automated by
instrumenting the user interface code with monitoring code which can record
the frequency and types of user error and later display the statistics of
various kinds of errors committed by different users. Consistency of names,
issue procedures, and behaviour of similar commands and the simplicity of
the command issue procedures minimise error possibilities. Also, the interface
should prevent the user from entering wrong values.

Aesthetic and attractive: A good user interface should be attractive to use.
An attractive user interface catches user attention and fancy. In this respect,
graphics-based user interfaces have a definite advantage over text-based
interfaces.

Consistency: The commands supported by a user interface should be
consistent. The basic purpose of consistency is to allow users to generalise
the knowledge about aspects of the interface from one part to another. Thus,
consistency facilitates speed of learning, speed of recall, and also helps in
reduction of error rate

Feedback: A good user interface must provide feedback to various user
actions. Especially, if any user request takes more than few seconds to
process, the user should be informed about the state of the processing of his

request. In the absence of any response from the computer for a long time, a
novice user might even start recovery/shutdown procedures in panic. If
required, the user should be periodically informed about the progress made in
processing his command.

Support for multiple skill levels: A good user interface should support
multiple levels of sophistication of command issue procedure for different
categories of users. This is necessary because users with different levels of
experience in using an application prefer different types of user interfaces.
Experienced users are more concerned about the efficiency of the command
issue procedure, whereas novice users pay importance to usability aspects.
Very cryptic and complex commands discourage a novice, whereas elaborate
command sequences make the command issue procedure very slow and
therefore put off experienced users.

Error recovery (undo facility): While issuing commands, even the expert
users can commit errors. Therefore, a good user interface should allow a user
to undo a mistake committed by him while using the interface. Users are
inconvenienced if they cannot recover from the errors they commit while
using a software. If the users cannot recover even from very simple types of
errors, they feel irritated, helpless, and out of control.

User guidance and on-line help: Users seek guidance and on-line help
when they either forget a command or are unaware of some features of the
software. Whenever users need guidance or seek help from the system, they
should be provided with appropriate guidance and help.

9.2 TYPES OF USER INTERFACES

Broadly speaking, user interfaces can be classified into the following
three categories:

 Command language-based interfaces

 Menu-based interfaces

 Direct manipulation interfaces

Each of these categories of interfaces has its own characteristic advantages
and disadvantages. Therefore, most modern applications use a careful
combination of all these three types of user interfaces for implementing the
user command repertoire. It is very difficult to come up with a simple set of

guidelines as to which parts of the interface should be implemented using
what type of interface. This choice is to a large extent dependent on the
experience and discretion of the designer of the interface. However, a study
of the basic characteristics and the relative advantages of different types of
interfaces would give a fair idea to the designer regarding which commands
should be supported using what type of interface. In the following three
subsections, we briefly discuss some important characteristics, advantages,
and disadvantages of using each type of user interface.

9.2.1 Command Language-based Interface

A command language-based interface—as the name itself suggests, is
based on designing a command language which the user can use to
issue the commands. The user is expected to frame the appropriate
commands in the language and type them appropriately whenever
required. A simple command language-based interface might simply
assign unique names to the different commands. However, a more
sophisticated command language-based interface may allow users to
compose complex commands by using a set of primitive commands.
Such a facility to compose commands dramatically reduces the number
of command names one would have to remember. Thus, a command
language-based interface can be made concise requiring minimal typing
by the user. Command language-based interfaces allow fast interaction
with the computer and simplify the input of complex commands.

Among the three categories of interfaces, the command language interface
allows for most efficient command issue procedure requiring minimal typing.
Further, a command language-based interface can be implemented even on
cheap alphanumeric terminals. Also, a command language-based interface is
easier to develop compared to a menu-based or a direct-manipulation
interface because compiler writing techniques are well developed. One can
systematically develop a command language interface by using the standard
compiler writing tools Lex and Yacc.

However, command language-based interfaces suffer from several
drawbacks. Usually, command language-based interfaces are difficult to learn
and require the user to memorise the set of primitive commands. Also, most
users make errors while formulating commands in the command language
and also while typing them. Further, in a command language-based interface,
all interactions with the system is through a key-board and cannot take
advantage of effective interaction devices such as a mouse. Obviously, for

casual and inexperienced users, command language-based interfaces are not
suitable.

Issues in designing a command language-based interface
Two overbearing command design issues are to reduce the number of

primitive commands that a user has to remember and to minimise the
total typing required. We elaborate these considerations in the
following:

 The designer has to decide what mnemonics (command names) to use
for the different commands. The designer should try to develop
meaningful mnemonics and yet be concise to minimise the amount of
typing required. For example, the shortest mnemonic should be
assigned to the most frequently used commands.

 The designer has to decide whether the users will be allowed to
redefine the command names to suit their own preferences. Letting a
user define his own mnemonics for various commands is a useful
feature, but it increases the complexity of user interface development.

 The designer has to decide whether it should be possible to compose
primitive commands to form more complex commands. A sophisticated
command composition facility would require the syntax and semantics
of the various command composition options to be clearly and
unambiguously specified. The ability to combine commands is a
powerful facility in the hands of experienced users, but quite
unnecessary for inexperienced users.

9.2.2 Menu-based Interface

An important advantage of a menu-based interface over a command
language-based interface is that a menu-based interface does not
require the users to remember the exact syntax of the commands. A
menu-based interface is based on recognition of the command names,
rather than recollection. Humans are much better in recognising
something than recollecting it. Further, in a menu-based interface the
typing effort is minimal as most interactions are carried out through
menu selections using a pointing device. This factor is an important
consideration for the occasional user who cannot type fast.

However, experienced users find a menu-based user interface to be slower
than a command language-based interface because an experienced user can

type fast and can get speed advantage by composing different primitive
commands to express complex commands. Composing commands in a menu-
based interface is not possible. This is because of the fact that actions
involving logical connectives (and, or, etc.) are awkward to specify in a menu-
based system. Also, if the number of choices is large, it is difficult to design a
menu-based interfae. A moderate-sized software might need hundreds or
thousands of different menu choices. In fact, a major challenge in the design
of a menu-based interface is to structure large number of menu choices into
manageable forms. In the following, we discuss some of the techniques
available to structure a large number of menu items:

Scrolling menu: Sometimes the full choice list is large and cannot be
displayed within the menu area, scrolling of the menu items is required. This
would enable the user to view and select the menu items that cannot be
accommodated on the screen. However, in a scrolling menu all the
commands should be highly correlated, so that the user can easily locate a
command that he needs. This is important since the user cannot see all the
commands at any one time. An example situation where a scrolling menu is
frequently used is font size selection in a document processor (see Figure
9.1). Here, the user knows that the command list contains only the font sizes
that are arranged in some order and he can scroll up or down to find the size
he is looking for. However, if the commands do not have any definite ordering
relation, then the user would have to in the worst case, scroll through all the
commands to find the exact command he is looking for, making this
organisation inefficient.

Figure 9.1: Font size selection using scro ling menu.

Walking menu: Walking menu is very commonly used to structure a large
collection of menu items. In this technique, when a menu item is selected, it

causes further menu items to be displayed adjacent to it in a sub-menu. An
example of a walking menu is shown in Figure 9.2. A walking menu can
successfully be used to structure commands only if there are tens rather than
hundreds of choices since each adjacently displayed menu does take up
screen space and the total screen area is after all limited.

Figure 9.2: Example of walking menu.

Hierarchical menu: This type of menu is suitable for small screens with
limited display area such as that in mobile phones. In a hierarchical menu,
the menu items are organised in a hierarchy or tree structure. Selecting a
menu item causes the current menu display to be replaced by an appropriate
sub-menu. Thus in this case, one can consider the menu and its various sub-
menu to form a hierarchical tree-like structure. Walking menu can be
considered to be a form of hierarchical menu which is practicable when the
tree is shallow. Hierarchical menu can be used to manage large number of
choices, but the users are likely to face navigational problems because they
might lose track of where they are in the menu tree. This probably is the
main reason why this type of interface is very rarely used.

9.2.3 Direct Manipulation Interfaces

Direct manipulation interfaces present the interface to the user in the

form of visual models (i.e., icons 2 or objects). For this reason, direct
manipulation interfaces are sometimes called as iconic interfaces. In
this type of interface, the user issues commands by performing actions
on the visual representations of the objects, e.g., pull an icon

representing a file into an icon representing a trash box, for deleting the
file.

Important advantages of iconic interfaces include the fact that the icons can
be recognised by the users very easily, and that icons are language-
independent. However, experienced users find direct manipulation interfaces
very for too. Also, it is difficult to give complex commands using a direct
manipulation interface. For example, if one has to drag an icon representing
the file to a trash box icon for deleting a file, then in order to delete all the
files in the directory one has to perform this operation individually for all files

—which could be very easily done by issuing a command like delete *.*.

9.3 A USER INTERFACE DESIGN METHODOLOGY

At present, no step-by-step methodology is available which can be
followed by rote to come up with a good user interface. What we
present in this section is a set of recommendations which you can use
to complement your ingenuity. Even though almost all popular GUI
design methodologies are user-centered, this concept has to be clearly
distinguished from a user interface design by users. Before we start
discussing about the user interface design methodology, let us
distinguish between a user-centered design and a design by users.

 User-centered design is the theme of almost all modern user interface
design techniques. However, user-centered design does not mean
design by users. One should not get the users to design the interface,
nor should one assume that the user’s opinion of which design
alternative is superior is always right. Though users may have good
knowledge of the tasks they have to perrform using a GUI, but they
may not know the GUI design issues.

 Users have good knowledge of the tasks they have to perform, they
also know whether they find an interface easy to learn and use but
they have less understanding and experience in GUI design than the
GUI developers.

9.3.1 Implications of Human Cognition Capabilities on User
Interface Design

An area of human-computer interaction where extensive research has
been conducted is how human cognitive capabilities and limitations
influence the way an interface should be designed. In the following

subsections, we discuss some of the prominent issues that have been
extensively reported in the literature.

Limited memory: Humans can remember at most seven unrelated items of
information for short periods of time. Therefore, the GUI designer should not
require the user to remember too many items of information at a time. It is
the GUI designer’s responsibility to anticipate what information the user will
need at what point of each task and to ensure that the relevant information is
displayed for the user to see. Showing the user some information at some
point, and then asking him to recollect that information in a different screen
where they no longer see the information, places a memory burden on the

user and should be avoided wherever possible.

Frequent task closure: Doing a task (except for very trivial tasks) requires
doing several subtasks. When the system gives a clear feedback to the user
that a task has been successfully completed, the user gets a sense of
achievement and relief. The user can clear out information regarding the
completed task from memory. This is known as ta sk closure. When the
overall task is fairly big and complex, it should be divided into subtasks, each
of which has a clear subgoal which can be a closure point.

Recognition rather than recall. Information recall incurs a larger memory
burden on the users and is to be avoided as far as possible. On the other
hand, recognition of information from the alternatives shown to him is more
acceptable.

Procedural versus ob ject-oriented: Procedural designs focus on tasks,
prompting the user in each step of the task, giving them very few options for
anything else. This approach is best applied in situations where the tasks are
narrow and well-defined or where the users are inexperienced, such as a
bank ATM. An object-oriented interface on the other hand focuses on objects.
This allows the users a wide range of options.

9.3.2 A GUI Design Methodology

The GUI design methodology we present here is based on the seminal
work of Frank Ludolph [Frank1998]. Our user interface design
methodology consists of the following important steps:

• Examine the use case model of the software. Interview, discuss, and
review the GUI issues with the end-users.

 Task and object modelling.

 Metaphor selection.
 Interaction design and rough layout.

 Detailed presentation and graphics design.
 GUI construction.
 Usability evaluation.

Examining the use case model

We now elaborate the above steps in GUI design. The starting point for
GUI design is the use case model. This captures the important tasks the
users need to perform using the software. As far as possible, a user

interface should be developed using one or more metaphors. Metaphors
help in interface development at lower effort and reduced costs for
training the users. Over time, people have developed efficient methods
of dealing with some commonly occurring situations. These solutions
are the themes of the metaphors. Metaphors can also be based on
physical objects such as a visitor’s book, a catalog, a pen, a brush, a
scissor, etc. A solution based on metaphors is easily understood by the
users, reducing learning time and training costs. Some commonly used
metaphors are the following:

 White board
 Shopping cart
 Desktop
 Editor’s work bench
 White page
 Yellow page
 Office cabinet
 Post box
 Bulletin board
 Visitor’s Book

Task and ob ject modelling

A task is a human activity intended to achieve some goals. Examples of
task goals can be as follows:

 Reserve an airline seat
 Buy an item
 Transfer money from one account to another

 Book a cargo for transmission to an address

A task model is an abstract model of the structure of a task. A task model
should show the structure of the subtasks that the user needs to perform to
achieve the overall task goal. Each task can be modeled as a hierarchy of
subtasks. A task model can be drawn using a graphical notation similar to the
activity network model we discussed in Chapter 3. Tasks can be drawn as
boxes with lines showing how a task is broken down into subtasks. An
underlined task box would mean that no further decomposition of the task is
required. An example of decomposition of a task into subtasks is shown
inFigure 9.7.

Figure 9.7: Decomposition of a task into subtasks.

Identification of the user objects forms the basis of an object-based design.
A user object model is a model of business objects which the end-users
believe that they are interacting with. The objects in a library software may
be books, journals, members, etc. The objects in the supermarket automation
software may be items, bills, indents, shopping list, etc. The state diagram
for an object can be drawn using a notation similar to that used by UML (see
Section 7.8). The state diagram of an object model can be used to determine
which menu items should be dimmed in a state. An example state chart
diagram for an order object is shown in Figure 9.8.

Figure 9.8: State chart diagram for an order object.

Metaphor selection

The first place one should look for while trying to identify the candidate
metaphors is the set of parallels to objects, tasks, and terminologies of
the use cases. If no obvious metaphors can be found, then the designer
can fall back on the metaphors of the physical world of concrete
objects. The appropriateness of each candidate metaphor should be
tested by restating the objects and tasks of the user interface model in
terms of the metaphor. Another criterion that can be used to judge
metaphors is that the metaphor should be as simple as possible, the
operations using the metaphor should be clear and coherent and it
should fit with the users’ ‘common sense’ knowledge. For example, it
would indeed be very awkward and a nuisance for the users if the
scissor metaphor is used to glue different items.

Interaction design and rough layout

The interaction design involves mapping the subtasks into appropriate
controls, and other widgets such as forms, text box, etc. This involves
making a choice from a set of available components that would best

suit the subtask. Rough layout concerns how the controls, an other
widgets to be organised in windows.

Detailed presentation and graphics design

Each window should represent either an object or many objects that
have a clear relationship to each other. At one extreme, each object
view could be in its own window. But, this is likely to lead to too much
window opening, closing, moving, and resizing. At the other extreme,
all the views could be placed in one window side-by-side, resulting in a
very large window. This would force the user to move the cursor around
the window to look for different objects.

GUI construction

Some of the windows have to be defined as modal dialogs. When a
window is a modal dialog, no other windows in the application is
accessible until the current window is closed. When a modal dialog is
closed, the user is returned to the window from which the modal dialog
was invoked. Modal dialogs are commonly used when an explicit
confirmation or authorisation step is required for an action (e.g.,
confirmation of delete). Though use of modal dialogs are essential in
some situations, overuse of modal dialogs reduces user flexibility. In
particular, sequences of modal dialogs should be avoided.

User interface inspection

Nielson [Niel94] studied common usability problems and built a check list
of points which can be easily checked for an interface. The following
check list is based on the work of Nielson [Niel94]:

Visibility of the system status: The system should as far as possible keep
the user informed about the status of the system and what is going on. For
example, it should not be the case that a user gives a command and keeps
waiting, wondering whether the system has crashed and he should reboot the
system or that the results shall appear after some more time.

Match between the system and the real world: The system should
speak the user’s language with words, phrases, and concepts familiar to that
used by the user, rather than using system-oriented terms.

Undoing mistakes: The user should feel that he is in control rather than
feeling helpless or to be at the control of the system. An important step
toward this is that the users should be able to undo and redo operations.

Consistency: The users should not have to wonder whether different words,
concepts, and operations mean the same thing in different situations.

Recognition rather than recall: The user should not have to recall
information which was presented in another screen. All data and instructions
should be visible on the screen for selection by the user.

Support for multiple skill levels: Provision of accelerators for experienced
users allows them to efficiently carry out the actions they most frequently
require to perform.

Aesthetic and minimalist design: Dialogs and screens should not contain
information which are irrelevant and are rarely needed. Every extra unit of
information in a dialog or screen competes with the relevant units and
diminishes their visibility.

Help and error messages: These should be expressed in plain language
(no codes), precisely indicating the problem, and constructively suggesting a
solution.

Error prevention: Error possibilities should be minimised. A key principle in
this regard is to prevent the user from entering wrong values. In situations
where a choice has to be made from among a discrete set of values, the
control should present only the valid values using a drop-down list, a set of
option buttons or a similar multichoice control. When a specific format is
required for attribute data, the entered data should be validated when the
user attempts to submit the data.

FUNCTION-ORIENTED SOFTWARE

DESIGN

6.1 OVERVIEW OF SA/SD METHODOLOGY

As the name itself implies, SA/SD methodology involves carrying out two
distinct activities:

 Structured analysis (SA)

 Structured design (SD)

The roles of structured analysis (SA) and structured design (SD) have been
shown schematically in Figure 6.1. Observe the following from the figure:

 During structured analysis, the SRS document is transformed into a
data flow diagram (DFD) model.

 During structured design, the DFD model is transformed into a
structure chart.

Figure 6.1: Structured analysis and structured design methodology.

As shown in Figure 6.1, the structured analysis activity transforms the SRS
document into a graphic model called the DFD model. During structured
analysis, functional decomposition of the system is achieved. That is, each

function that the system needs to perform is analysed and hierarchically
decomposed into more detailed functions. On the other hand, during
structured design, all functions identified during structured analysis are
mapped to a module structure. This module structure is also called the high-
level design or the software architecture for the given problem. This is
represented using a structure chart.

The high-level design stage is normally followed by a detailed design stage.
During the detailed design stage, the algorithms and data structures for the
individual modules are designed. The detailed design can directly be
implemented as a working system using a conventional programming
language.

The results of structured analysis can therefore, be easily understood by
the user. In fact, the different functions and data in structured analysis are
named using the user’s terminology. The user can therefore even review the
results of the structured analysis to ensure that it captures all his
requirements.

In the following section, we first discuss how to carry out structured analysis
to construct the DFD model. Subsequently, we discuss how the DFD model
can be transformed into structured design.

6.2 STRUCTURED ANALYSIS

We have already mentioned that during structured analysis, the major
processing tasks (high-level functions) of the system are analysed, and
t h e data flow among these processing tasks are represented
graphically. The structured analysis technique is based on the following
underlying principles:

 Top-down decomposition approach.

 Application of divide and conquer principle. Through this each high-
level function is independently decomposed into detailed functions.

 Graphical representation of the analysis results us i ng data flow
diagrams (DFDs).

DFD representation of a problem, as we shall see shortly, is very easy to
construct. Though extremely simple, it is a very powerful tool to tackle the
complexity of industry standard problems.

Please note that a DFD model only represents the data flow aspects and
does not show the sequence of execution of the different functions and the
conditions based on which a function may or may not be executed. In fact, it
completely ignores aspects such as control flow, the specific algorithms used

It is important to understand that the purpose of structured analysis is to capture the
detailed structure of the system as perceived by the user, whereas the purpose of
structured design is to define the structure of the solution that is suitable for
implementation in some programming language.

by the functions, etc. In the DFD terminology, each function is called a
process or a bubble. It is useful to consider each function as a processing
station (or process) that consumes some input data and produces some
output data.

DFD is an elegant modelling technique that can be used not only to
represent the results of structured analysis of a software problem, but also
useful for several other applications such as showing the flow of documents
or items in an organisation.

6.2.1 Data Flow Diagrams (DFDs)

The DFD (also known as the bubble chart) is a simple graphical
formalism that can be used to represent a system in terms of the input
data to the system, various processing carried out on those data, and
the output data generated by the system. The main reason why the
DFD technique is so popular is probably because of the fact that DFD is
a very simple formalism— it is simple to understand and use. A DFD
model uses a very limited number of primitive symbols (shown in Figure
6.2) to represent the functions performed by a system and the data
flow among these functions.

Starting with a set of high-level functions that a system performs, a DFD
model represents the subfunctions performed by the functions using a
hierarchy of diagrams. We had pointed out while discussing the principle of
abstraction in Section 1.3.2 that any hierarchical representation is an

effective means to tackle complexity. Human mind is such that it can easily
understand any hierarchical model of a system—because in a hierarchical
model, starting with a very abstract model of a system, various details of the
system are slowly introduced through different levels of the hierarchy. The
DFD technique is also based on a very simple set of intuitive concepts and
rules. We now elaborate the different concepts associated with building a
DFD model of a system.

Primitive symbols used for constructing DFDs

There are essentially five different types of symbols used for constructing
DFDs. These primitive symbols are depicted in Figure 6.2. The meaning of
these symbols are explained as follows:

Figure 6.2: Symbols used for designing DFDs.

Function symbol: A function is represented using a circle. This symbol is

called a process or a bubble. Bubbles are annotated with the names of

the corresponding functions (see Figure 6.3).

External entity symbol: An external entity such as a librarian, a library
member, etc. is represented by a rectangle. The external entities are
essentially those physical entities external to the software system which
interact with the system by inputting data to the system or by consuming the
data produced by the system. In addition to the human users, the external
entity symbols can be used to represent external hardware and software such
as another application software that would interact with the software being
modelled.

Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol.
A data flow symbol represents the data flow occurring between two processes
or between an external entity and a process in the direction of the data flow
arrow. Data flow symbols are usually annotated with the corresponding data
names. For example the DFD in Figure 6.3(a) shows three data flows—the

data item number flowing from the process read-number to validate-number, data-

item flowing into read-number, and valid-number flowing out of validate-number.

Data store symbol: A data store is represented using two parallel lines. It
represents a logical file. That is, a data store symbol can represent either a
data structure or a physical file on disk. Each data store is connected to a
process by means of a data flow symbol. The direction of the data flow arrow
shows whether data is being read from or written into a data store. An arrow
flowing in or out of a data store implicitly represents the entire data of the
data store and hence arrows connecting t o a data store need not be
annotated with the name of the corresponding data items. As an example of
a data store, number is a data store in Figure 6.3(b).

Output symbol: The output symbol i s as shown in Figure 6.2. The output

symbol is used when a hard copy is produced.
The notations that we are following in this text are closer to the Yourdon’s

notations than to the other notations. You may sometimes find notations in
other books that are slightly different than those discussed here. For
example, the data store may look like a box with one end open. That is
because, they may be following notations such as those of Gane and Sarson
[1979].

Important concepts associated with constructing DFD models

Before we discuss how to construct the DFD model of a system, let us
discuss some important concepts associated with DFDs:

Synchronous and asynchronous operations

If two bubbles are directly connected by a data flow arrow, then they are
synchronous. This means that they operate at t he same speed. An
example of such an arrangement is shown in Figure 6.3(a). Here, the

validate-number bubble can start processing only after t h e read-

number bubble has supplied data to it; and the read-number bubble

has to wait until the validate-number bubble has consumed its

data.
However, if two bubbles are connected through a data store, as in Figure

6.3(b) then the speed of operation of the bubbles are independent. This
statement can be explained using the following reasoning. The data produced
by a producer bubble gets stored in the data store. It is therefore possible
that the producer bubble stores several pieces of data items, even before the

consumer bubble consumes any of them.

Figure 6.3: Synchronous and asynchronous data flow.

Data dictionary

Every DFD model of a system must be accompanied by a data dictionary. A

data dictionary lists all data items that appear in a DFD model. The data
items listed include all data flows and the contents of all data stores
appearing on all the DFDs in a DFD model. Please remember that the DFD
model of a system typically consists of several DFDs, viz., level 0 DFD, level 1
DFD, level 2 DFDs, etc., as shown in Figure 6.4 discussed in new subsection.
However, a single data dictionary should capture all the data appearing in all
the DFDs constituting the DFD model of a system.

For example, a data dictionary entry may represent that the data grossPay
consists of the components regularPay and overtimePay.

grossP ay = regularP ay + overtimeP ay

For the smallest units of data items, the data dictionary simply lists their
name and their type. Composite data items are expressed in terms of
the component data items using certain operators. The operators using
which a composite data item can be expressed in terms of its
component data items are discussed subsequently.

The dictionary plays a very important role in any software development
process, especially for the following reasons:

 A data dictionary provides a standard terminology for all relevant data
for use by the developers working in a project. A consistent vocabulary
for data items is very important, since in large projects different
developers of the project have a tendency to use different terms to
refer to the same data, which unnecessarily causes confusion.

 The data dictionary helps the developers to determine the definition of
different data structures in terms of their component elements while
implementing the design.

 The data dictionary helps to perform impact analysis. That is, it is
possible to determine the effect of some data on various processing
activities and vice versa. Such impact analysis is especially useful when
one wants to check the impact of changing an input value type, or a
bug in some functionality, etc.

For large systems, the data dictionary can become extremely complex and
voluminous. Even moderate-sized projects can have thousands of entries in

A data dictionary lists the purpose of all data items and the definition of all composite
data items in terms of their component data items.

the data dictionary. It becomes extremely di fficult to maintain a voluminous
dictionary manually. Computer-aided software engineering (CASE) tools come
handy to overcome this problem. Most CASE tools usually capture the data
items appearing in a DFD as the DFD is drawn, and automatically generate
the data dictionary. As a result, the designers do not have to spend almost
any effort in creating the data dictionary. These CASE tools also support some
query language facility to query about the definition and usage of data items.
For example, queries may be formulated to determine which data item
affects which processes, or a process affects which data items, or the
definition and usage of specific data items, etc. Query handling is facilitated
by storing the data dictionary in a relational database management system
(RDBMS).

Data definition

Composite data items can be defined in terms of primitive data items
using the following data definition operators.

+: denotes composition of two data items, e.g. a+b represents data a and b.

[,,]: represents selection, i.e. any one of the data items listed inside the

square bracket can occur For example, [a,b] represents either a occurs or b

occurs.

(): the contents inside the bracket represent optional data which may or may

not appear.

a+(b) represents either a or a+b occurs.

{}: represents iterative data definition, e.g. {name}5 represents five name data.

{name}* represents zero or more instances of name data.

=: represents equivalence, e.g. a=b+c means that a is a composite data item

comprising of both b and c.

/* */: Anything appearing within /* and */ is considered as comment.

6.3 DEVELOPING THE DFD MODEL OF A SYSTEM

A DFD model of a system graphically represents how each input data is
transformed to its corresponding output data through a hierarchy of DFDs.

The DFD model of a system i s constructed by using a hierarchy of DFDs
(see Figure 6.4). The top level DFD is called the level 0 DFD or the context
diagram. This is the most abstract (simplest) representation of the system

The DFD model of a problem consists of many of DFDs and a single data dictionary.

(highest level). It is the easiest to draw and understand. At each successive
lower level DFDs, more and more details are gradually introduced. To
develop a higher-level DFD model, processes are decomposed into their
subprocesses and the data flow among these subprocesses are identified.

To develop the data flow model of a system, first the most abstract
representation (highest level) of the problem is to be worked out.
Subsequently, the lower level DFDs are developed. Level 0 and Level 1
consist of only one DFD each. Level 2 may contain up to 7 separate DFDs,
and level 3 up to 49 DFDs, and so on. However, there is only a single data
dictionary for the entire DFD model. All the data names appearing in all DFDs
are populated in the data dictionary and the data dictionary contains the
definitions of all the data items.

6.3.1 Context Diagram

The context diagram is the most abstract (highest level) data flow
representation of a system. It represents the entire system as a single
bubble. The bubble in the context diagram is annotated with the name of the
software system being developed (usually a noun). This is the only bubble in
a DFD model, where a noun is used for naming the bubble. The bubbles at all
other levels are annotated with verbs according to the main function
performed by the bubble. This is expected since the purpose of the context
diagram is to capture the context of the system rather than its functionality.
As an example of a context diagram, consider the context diagram a software
developed to automate the book keeping activities of a supermarket (see
Figure 6.10). The context diagram has been labelled as ‘Supermarket
software’.

Figure 6.4: DFD model of a system consists of a hierarchy of DFDs and a single data dictionary.

The name context diagram of the level 0 DFD is justified because it
represents the context in which the system would exist; that is, the external
entities who would interact with the system and the specific data items that
they would be supplying the system and the data items they would be
receiving from the system. The various external entities with which the
system interacts and the data flow occurring between the system and the
external entities are represented. The data input to the system and the data
output from the system are represented as incoming and outgoing arrows.
These data flow arrows should be annotated with the corresponding data

The context diagram establishes the context in which the system operates; that is,
who are the users, what data do they input to the system, and what data they
received by the system.

names.

To develop the context diagram of the system, we have to analyse the SRS
document to identify the different types o f users who would be using the
system and the kinds of data they would be inputting to the system and the
data they would be receiving from the system. Here, the term users of the
system also includes any external systems which supply data to or receive
data from the system.

6.3.2 Level 1 DFD

The level 1 DFD usually contains three to seven bubbles. That is, the
system is represented as performing three to seven important functions.
To develop the level 1 DFD, examine the high-level functional
requirements in the SRS document. If there are three to seven high-
level functional requirements, then each of these can be directly
represented as a bubble in the level 1 DFD. Next, examine the input
data to these functions and the data output by these functions as
documented in the SRS document and represent them appropriately in
the diagram.

What if a system has more than seven high-level requirements identified in
the SRS document? In this case, some of the related requirements have to be
combined and represented as a single bubble in the level 1 DFD. These can
be split appropriately in the lower DFD levels. If a system has less than three
high-level functional requirements, then some of the high-level requirements
need to be split into their subfunctions so that we have roughly about five to
seven bubbles represented on the diagram. We illustrate construction of level
1 DFDs in Examples 6.1 to 6.4.

Decomposition

Each bubble in the DFD represents a function performed by the system.
The bubbles are decomposed into subfunctions at the successive levels
of the DFD model. Decomposition of a bubble is also known as factoring
o r exploding a bubble. Each bubble at any level of DFD is usually
decomposed to anything three to seven bubbles. A few bubbles at any
level m a k e that level superfluous. For example, if a bubble is
decomposed to just one bubble or two bubbles, then this decomposition
becomes trivial and redundant. On the other hand, too many bubbles
(i.e. more than seven bubbles) at any level o f a DFD makes the DFD
model hard to understand. Decomposition of a bubble should be carried

on until a level is reached at which the function of the bubble can be
described using a simple algorithm.

We can now describe how to go about developing the DFD model of a
system more systematically.

1. Construction of context diagram: Examine the SRS document to

determine:

• Different high-level functions that the system needs to perform.

• Data input to every high-level function.

• Data output from every high-level function.

• Interactions (data flow) among the identified high-level functions.

Represent these aspects of the high-level functions in a diagrammatic

form. This would form the top-level data flow diagram (DFD), usually

called the DFD 0.

Construction of level 1 diagram: Examine the high-level functions

described in the SRS document. If there are three to seven high-level
requirements in the SRS document, then represent each of the high-level
function in the form of a bubble. If there are more than seven bubbles,
then some of them have to be combined. If there are less than three
bubbles, then some of these have to be split.

Construction of lower-level diagrams: Decompose each high-level function

into its constituent subfunctions through the following set of activities:

• Identify the different subfunctions of the high-level function.

• Identify the data input to each of these subfunctions.

• Identify the data output from each of these subfunctions.

• Identify the interactions (data flow) among these subfunctions.

Represent these aspects in a diagrammatic form using a DFD.

Recursively repeat Step 3 for each subfunction until a subfunction can be
represented by using a simple algorithm.

Numbering of bubbles

It is necessary to number the different bubbles occurring in the DFD.
These numbers help in uniquely identifying any bubble in the DFD from
its bubble number. The bubble at the context level is usually assigned
the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1
are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is

decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this
numbering scheme, by looking at the number of a bubble we can
unambiguously determine its level, its ancestors, and its successors.

Balancing DFDs

The DFD model of a system usually consists of many DFDs that are organised
in a hierarchy. In this context, a DFD is required to be balanced with respect
to the corresponding bubble of the parent DFD.

We illustrate the concept of balancing a DFD in Figure 6.5. In the level 1
DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2
flows into the bubble 0.1 (shown by the dotted circle). In the next level,
bubble 0.1 is decomposed into three DFDs (0.1.1,0.1.2,0.1.3). The
decomposition is balanced, as d1 and d3 flow out of the level 2 diagram and
d 2 flows in. Please note that dangling arrows (d1,d2,d3) represent the data
flows into or out of a diagram.

How far to decompose?

A bubble should not be decomposed any further once a bubble is found to
represent a simple set of instructions. For simple problems, decomposition up
to level 1 should suffice. However, large industry standard problems may
need decomposition up to level 3 or level 4. Rarely, if ever, decomposition
beyond level 4 is needed.

The data that flow into or out of a bubble must match the data flow at the next level
of DFD. This is known as balancing a DFD.

Figure 6.5: An example showing balanced decomposition.

Commonly made errors while constructing a DFD model

Although DFDs are simple to understand and draw, students and
practitioners alike encounter similar types of problems while modelling
software problems using DFDs. While learning from experience is a
powerful thing, it is an expensive pedagogical technique in the business
world. It is therefore useful to understand the different types of
mistakes that beginners usually make while constructing the DFD model

of systems, so that you can consciously try to avoid them.The errors are
as follows:

 Many beginners commit the mistake of drawing more than one bubble
in the context diagram. Context diagram should depict the system as a
single bubble.

 Many beginners create DFD models in which external entities
appearing at all levels of DFDs. All external entities interacting with the
system should be represented only in the context diagram. The
external entities should not appear in the DFDs at any other level.

 It is a common oversight to have either too few or too many bubbles in
a DFD. Only three to seven bubbles per diagram should be allowed.
This also means that each bubble in a DFD should be decomposed
three to seven bubbles in the next level.

 Many beginners leave the DFDs at the different levels of a DFD model
unbalanced.

 A common mistake committed by many beginners while developing a
DFD model is attempting to represent control information in a DFD.

The following are some illustrative mistakes of trying to represent control
aspects such as:

Illustration 1. A book can be searched in the library catalog by inputting its

name. If the book is available in the library, then the details of the book are
displayed. If the book is not listed in the catalog, then an error message is
generated. While developing the DFD model for this simple problem, many
beginners commit the mistake of drawing an arrow (as shown in Figure 6.6)
to indicate that the error function is invoked after the search book. But, this is
a control information and should not be shown on the DFD.

Figure 6.6: It is incorrect to show control information on a DFD.

Illustration 2. Another type of error occurs when one tries to represent

when or in what order different functions (processes) are invoked. A
DFD similarly should not represent the conditions under which different

functions are invoked.

Illustration 3. If a bubble A invokes either the bubble B or the bubble C

It is important to realise that a DFD represents only data flow, and it does not
represent any control information.

depending upon some conditions, we need only to represent the data that

flows between bubbles A and B or bubbles A and C and not the conditions
depending on which the two modules are invoked.

 A data flow arrow should not connect two data stores or even a data
store with an external entity. Thus, data cannot flow from a data store
to another data store or to an external entity without any intervening
processing. As a result, a data store should be connected only to
bubbles through data flow arrows.

 All the functionalities of the system must be captured by the DFD
model. No function of the system specified in the SRS document of the
system should be overlooked.

 Only those functions of the system specified in the SRS document
should be represented. That is, the designer should not assume
functionality of the system not specified by the SRS document and then
try to represent them in the DFD.

 Incomplete data dictionary and data dictionary showing incorrect
composition of data items are other frequently committed mistakes.

 The data and function names must be intuitive. Some students and
even practicing developers use meaningless symbolic data names such
as a,b,c, etc. Such names hinder understanding the DFD model.

 Novices usually clutter their DFDs with too many data flow arrow. It
becomes difficult to understand a DFD if any bubble is associated with
more than seven data flows. When there are too many data flowing in
or out of a DFD, it is better to combine these data items into a high-
level data item. Figure 6.7 shows an example concerning how a DFD
can be simplified by combining several data flows into a single high-
level data flow.

Figure 6.7: Illustration of how to avoid data cluttering.

Figure 6.16: Level 1 DFD for Example 6.5.

The level 2 DFD for the manageOwnBook bubble is shown in Figure 6.17.

Figure 6.17: Level 2 DFD for Example 6.5.

6.3.3 Extending DFD Technique to Make it Applicable to Real-time

Systems

In a real-time system, some of the high-level functions are associated
with deadlines. Therefore, a function must not only produce correct
results but also should produce them by some prespecified time. For
real-time systems, execution time is an important consideration for
arriving at a correct design. Therefore, explicit representation of control
and event flow aspects are essential. One of the widely accepted
techniques for extending the DFD technique to real-time system
analysis is the Ward and Mellor technique [1985]. In the Ward and
Mellor notation, a type of process that handles only control flows is
introduced. These processes representing control processing are
denoted using dashed bubbles. Control flows are shown using dashed
lines/arrows.

Unlike Ward and Mellor, Hatley and Pirbhai [1987] show the dashed and
solid representations on separate diagrams. To be able to separate the data
processing and the control processing aspects, a control flow diagram (CFD)
is defined. This reduces the complexity of the diagrams. In order to link the
data processing and control processing diagrams, a notational reference
(solid bar) to a control specification is used. The CSPEC describes the
following:

 The effect of an external event or control signal.

 The processes that are invoked as a consequence of an event.

Control specifications represents the behavior of the system in two
different ways:

 It contains a state transition diagram (STD). The STD is a sequential
specification of behaviour.

 It contains a progra m activation table (PAT). The PAT is a
combinatorial specification of behaviour. PAT represents invocation

sequence of bubbles in a DFD.

6.4 STRUCTURED DESIGN

The aim of structured design is to transform the results of the structured
analysis (that i s, the DFD model) into a structure chart. A structure

chart represents the software architecture. The various modules making
up the system, the module dependency (i.e. which module calls which
other modules), and the parameters that are passed among the
different modules. The structure chart representation can be easily
implemented using some programming language. Since the main focus
in a structure chart representation is on module structure of a software
and the interaction among the different modules, the procedural
aspects (e.g. how a particular functionality is achieved) are not
represented.

The basic building blocks using which structure charts are designed are as
following:

Rectangular boxes: A rectangular box represents a module. Usually, every

rectangular box is annotated with the name of the module it represents.

Module invocation arrows: An arrow connecting two modules implies that

during program execution control is passed from one module to the other in
the direction of the connecting arrow. However, just by looking at the
structure chart, we cannot say whether a modules calls another module just
once or many times. Also, just by looking at the structure chart, we cannot
tell the order in which the different modules are invoked.

Data flow arrows: These are small arrows appearing alongside the module

invocation arrows. The data flow arrows are annotated with the
corresponding data name. Data flo w arrows represent the fact that the
named data passes from one module to the other in the direction of the
arrow.

Library modules: A library module is usually represented by a rectangle with

double edges. Libraries comprise the frequently called modules. Usually,

when a module is invoked by many other modules, it is made into a library
module.

Selection: The diamond symbol represents the fact that one module of several

modules connected with the diamond symbol i s invoked depending on the

outcome of the condition attached with the diamond symbol.

Repetition: A loop around the control flow arrows denotes that the respective

modules are invoked repeatedly.
In any structure chart, there should be one and only one module at the top,

called the root. There should be at most one control relationship between any
two modules in the structure chart. This means that if module A invokes
module B, module B cannot invoke module A. The main reason behind this

restriction is that we can consider the different modules of a structure chart
to be arranged in layers or levels. The principle of abstraction does not allow
lower-level modules to be aware of the existence of the high-level modules.
However, it is possible for t wo higher-level modules to invoke the same
lower-level module. An example of a properly layered design and another of a
poorly layered design are shown in Figure 6.18.

Figure 6.18: Examples of properly and poorly layered designs.

Flow chart versus structure chart

We are all familiar with the flow chart representation of a program. Flow
chart is a convenient technique to represent the flo w of control in a
program. A structure chart differs from a flow chart in three principal
ways:

 It is usually difficult to identify the different modules of a program from
its flow chart representation.

 Data interchange among different modules is not represented in a flow
chart.

 Sequential ordering of tasks that i s inherent to a flow chart is
suppressed in a structure chart.

6.4.1 Transformation of a DFD Model into Structure Chart

Systematic techniques are available to transform the DFD representation
of a problem into a module structure represented by as a structure
chart. Structured design provides two strategies to guide transformation
of a DFD into a structure chart:

 Transform analysis
 Transaction analysis

At each level of transformation, it is important to first determine whether
the transform or the transaction analysis is applicable to a particular DFD.

Transform analysis

Transform analysis identifies the primary functional components
(modules) and the input and output data for these components. The
first step in transform analysis is to divide the DFD into three types of
parts:

• Input.

• Processing.

• Output.

The input portion in the DFD includes processes that transform input data
from physical (e.g, character from terminal) to logical form (e.g. internal
tables, lists, etc.). Each input portion is called an afferent branch.

The output portion of a DFD transforms output data from logical form to
physical form. Each output portion is called an efferent branch. The remaining
portion of a DFD is called central transform.

In the next step of transform analysis, the structure chart is derived by
drawing one functional component each for the central transform, the
afferent and efferent branches. These are drawn below a root module, which
would invoke these modules.

Identifying the input and output parts requires experience and skill. One
possible approach is to trace the input data until a bubble is found whose
output data cannot be deduced from its inputs alone. Processes which
validate input are not central transforms. Processes which sort input or filter
data from it are central tansforms. T h e first level o f structure chart is
produced by representing each input and output unit as a box and each
central transform as a single box.

In the third step of transform analysis, the structure chart is refined by
adding subfunctions required by each of the high-level functional components.
Many levels of functional components may be added. This process of breaking
functional components into subcomponents is called factoring. Factoring
includes adding read and write modules, error-handling modules, initialisation
and termination process, identifying consumer modules etc. The factoring
process is continued until all bubbles in the DFD are represented in the
structure chart.

Figure 6.19: Structure chart for Example 6.6.

Transaction analysis

Transaction analysis is an alternative to transform analysis and is useful while
designing transaction processing programs. A transaction allows the user to
perform some specific type of work by using the software. For example, ‘issue
book’, ‘return book’, ‘query book’, etc., are transactions.

Figure 6.20: Structure chart for Example 6.7.

As in transform analysis, first all data entering into the DFD need to be
identified. In a transaction-driven system, different data items may pass
through different computation paths through the DFD. This is in contrast to a
transform centered system where each data item entering the DFD goes
through the same processing steps. Each different way in which input data is
processed is a transaction. A simple way to identify a transaction is the
following. Check the input data. The number of bubbles on which the input
data to the DFD are incident defines the number of transactions. However,
some transactions may not require any input data. These transactions can be
identified based on the experience gained from solving a large number of
examples.

For each identified transaction, trace the input data to the output. All the
traversed bubbles belong to the transaction. These bubbles should be
mapped to the same module on the structure chart. In the structure chart,
draw a root module and below this module draw each identified transaction
as a module. Every transaction carries a tag identifying its type. Transaction
analysis uses this tag to divide the system into transaction modules a nd a
transaction-center module.

6.5 DETAILED DESIGN

During detailed design the pseudo code description of the processing and
the different data structures are designed for the different modules of
the structure chart. These are usually described in the form of module
specifications (MSPEC). MSPEC is usually written using structured
English. The MSPEC for the non-leaf modules describe the different
conditions under which the responsibilities are delegated to the lower-
level modules. The MSPEC for the leaf-level modules should describe in
algorithmic form how the primitive processing steps are carried out. To
develop the MSPEC of a module, it is usually necessary to refer to the
DFD model and the SRS document to determine the functionality of the
module.

6.6 DESIGN REVIEW

After a design is complete, the design is required to be reviewed. The
review team usually consists of members with design, implementation,
testing, and maintenance perspectives, who may or may not be the
members of the development team. Normally, members of the team

who would code the design, and test the code, the analysts, and the
maintainers attend the review meeting. The review team checks the
design documents especially for the following aspects:

Traceability: Whether each bubble of the DFD can be traced to some module

in the structure chart a nd vice versa. They check whether each functional

requirement in the SRS document can be traced to some bubble in the DFD
model and vice versa.

Correctness: Whether all the algorithms and data structures of the detailed

design are correct.

Maintainability: Whether the design can be easily maintained in future.

Implementation: Whether the design can be easily and efficiently be

implemented.
After the points raised by the reviewers is addressed by the designers, the

design document becomes ready for implementation.

CODING AND TESTING

10.1 CODING

The input to the coding phase is the design document produced at the end of
the design phase. Please recollect that the design document contains not only
the high-level design of the system in the form of a module structure (e.g., a
structure chart), but also the detailed design. The detailed design is usually
documented in the form of module specifications where the data structures
and algorithms for each module are specified. During the coding phase,
different modules identified in the design document are coded according to
their respective module specifications. We can describe the overall objective
of the coding phase to be the following.

Normally, good software development organisations require their
programmers to adhere to some well-defined and standard style of coding
which is called their coding standard. These software development
organisations formulate their own coding standards that suit them the most,
and require their developers to follow the standards rigorously because of the
significant business advantages it offers. The main advantages of adhering to
a standard style of coding are the following:

 A coding standard gives a uniform appearance to the codes written by
different engineers.

 It facilitates code understanding and code reuse.

 It promotes good programming practices.

A coding standard lists several rules to be followed during coding, such as
the way variables are to be named, the way the code is to be laid out, the
error return conventions, etc. Besides the coding standards, several coding
guidelines are also prescribed by software companies. But, what is the
difference between a coding guideline and a coding standard?

After a module has been coded, usually code review is carried out to ensure
that the coding standards are followed and also to detect as many errors as
possible before testing. It is important to detect as many errors as possible

The objective of the coding phase is to transform the design of a system into code in
a high-level language, and then to unit test this code.

during code reviews, because reviews are an efficient way of removing errors
from code as compared to defect elimination using testing. We first discuss a
few representative coding standards and guidelines.

10.2 CODE REVIEW

Testing is an effective defect removal mechanism. However, testing is
applicable to only executable code. Review is a very effective technique
to remove defects from source code. In fact, review has been
acknowledged to be more cost-effective in removing defects as
compared to testing. Over the years, review techniques have become
extremely popular and have been generalised for use with other work
products.

Code review for a module is undertaken after the module successfully
compiles. That is, all the syntax errors have been eliminated from the
module. Obviously, code review does not target to design syntax errors in a
program, but is designed to detect logical, algorithmic, and programming
errors. Code review has been recognised as an extremely cost-effective
strategy for eliminating coding errors and for producing high quality code.

The reason behind why code review is a much more cost-effective strategy
to eliminate errors from code compared to testing is that reviews directly
detect errors. On the other hand, testing only helps detect failures and
significant effort is needed to locate the error during debugging.

The rationale behind the above statement is explained as follows.
Eliminating an error from code involves three main activities—testing,
debugging, and then correcting the errors. Testing is carried out to detect if

the system fails to work satisfactorily for certain types of inputs and under
certain circumstances. Once a failure is detected, debugging is carried out to
locate the error that is causing the failure and to remove it. Of the three

testing activities, debugging is possibly the most laborious and time
consuming activity. In code inspection, errors are directly detected, thereby

saving the significant effort that would have been required to locate the error.

Normally, the following two types of reviews are carried out on the code of
a module:

 Code inspection.

 Code walkthrough.

The procedures for conduction and the final objectives of these two review
techniques are very different. In the following two subsections, we discuss

these two code review techniques.

10.2.1 Code Walkthrough

Code walkthrough is an informal code analysis technique. In this technique,
a module is taken up for review after the module has been coded,
successfully compiled, and all syntax errors have been eliminated. A few
members of the development team are given the code a couple of days
before the walkthrough meeting. Each member selects some test cases and
simulates execution of the code by hand (i.e., traces the execution through
different statements and functions of the code).

The members note down their findings of their walkthrough and discuss
those in a walkthrough meeting where the coder of the module is present.

Even though code walkthrough is an informal analysis technique, several
guidelines have evolved over the years for making this naive but useful
analysis technique more effective. These guidelines are based on personal
experience, common sense, several other subjective factors. Therefore, these
guidelines should be considered as examples rather than as accepted rules to
be applied dogmatically. Some of these guidelines are following:

 The team performing code walkthrough should not be either too big or
too small. Ideally, it should consist of between three to seven
members.

 Discussions should focus on discovery of errors and avoid deliberations
on how to fix the discovered errors.

 In order to foster co-operation and to avoid the feeling among the
engineers that they are being watched and evaluated in the code
walkthrough meetings, managers should not attend the walkthrough
meetings.

10.2.2 Code Inspection

During code inspection, the code is examined for the presence of some
common programming errors. This is in contrast to the hand simulation of
code execution carried out during code walkthroughs. We can state the
principal aim of the code inspection to be the following:

The inspection process has several beneficial side effects, other than
finding errors. The programmer usually receives feedback on programming
style, choice of algorithm, and programming techniques. The other
participants gain by being exposed to another programmer’s errors.

As an example of the type of errors detected during code inspection,
consider the classic error of writing a procedure that modifies a formal
parameter and then calls it with a constant actual parameter. It is more lik ely
that such an error can be discovered by specifically looking for this kinds of
mistakes in the code, rather than by simply hand simulating execution of the
code. In addition to the commonly made errors, adherence to coding
standards is also checked during code inspection.

Good software development companies collect statistics regarding different
types of errors that are commonly committed by their engineers and identify
the types of errors most frequently committed. Such a list of commonly
committed errors can be used as a checklist during code inspection to look
out for possible errors.

Following is a list of some classical programming errors which can be
checked during code inspection:

 Use of uninitialised variables.
 Jumps into loops.
 Non-terminating loops.

 Incompatible assignments.
 Array indices out of bounds.
 Improper storage allocation and deallocation.
 Mismatch between actual and formal parameter in procedure calls.

 Use of incorrect logical operators or incorrect precedence among
operators.

 Improper modification of loop variables.
 Comparison of equality of floating point values.

 Dangling reference caused when the referenced memory has not been
allocated.

10.2.3 Clean Room Testing

Clean room testing was pioneered at IBM. This type of testing relies

heavily on walkthroughs, inspection, and formal verification. The
programmers are not allowed to test any of their code by executing the
code other than doing some syntax testing using a compiler. It is
interesting to note that the term cleanroom was first coined at IBM by
drawing analogy to the semiconductor fabrication units where defects
are avoided by manufacturing in an ultra-clean atmosphere.

This technique reportedly produces documentation and code that is more
reliable and maintainable than other development methods relying heavily on
code execution-based testing. The main problem with this approach is that
testing effort is increased as walkthroughs, inspection, and verification are
time consuming for detecting all simple errors. Also testing- based error
detection is efficient for detecting certain errors that escape manual
inspection.

10.3 SOFTWARE DOCUMENTATION

When a software is developed, in addition to the executable files and the
source code, several kinds of documents such as users’ manual,
software requirements specification (SRS) document, design document,
test document, installation manual, etc., are developed as part of the
software engineering process. All these documents are considered a
vital part of any good software development practice. Good documents
are helpful in the following ways:

 Good documents help enhance understandability of code. As a result,
the availability of good documents help to reduce the effort and time
required for maintenance.

 Documents help the users to understand and effectively use the
system.

 Good documents help to effectively tackle the manpower turnover1

problem. Even when an engineer leaves the organisation, and a new
engineer comes in, he can build up the required knowledge easily by
referring to the documents.

 Production of good documents helps the manager to effectively track
the progress of the project. The project manager would know that
some measurable progress has been achieved, if the results of some
pieces of work has been documented and the same has been
reviewed.

Different types of software documents can broadly be classified into the
following:

We discuss these two types of documentation in the next section.

10.3.1 Internal Documentation

Internal documentation is the code comprehension features provided in
the source code itself. Internal documentation can be provided in the
code in several forms. The important types of internal documentation
are the following:

 Comments embedded in the source code.
 Use of meaningful variable names.
 Module and function headers.
 Code indentation.
 Code structuring (i.e., code decomposed into modules and functions).
 Use of enumerated types.
 Use of constant identifiers.
 Use of user-defined data types.

Out of these different types of internal documentation, which one is the
most valuable for understanding a piece of code?

The above assertion, of course, is in contrast to the common expectation
that code commenting would be the most useful. The research finding is
obviously true when comments are written without much thought. For
example, the following style of code commenting is not much of a help in
understanding the code.

a=10; /* a made 10 */

A good style of code commenting is to write to clarify certain non-obvious
aspects of the working of the code, rather than cluttering the code with trivial
comments. Good software development organisations usually ensure good
internal documentation by appropriately formulating their coding standards

Internal documentation: These are provided in the source code itself.

External documentation: These are the supporting documents such as SRS
document, installation document, user manual, design document, and test document.

and coding guidelines. Even when a piece of code is carefully commented,
meaningful variable names has been found to be the most helpful in
understanding the code.

10.3.2 External Documentation

External documentation is provided through various types of supporting
documents such as users’ manual, software requirements specification
document, design document, test document, etc. A systematic software
development style ensures that all these documents are of good quality
and are produced in an orderly fashion.

An important feature that is requierd of any good external documentation is
consistency with the code. If the different documents are not consistent, a lot
of confusion is created for somebody trying to understand the software. In
other words, all the documents developed for a product should be up-to-date
and every change made to the code should be reflected in the relevant
external documents. Even if only a few documents are not up-to-date, they
create inconsistency and lead to confusion. Another important feature
required for external documents is proper understandability by the category
of users for whom the document is designed. For achieving this, Gunning’s fog
index is very useful. We discuss this next.

Gunning’s fog index

Gunning’s fog index (developed by Robert Gunning in 1952) is a metric
that has been designed to measure the readability of a document. The
computed metric value (fog index) of a document indicates the number
of years of formal education that a person should have, in order to be
able to comfortably understand that document. That is, if a certain
document has a fog index of 12, any one who has completed his 12th
class would not have much difficulty in understanding that document.

The Gunning’s fog index of a document D can be computed as follows:

Observe that the fog index is computed as the sum of two different factors.
The first factor computes the average number of words per sentence (total
number of words in the document divided by the total number of sentences).
This factor therefore accounts for the common observation that long
sentences are difficult to understand. The second factor measures the
percentage of complex words in the document. Note that a syllable is a group

o f words that can be independently pronounced. For example, the word
“sentence” has three syllables (“sen”, “ten”, and “ce”). Words having more
than three syllables are complex words and presence of many such words
hamper readability of a document.

10.4 TESTING

The aim of program testing is to help realize identify all defects in a
program. However, in practice, even after satisfactory completion of the
testing phase, it is not possible to guarantee that a program is error
free. This is because the input data domain of most programs is very
large, and it is not practical to test the program exhaustively with
respect to each value that the input can assume. Consider a function
taking a floating point number as argument. If a tester takes 1sec to
type in a value, then even a million testers would not be able to
exhaustively test it after trying for a million number of years. Even with
this obvious limitation of the testing process, we should not
underestimate the importance of testing. We must remember that
careful testing can expose a large percentage of the defects existing in
a program, and therefore provides a practical way of reducing defects in
a system.

10.4.1 Basic Concepts and Terminologies

In this section, we will discuss a few basic concepts in program testing
on which our subsequent discussions on program testing would be
based.

How to test a program?

Testing a program involves executing the program with a set of test
inputs and observing if the program behaves as expected. If the
program fails to behave as expected, then the input data and the
conditions under which it fails are noted for later debugging and error
correction. A highly simplified view of program testing is schematically
shown in Figure 10.1. The tester has been shown as a stick icon, who
inputs several test data to the system and observes the outputs
produced by it to check if the system fails on some specific inputs.
Unless the conditions under which a software fails are noted down, it
becomes difficult for the developers to reproduce a failure observed by
the testers. For examples, a software might fail for a test case only

when a network connection is enabled.

Terminologies

Figure 10.1: A simplified view of program testing.

As is true for any specialised domain, the area of software testing has
come to be associated with its own set of terminologies. In the
following, we discuss a few important terminologies that have been
standardised by the IEEE Standard Glossary of Software Engineering
Terminology [IEEE90]:

 A mistake is essentially any programmer action that later shows up as
an incorrect result during program execution. A programmer may
commit a mistake in almost any development activity. For example,
during coding a programmer might commit the mistake of not
initializing a certain variable, or might overlook the errors that might
arise in some exceptional situations such as division by zero in an
arithmetic operation. Both these mistakes can lead to an incorrect
result.

 An error is the result of a mistake committed by a developer in any of
the development activities. Among the extremely large variety of
errors that can exist in a program. One example of an error is a call
made to a wrong function.

Though the terms error, fault, bug, and defect are all used interchangeably
by the program testing community. Please note that in the domain of
hardware testing, the term fault is used with a slightly different connotation
[IEEE90] as compared to the terms error and bug.

Verification versus validation

The objectives of both verification and validation techniques are very
similar since both these techniques are designed to help remove errors
in a software. In spite of the apparent similarity between their
objectives, the underlying principles of these two bug detection
techniques and their applicability are very different. We summarise the
main differences between these two techniques in the following:

 Verification is the process of determining whether the output of one
phase of software development conforms to that of its previous phase;
whereas validation is the process of determining whether a fully
developed software conforms to its requirements specification. Thus,
the objective of verification is to check if the work products produced
after a phase conform to that which was input to the phase. For
example, a verification step can be to check if the design documents
produced after the design step conform to the requirements
specification. On the other hand, validation is applied to the fully
developed and integrated software to check if it satisfies the
customer’s requirements.

 The primary techniques used for verification include review, simulation,
formal verification, and testing. Review, simulation, and testing are
usually considered as informal verification techniques. Formal
verification usually involves use of theorem proving techniques or use
of automated tools such as a model checker. On the other hand,
validation techniques are primarily based on product testing. Note that
we have categorised testing both under program verification and
validation. The reason being that unit and integration testing can be
considered as verification steps where it is verified whether the code is
a s per the module and module interface specifications. On the other
hand, system testing can be considered as a validation step where it is
determined whether the fully developed code is as per its requirements
specification.

 Verification does not require execution of the software, whereas

validation requires execution of the software.

 Verification is carried out during the development process to check if
the development activities are proceeding alright, whereas validation is
carried out to check if the right as required by the customer has been
developed.

10.4.2 Testing Activities

Testing involves performing the following main activities:

Test suite design: The set of test cases using which a program is to be
tested is designed possibly using several test case design techniques. We
discuss a few important test case design techniques later in this Chapter.

Running test cases and checking the results to detect failures: Each
test case is run and the results are compared with the expected results. A
mismatch between the actual result and expected results indicates a failure.
The test cases for which the system fails are noted down for later debugging.

Locate error: In this activity, the failure symptoms are analysed to locate
the errors. For each failure observed during the previous activity, the
statements that are in error are identified.

Error correction: After the error is located during debugging, the code is
appropriately changed to correct the error.

The testing activities have been shown schematically in Figure 10.2. As can
be seen, the test cases are first designed, the test cases are run to detect
failures. The bugs causing the failure are identified through debugging, and
the identified error is corrected.Of all the above mentioned testing activities,
debugging often turns out to be the most time-consuming activity.

Figure 10.2: Testing process.

10.4.3 Why Design Test Cases?

Before discussing the various test case design techniques, we need to
convince ourselves on the following question. Would it not be sufficient to
test a software using a large number of random input values? Why design
test cases? The answer to this question—this would be very costly and at the
same time very ineffective way of testing due to the following reasons:

There are essentially two main approaches to systematically design test
cases:

 Black-box approach
 White-box (or glass-box) approach

In the black-box approach, test cases are designed using only the functional
specification of the software. That is, test cases are designed solely based on
an analysis of the input/out behaviour (that is, functional behaviour) and
does not require any knowledge of the internal structure of a program. For
this reason, black-box testing is also known as functional testing. On the
other hand, designing white-box test cases requires a thorough knowledge of
the internal structure of a program, and therefore white-box testing is also
called structural testing. Black- box test cases are designed solely based on
the input-output behaviour of a program. In contrast, white-box test cases
are based on an analysis of the code. These two approaches to test case
design are complementary. That is, a program has to be tested using the test
cases designed by both the approaches, and one testing using one approach
does not substitute testing using the other.

10.4.4 Testing in the Large versus Testing in the Small

A software product is normally tested in three levels or stages:

 Unit testing
 Integration testing
 System testing

During unit testing, the individual functions (or units) of a program are
tested.

After testing all the units individually, the units are slowly integrated and
tested after each step of integration (integration testing). Finally, the fully

integrated system is tested (system testing). Integration and system testing
are known as testing in the large.

Often beginners ask the question—“Why test each module (unit) in
isolation first, then integrate these modules and test, and again test the
integrated set of modules—why not just test the integrated set of modules
once thoroughly?” The answer to this question is the following—There are
two main reasons to it. First while testing a module, other modules with
which this module needs to interface may not be ready. Moreover, it is
always a good idea to first test the module in isolation before integration
because it makes debugging easier. If a failure is detected when an
integrated set of modules is being tested, it would be difficult to determine
which module exactly has the error.

10.5 BLACK-BOX TESTING

In black-box testing, test cases are designed from an examination of the
input/output values only and no knowledge of design or code is
required. The following are the two main approaches available to
design black box test cases:

 Equivalence class partitioning
 Boundary value analysis

In the following subsections, we will elaborate these two test case
design techniques.

10.5.1 Equivalence Class Partitioning

In the equivalence class partitioning approach, the domain of input values to
the program under test is partitioned into a set of equivalence classes. The
partitioning is done such that for every input data belonging to the same
equivalence class, the program behaves similarly.

Equivalence classes for a unit under test can be designed by examining the
input data and output data. The following are two general guidelines for
designing the equivalence classes:

1. If the input data values to a system can be specified by a range of
values, then one valid and two invalid equivalence classes need to be
defined. For example, if the equivalence class is the set of integers in

the range 1 to 10 (i.e., [1,10]), then the invalid equivalence classes
are [−∞,0], [11,+∞].

2. If the input data assumes values from a set of discrete members of
some domain, then one equivalence class for the valid input values
and another equivalence class for the invalid input values should be
defined. For example, if the valid equivalence classes are {A,B,C},
then the invalid equivalence class is □-{A,B,C}, where □ is the
universe of possible input values.

In the following, we illustrate equivalence class partitioning-based test case
generation through four examples.

Figure 10.4: Equivalence classes for Example 10.6.

10.5.2 Boundary Value Analysis

A type of programming error that is frequently committed by programmers is
missing out on the special consideration that should be given to the values at
the boundaries of different equivalence classes of inputs. The reason behind
programmers committing such errors might purely be due to psychological
factors. Programmers often fail to properly address the special processing
required by the input values that lie at the boundary of the different
equivalence classes. For example, programmers may improperly use <
instead of <=, or conversely <= for <, etc.

To design boundary value test cases, it is required to examine the

Boundary value analysis-based test suite design involves designing test cases using
the values at the boundaries of different equivalence classes.

equivalence classes to check if any of the equivalence classes contains a
range of values. For those equivalence classes that are not a range of
values(i.e., consist of a discrete collection of values) no boundary value test
cases can be defined. For an equivalence class that is a range of values, the
boundary values need to be included in the test suite. For example, if an
equivalence class contains the integers in the range 1 to 10, then the
boundary value test suite is {0,1,10,11}.

10.5.3 Summary of the Black-box Test Suite Design
Approach

We now summarise the important steps in the black-box test suite
design approach:

 Examine the input and output values of the program.
 Identify the equivalence classes.
 Design equivalence class test cases by picking one representative

value from each equivalence class.

 Design the boundary value test cases as follows. Examine if any
equivalence class is a range of values. Include the values at the
boundaries of such equivalence classes in the test suite.

The strategy for black-box testing is intuitive and simple. For black-box
testing, the most important step is the identification of the equivalence
classes. Often, the identification of the equivalence classes is not
straightforward. However, with little practice one would be able to identify all
equivalence classes in the input data domain. Without practice, one may
overlook many equivalence classes in the input data set. Once the
equivalence classes are identified, the equivalence class and boundary value
test cases can be selected almost mechanically.

10.6 WHITE-BOX TESTING

White-box testing is an important type of unit testing. A large number of
white-box testing strategies exist. Each testing strategy essentially
designs test cases based on analysis of some aspect of source code and
is based on some heuristic. We first discuss some basic concepts
associated with white-box testing, and follow it up with a discussion on
specific testing strategies.

10.6.1 Basic Concepts

A white-box testing strategy can either be coverage-based or fault-
based.

Fault-based testing

A fault-based testing strategy targets to detect certain types of faults.
These faults that a test strategy focuses on constitutes the fault
model of the strategy. An example of a fault-based strategy is
mutation testing, which is discussed later in this section.

Coverage-based testing

A coverage-based testing strategy attempts to execute (or cover) certain
elements of a program. Popular examples of coverage-based testing
strategies are statement coverage, branch coverage, multiple condition
coverage, and path coverage-based testing.

Testing criterion for coverage-based testing

A coverage-based testing strategy typically targets to execute (i.e., cover)
certain program elements for discovering failures.

For example, if a testing strategy requires all the statements of a program
to be executed at least once, then we say that the testing criterion of the
strategy is statement coverage. We say that a test suite is adequate with
respect to a criterion, if it covers all elements of the domain defined by that
criterion.

Stronger versus weaker testing

We have mentioned that a large number of white-box testing strategies have
been proposed. It therefore becomes necessary to compare the effectiveness
of different testing strategies in detecting faults. We can compare two testing
strategies by determining whether one is stronger, weaker, or
complementary to the other.

The set of specific program elements that a testing strategy targets to execute is
called the testing criterion of the strategy.

A white-box testing strategy is said to be stronger than another strategy, if the
stronger testing strategy covers all program elements covered by the weaker testing
strategy, and the stronger strategy additionally covers at least one program element
that is not covered by the weaker strategy.

When none of two testing strategies fully covers the program elements
exercised by the other, then the two are called complementary testing
strategies. The concepts of stronger, weaker, and complementary testing are
schematically illustrated in Figure 10.6. Observe in Figure 10.6(a) that testing
strategy A is stronger than B since B covers only a proper subset of elements
covered by B. On the other hand, Figure 10.6(b) shows A and B are
complementary testing strategies since some elements of A are not covered
by B and vice versa.

10.6.2 Statement Coverage

The statement coverage strategy aims to design test cases so as to execute
every statement in a program at least once.

It is obvious that without executing a statement, it is difficult to determine
whether it causes a failure due to illegal memory access, wrong result
computation due to improper arithmetic operation, etc. It can however be
pointed out that a weakness of the statement- coverage strategy is that
executing a statement once and observing that it behaves properly for one
input value is no guarantee that it will behave correctly for all input values.
Never the less, statement coverage is a very intuitive and appealing testing
technique. In the following, we illustrate a test suite that achieves statement
coverage.

10.6.3 Branch Coverage

A test suite satisfies branch coverage, if it makes each branch condition
in the program to assume true and false values in turn. In other words,
for branch coverage each branch in the CFG representation of the
program must be taken at least once, when the test suite is executed.
Branch testing is also known as edge testing, since in this testing
scheme, each edge of a program’s control flow graph is traversed at
least once.

If a stronger testing has been performed, then a weaker testing need not be carried
out.

10.6.4 Multiple Condition Coverage

In the multiple condition (MC) coverage-based testing, test cases are
designed to make each component of a composite conditional
expression to assume both true and false values. For example, consider
the composite conditional expression ((c1 .and.c2).or.c3). A test suite

would achieve MC coverage, if all the component conditions c1, c2 and

c3 are each made to assume both true and false values. Branch testing

can be considered to be a simplistic condition testing strategy where
only the compound conditions appearing in the different branch
statements are made to assume the true and false values. It is easy to
prove that condition testing is a stronger testing strategy than branch
testing. For a composite conditional expression of n components, 2n
test cases are required for multiple condition coverage. Thus, for
multiple condition coverage, the number of test cases increases
exponentially with the number of component conditions. Therefore,
multiple condition coverage-based testing technique is practical only if n
(the number of conditions) is small.

10.6.5 Path Coverage

A test suite achieves path coverage if it exeutes each linearly
independent paths (o r basis paths) at least once. A linearly
independent path can be defined in terms of the control flow graph
(CFG) of a program. Therefore, to understand path coverage-based
testing strategy, we need to first understand how the CFG of a program
can be drawn.

Control flow graph (CFG)

A control flow graph describes how the control flows through the program.
We can define a control flow graph as the following:

In order to draw the control flow graph of a program, we need to first
number all the statements of a program. The different numbered statements
serve as nodes of the control flow graph (see Figure 10.5). There exists an
edge from one node to another, if the execution of the statement
representing the first node can result in the transfer of control to the other

A control flow graph describes the sequence in which the different instructions of a
program get executed.

node.

More formally, we can define a CFG as follows. A CFG is a directed graph
consisting of a set of nodes and edges (N, E), such that each node n ◻ N

corresponds to a unique program statement and an edge exists between two
nodes if control can transfer from one node to the other.

10.6.6 McCabe’s Cyclomatic Complexity Metric

McCabe obtained his results by applying graph-theoretic techniques to
the control flow graph ofa program. McCabe’s cyclomatic complexity
defines an upper bound on the number of independent paths in a
program. We discuss three different ways to compute the cyclomatic
complexity. For structured programs, the results computed by all the
three methods are guaranteed to agree.

How is path testing carried out by using computed
McCabe’s cyclomatic metric value?

Knowing the number of basis paths in a program does not make it any
easier to design test cases for path coverage, only it gives an indication
of the minimum number of test cases required for path coverage. For
the CFG of a moderately complex program segment of say 20 nodes
and 25 edges, you may need several days of effort to identify all the
linearly independent paths in it and to design the test cases. It is
therefore impractical to require the test designers to identify all the
linearly independent paths in a code, and then design the test cases to
force execution along each of the identified paths. In practice, for path
testing, usually the tester keeps on forming test cases with random
data and executes those until the required coverage is achieved. A
testing tool such as a dynamic program analyser (see Section 10.8.2) is
used to determine the percentage of linearly independent paths
covered by the test cases that have been executed so far. If the
percentage of linearly independent paths covered is below 90 per cent,
more test cases (with random inputs) are added to increase the path
coverage. Normally, it is not practical to target achievement of 100 per
cent path coverage, since, the McCabe’s metric is only an upper bound
and does not give the exact number of paths.

Steps to carry out path coverage-based testing

The following is the sequence of steps that need to be undertaken for
deriving the path coverage-based test cases for a program:

1. Draw control flow graph for the program.
2. Determine the McCabe’s metric V(G).

3. Determine the cyclomatic complexity. This gives the minimum number
of test cases required to achieve path coverage.

4. Repeat Test using a randomly designed set of test cases.
Perform dynamic analysis to check the path coverage achieved.
until at least 90 per cent path coverage is achieved.

10.6.7 Data Flow-based Testing

Data flow based testing method selects test paths of a program

according to the definitions and uses of different variables in a program.

Consider a program P . For a statement numbered S of P , let

DEF(S) = {X /statement S contains a definition of X } and

USES(S)= {X /statement S contains a use of X }

For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}. The definition
of variable X at statement S is said to be live at statement S1 , if there exists
a path from statement S to statement S1 which does not contain any
definition of X .

All definitions criterion is a test coverage criterion that requires that an
adequate test set should cover all definition occurrences in the sense that, for
each definition occurrence, the testing paths should cover a path through
which the definition reaches a use of the definition. All use criterion requires
that all uses of a definition should be covered. Clearly, all-uses criterion is
stronger than all-definitions criterion. An even stronger criterion is all
definition-use-paths criterion, which requires the coverage of all possible
definition-use paths that either are cycle-free or have only simple cycles. A
simple cycle is a path in which only the end node and the start node are the
same.

10.6.8 Mutation Testing

All white-box testing strategies that we have discussed so far, are
coverage-based testing techniques. In contrast, mutation testing is a
fault-based testing technique in the sense that mutation test cases are
designed to help detect specific types of faults in a program. In
mutation testing, a program is first tested by using an initial test suite
designed by using various white box testing strategies that we have
discussed. After the initial testing is complete, mutation testing can be
taken up.

The idea behind mutation testing is to make a few arbitrary changes to a
program at a time. Each time the program is changed, it is called a mutated

program and the change effected is called a mutant. An underlying
assumption behind mutation testing is that all programming errors can be

expressed as a combination of simple errors. A mutation operator makes
specific changes to a program. For example, one mutation operator may
randomly delete a program statement. A mutant may or may not cause an
error in the program. If a mutant does not introduce any error in the program,
then the original program and the mutated program are called equivalent
programs.

10.7 DEBUGGING

After a failure has been detected, it is necessary to first identify the
program statement(s) that are in error and are responsible for the
failure, the error can then be fixed. In this Section, we shall summarise
the important approaches that are available to identify the error
locations. Each of these approaches has its own advantages
anddisadvantages and therefore each will be useful in appropriate
circumstances. We also provide some guidelines for effective
debugging.

10.7.1 Debugging Approaches

The following are some of the approaches that are popularly adopted by
the programmers for debugging:

Brute force method

This is the most common method of debugging but is the least efficient
method. In this approach, print statements are inserted throughout the
program to print the intermediate values with the hope that some of
the printed values will help to identify the statement in error. This
approach becomes more systematic with the use of a symbolic
debugger (also called a source code debugger), because values of
different variables can be easily checked and break points and watch
points can be easily set to test the values of variables effortlessly.
Single stepping using a symbolic debugger is another form of this
approach, where the developer mentally computes the expected result
after every source instruction and checks whether the same is
computed by single stepping through the program.

Backtracking

This is also a fairly common approach. In this approach, starting from the
statement at which an error symptom has been observed, the source
code is traced backwards until the error is discovered. Unfortunately, as
the number of source lines to be traced back increases, the number of
potential backward paths increases and may become unmanageably
large for complex programs, limiting the use of this approach.

Cause elimination method

In this approach, once a failure is observed, the symptoms of the failure
(i.e., certain variable is having a negative value though it should be
positive, etc.) are noted. Based on the failure symptoms, the causes
which could possibly have contributed to the symptom is developed and
tests are conducted to eliminate each. A related technique of
identification of the error from the error symptom is the software fault
tree analysis.

Program slicing

This technique is similar to back tracking. In the backtracking approach,
one often has to examine a large number of statements. However, the
search space is reduced by defining slices. A slice of a program for a
particular variable and at a particular statement is the set of source
lines preceding this statement that can influence the value of that
variable [Mund2002]. Program slicing makes use of the fact that an
error in the value of a variable can be caused by the statements on
which it is data dependent.

10.7.2 Debugging Guidelines

Debugging is often carried out by programmers based on their ingenuity
and experience. The following are some general guidelines for effective
debugging:

 Many times debugging requires a thorough understanding of the
program design. Trying to debug based on a partial understanding of
the program design may require an inordinate amount of effort to be
put into debugging even for simple problems.

 Debugging may sometimes even require full redesign of the system. In
such cases, a common mistakes that novice programmers often make
is attempting not to fix the error but its symptoms.

 One must be beware of the possibility that an error correction may

introduce new errors. Therefore after every round of error-fixing,
regression testing (see Section 10.13) must be carried out.

10.8 INTEGRATION TESTING

Integration testing is carried out after all (or at least some of) the modules
have been unit tested. Successful completion of unit testing, to a large
extent, ensures that the unit (or module) as a whole works satisfactorily. In
this context, the objective of integration testing is to detect the errors at the
module interfaces (call parameters). For example, it is checked that no
parameter mismatch occurs when one module invokes the functionality of
another module. Thus, the primary objective of integration testing is to test
the module interfaces, i.e., there are no errors in parameter passing, when
one module invokes the functionality of another module. During integration
testing, different modules of a system are integrated in a planned manner
using an integration plan. The integration plan specifies the steps and the
order in which modules are combined to realise the full system. After each
integration step, the partially integrated system is tested.

An important factor that guides the integration plan is the module
dependency graph.

We have already discussed in Chapter 6 that a structure chart (or module
dependency graph) specifies the order in which different modules call each
other. Thus, by examining the structure chart, the integration plan can be
developed. Any one (or a mixture) of the following approaches can be used to
develop the test plan:

 Big-bang approach to integration testing
 Top-down approach to integration testing
 Bottom-up approach to integration testing
 Mixed (also called sandwiched) approach to integration testing

In the following subsections, we provide an overview of these approaches
to integration testing.

Big-bang approach to integration testing

Big-bang testing is the most obvious approach to integration testing. In
this approach, all the modules making up a system are integrated in a
single step. In simple words, all the unit tested modules of the system
are simply linked together and tested. However, this technique can
meaningfully be used only for very small systems. The main problem

with this approach is that once a failure has been detected during
integration testing, it is very difficult to localise the error as the error
may potentially lie in any of the modules. Therefore, debugging errors
reported during big-bang integration testing are very expensive to fix.
As a result, big-bang integration testing is almost never used for large
programs.

Bottom-up approach to integration testing

Large software products are often made up of several subsystems. A
subsystem might consist of many modules which communicate among
each other through well-defined interfaces. In bottom-up integration
testing, first the modules for the each subsystem are integrated. Thus,
the subsystems can be integrated separately and independently.

The primary purpose of carrying out the integration testing a subsystem is
to test whether the interfaces among various modules making up the
subsystem work satisfactorily. The test cases must be carefully chosen to
exercise the interfaces in all possible manners.

In a pure bottom-up testing no stubs are required, and only test-drivers are
required. Large software systems normally require several levels of
subsystem testing, lower-level subsystems are successively combined to form
higher-level subsystems. The principal advantage of bottom- up integration
testing is that several disjoint subsystems can be tested simultaneously.
Another advantage of bottom-up testing is that the low-level modules get
tested thoroughly, since they are exercised in each integration step. Since the
low-level modules do I/O and other critical functions, testing the low-level
modules thoroughly increases the reliability of the system. A disadvantage of
bottom-up testing is the complexity that occurs when the system is made up
of a large number of small subsystems that are at the same level. This
extreme case corresponds to the big-bang approach.

Top-down approach to integration testing

Top-down integration testing starts with the root module in the structure
chart and one or two subordinate modules of the root module. After the
top-level ‘skeleton’ has been tested, the modules that are at the
immediately lower layer of the ‘skeleton’ are combined with it and
tested. Top-down integration testing approach requires the use of
program stubs to simulate the effect of lower-level routines that are
called by the routines under test. A pure top-down integration does not

require any driver routines. An advantage of top-down integration
testing is that it requires writing only stubs, and stubs are simpler to
write compared to drivers. A disadvantage of the top-down integration
testing approach is that in the absence of lower-level routines, it
becomes difficult to exercise the top-level routines in the desired
manner since the lower level routines usually perform input/output
(I/O) operations.

Mixed approach to integration testing

The mixed (also called sandwiched) integration testing follows a
combination of top-down and bottom-up testing approaches. In top-
down approach, testing can start only after the top-level modules have
been coded and unit tested. Similarly, bottom-up testing can start only

after the bottom level modules are ready. The mixed approach
overcomes this shortcoming of the top-down and bottom-up
approaches. In the mixed testing approach, testing can start as and
when modules become available after unit testing. Therefore, this is
one of the most commonly used integration testing approaches. In this
approach, both stubs and drivers are required to be designed.

10.8.1 Phased versus Incremental Integration Testing

Big-bang integration testing is carried out in a single step of integration.
In contrast, in the other strategies, integration is carried out over
several steps. In these later strategies, modules can be integrated
either in a phased or incremental manner. A comparison of these two
strategies is as follows:

 In incremental integration testing, only one new module is added to
the partially integrated system each time.

 In phased integration, a group of related modules are added to the
partial system each time.

Obviously, phased integration requires less number of integration steps
compared to the incremental integration approach. However, when failures
are detected, it is easier to debug the system while using the incremental
testing approach since the errors can easily be traced to the interface of the
recently integrated module. Please observe that a degenerate case of the
phased integration testing approach is big-bang testing.

10.9 TESTING OBJECT-ORIENTED PROGRAMS

During the initial years of object-oriented programming, it was believed
that object-orientation would, to a great extent, reduce the cost and
effort incurred on testing. This thinking was based on the observation
that object-orientation incorporates several good programming features
such as encapsulation, abstraction, reuse through inheritance,
polymorphism, etc., thereby chances of errors in the code is minimised.
However, it was soon realised that satisfactory testing object-oriented
programs is much more difficult and requires much more cost and effort
as compared to testing similar procedural programs. The main reason
behind this situation is that various object-oriented features introduce
additional complications and scope of new types of bugs that
arepresent in procedural programs. Therefore additional test cases are
needed to be designed to detect these. We examine these issues as
well as some other basic issues in testing object-oriented programs in
the following subsections.

10.9.1 What is a Suitable Unit for Testing

Object-oriented Programs?

For procedural programs, we had seen that procedures are the basic units of
testing. That is, first all the procedures are unit tested. Then various tested
procedures are integrated together and tested. Thus, as far as procedural
programs are concerned, procedures are the basic units of testing. Since
methods in an object-oriented program are analogous to procedures in a
procedural program, can we then consider the methods of object-oriented
programs as the basic unit of testing? Weyuker studied this issue and
postulated his anticomposition axiom as follows:

The main intuitive justification for the anticomposition axiom is the
following. A method operates in the scope of the data and other methods of
its object. That is, all the methods share the data of the class. Therefore, it is
necessary to test a method in the context of these. Moreover, objects can
have significant number of states. The behaviour of a method can be different
based on the state of the corresponding object. Therefore, it is not enough to
test all the methods and check whether they can be integrated satisfactorily.
A method has to be tested with all the other methods and data of the

Adequate testing of individual methods does not ensure that a class has been
satisfactorily tested.

corresponding object. Moreover, a method needs to be tested at all the
states that the object can assume. As a result, it is improper to consider a
method as the basic unit of testing an object-oriented program.

Thus, in an object oriented program, unit testing would mean testing each
object in isolation. During integration testing (called cluster testing in the
object-oriented testing literature) various unit tested objects are integrated
and tested. Finally, system-level testing is carried out.

10.9.2 Do Various Object-orientation Features Make
Testing Easy?

In this section, we discuss the implications of different object-orientation
features in testing.

Encapsulation: We had discussed in Chapter 7 that the encapsulation
feature helps in data abstraction, error isolation, and error prevention.
However, as far as testing is concerned, encapsulation is not an obstacle to
testing, but leads to difficulty during debugging. Encapsulation prevents the
tester from accessing the data internal to an object. Of course, it is possible
that one can require classes to support state reporting methods to print out
all the data internal to an object. Thus, the encapsulation feature though
makes testing difficult, the difficulty can be overcome to some extent through
use of appropriate state reporting methods.

Inheritance: The inheritance feature helps in code reuse and was expected
to simplify testing. It was expected that if a class is tested thoroughly, then
the classes that are derived from this class would need only incremental
testing of the added features. However, this is not the case.

The reason for this is that the inherited methods would work in a new
context (new data and method definitions). As a result, correct behaviour of a
method at an upper level, does not guarantee correct behaviour at a lower
level. Therefore, retesting of inherited methods needs to be followed as a
rule, rather as an exception.

Dynamic binding: Dynamic binding was introduced to make the code
compact, elegant, and easily extensible. However, as far as testing is
concerned all possible bindings of a method call have to be identified and
tested. This is not easy since the bindings take place at run-time.

Object states: In contrast to the procedures in a procedural program,

An object is the basic unit of testing of object-oriented programs.

objects store data permanently. As a result, objects do have significant
states. The behaviour of an object is usually different in different states. That
is, some methods may not be active in some of its states. Also, a method
may act differently in different states. For example, when a book has been
issued out in a library information system, the book reaches the issuedOut
state. In this state, if the issue method is invoked, then it may not exhibit its
normal behaviour.

In view of the discussions above, testing an object in only one of its states
is not enough. The object has to be tested at all its possible states. Also,

whether all the transitions between states (as specified in the object model)
function properly or not should be tested. Additionally, it needs to be tested
that no extra (sneak) transitions exist, neither are there extra states present
other than those defined in the state model. For state-based testing, it is
therefore beneficial to have the state model of the objects, so that the
conformance of the object to its state model can be tested.

10.9.3 Why are Traditional Techniques Considered Not
Satisfactory for Testing Object-oriented Programs?

We have already seen that in traditional procedural programs,
procedures are the basic unit of testing. In contrast, objects are the
basic unit of testing for object-oriented programs. Besides this, there
are many other significant differences as well between testing
procedural and object-oriented programs. For example, statement
coverage-based testing which is popular for testing procedural programs
is not meaningful for object-oriented programs. The reason is that
inherited methods have to be retested in the derived class. In fact, the
different object- oriented features (inheritance, polymorphism, dynamic
binding, state-based behaviour, etc.) require special test cases to be
designed compared to the traditional testing as discussed in Section

10.11.4. The various object-orientation features are explicit in the
design models, and it is usually difficult to extract from and analysis of
the source code. As a result, the design model is a valuable artifact for
testing object-oriented programs. Test cases are designed based on the
design model. Therefore, this approach is considered to be intermediate
between a fully white-box and a fully black-box approach, and is called
a grey-box approach. Please note that grey-box testing is considered
important for object-oriented programs. This is in contrast to testing
procedural programs.

10.9.4 Grey-Box Testing of Object-oriented Programs

As we have already mentioned, model-based testing is important for object-
oriented programs, as these test cases help detect bugs that are specific to
the object-orientation constructs.The following are some important types of
grey-box testing that can be carried on based on UML models:

State-model-based testing

State coverage: Each method of an object are tested at each state of
the object.

State transition coverage: It is tested whether all transitions depicted in
the state model work satisfactorily.

State transition path coverage: All transition paths in the state model are
tested.

Use case-based testing

Scenario coverage: Each use case typically consists of a mainline
scenario and several alternate scenarios. For each use case, the
mainline and all alternate sequences are tested to check if any errors
show up.

Class diagram-based testing

Testing derived classes: All derived classes of the base class have to
be instantiated and tested. In addition to testing the new methods
defined in the derivec. lass, the inherited methods must be retested.

Association testing: All association relations are tested.

Aggregation testing: Various aggregate objects are created and tested.

Sequence diagram-based testing

Method coverage: All methods depicted in the sequence diagrams are
covered. Message path coverage: All message paths that can be
constructed from the sequence diagrams are covered.

10.9.5 Integration Testing of Object-oriented Programs

There are two main approaches to integration testing of object-oriented
programs:

• Thread-based

• Use based

Thread-based approach: In this approach, all classes that need to
collaborate to realise the behaviour of a single use case are integrated and
tested. After all the required classes for a use case are integrated and tested,

another use case is taken up and other classes (if any) necessary for
execution of the second use case to run are integrated and tested. This is
continued till all use cases have been considered.

Use-based approach: Use-based integration begins by testing classes that
either need no service from other classes or need services from at most a few
other classes. After these classes have been integrated and tested, classes
that use the services from the already integrated classes are integrated and
tested. This is continued till all the classes have been integrated and tested.

10.9.6 Smoke Testing

Smoke testing is carried out before initiating system testing to ensure
that system testing would be meaningful, or whether many parts of the
software would fail. The idea behind smoke testing is that if the
integrated program cannot pass even the basic tests, it is not ready for
a vigorous testing. For smoke testing, a few test cases are designed to
check whether the basic functionalities are working. For example, for a
library automation system, the smoke tests may check whether books
can be created and deleted, whether member records can be created
and deleted, and whether books can be loaned and returned.

10.10 SOME GENERAL ISSUES ASSOCIATED WITH TESTING

In this section, we shall discuss two general issues associated with
testing. These are—how to document the results of testing and how to
perform regression testing.

Test documentation

A piece of documentation that is produced towards the end of testing is
the test summary report. This report normally covers each subsystem
and represents a summary of tests which have been applied to the
subsystem and their outcome. It normally specifies the following:

 What is the total number of tests that were applied to a subsystem.
 Out of the total number of tests how many tests were successful.
 How many were unsuccessful, and the degree to which they were
unsuccessful, e.g., whether a test was an outright failure or whether

some of the expected results of the test were actually observed.

Regression testing

Regression testing spans unit, integration, and system testing. Instead, it
is a separate dimension to these three forms of testing. Regression
testing is the practice of running an old test suite after each change to
the system or after each bug fix to ensure that no new bug has been
introduced due to the change or the bug fix. However, if only a few
statements are changed, then the entire test suite need not be run —
only those test cases that test the functions and are likely to be
affected by the change need to be run. Whenever a software is changed
to either fix a bug, or enhance or remove a feature, regression testing is
carried out.

SOFTWARE RELIABILITY AND

QUALITY MANAGEMENT

11.1 SOFTWARE RELIABILITY

The reliability of a software product essentially denotes its trustworthiness

or dependability. Alternatively, the reliability of a software product can

also be defined as the probability of the product working “correctly”

over a given period of time.

Intuitively, it is obvious that a software product having a large number of
defects is unreliable. It is also very reasonable to assume that the reliability
of a system improves, as the number of defects in it is reduced. It would have
been very nice if we could mathematically characterise this relationship
between reliability and the number of bugs present in the system using a
simple closed form expression. Unfortunately, it is very difficult to
characterise the observed reliability of a system in terms of the number of
latent defects in the system using a simple mathematical expression. To get
an insight into this issue, consider the following. Removing errors from those
parts of a software product that are very infrequently executed, makes little
difference to the perceived reliability of the product. It has been
experimentally observed by analysing the behaviour of a large number of
programs that 90 per cent of the execution time of a typical program is spent
in executing only 10 per cent of the instructions in the program. The most used

10 per cent instructions are often called the core1 of a program. The rest 90

per cent of the program statements are called non-core and are on the

average executed only for 10 per cent of the total execution time. It therefore
may not be very surprising to note that removing 60 per cent product defects
from the least used parts of a system would typically result in only 3 per cent
improvement to the product reliability. It is clear that the qua ntity by which
the overall reliability of a program improves due to the correction of a single
error depends on how frequently the instruction having the error is executed.
If an error is removed from an instruction that is frequently executed (i.e.,

belonging to the core of the program), then this would show up as a large
improvement to the reliability figure. On the other hand, removing errors
from parts of the program that are rarely used, may not cause any
appreciable change to the reliability of the product.

Based on the above discussion we can say that reliability of a product
depends not only on the number of latent errors but also on the the exact
location of the errors. Apart from this, reliability also depends upon how the
product is used, or on its execution profile. If the users execute only those

features of a program that are “correctly” implemented, none of the errors
will be exposed and the perceived reliability of the product will be high.

On the other hand, if only those functions of the software which contain
errors are invoked, then a large number of failures will be observed and the
perceived reliability of the system will be very low. Different categories of
users of a software product typically execute different functions of a software
product.

Based on the above discussions, we can summarise the main reasons that
make software reliability more difficult to measure than hardware reliability:

 The reliability improvement due to fixing a single bug depends on
where the bug is located in the code.

 The perceived reliability of a software product is observer-dependent.

 The reliability of a product keeps changing as errors are detected and
fixed.

In the following subsection, we shall discuss why software reliability
measurement is a harder problem than hardware reliability measurement.

11.1.1 Hardware versus Software Reliability

An important characteristic feature that sets hardware and software reliability
issues apart is the difference between their failure patterns.

A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To fix a
hardware fault, one has to either replace or repair the failed part. In contrast,
a software product would continue to fail until the error is tracked down and
either the design or the code is changed to fix the bug.

A comparison of the changes in failure rate over the product life time for a
typical hardware product as well as a software product are sketched in Figure
11.1. Observe that the plot of change of reliability with time for a hardware
component (Figure 11.1(a)) appears like a “bath tub”. For a software
component the failure rate is initially high, but decreases as the faulty
components identified are either repaired or replaced.
The system then enters its useful life, where the rate of failure is almost
constant. After some time (called product life time) the major components
wear out, and the failure rate increases. The initial failures are usually covered
through manufacturer’s warranty.
In contrast to the hardware products, the software product show the highest
failure rate just after purchase and installation (see the initial portion of the
plot in Figure 11.1 (b)). As the system is used, more and more errors are
identified and removed resulting in reduced failure rate. This error removal
continues at a slower pace during the useful life of the product. As the
software becomes obsolete no more error correction occurs and the failure
rate remains unchanged.

Figure 11.1: Change in failure rate of a product.

11.1.2 Reliability Metrics of Software Products

The reliability requirements for different categories of software products
may be different. For this reason, it is necessary that the level of
reliability required for a software product should be specified in the

software requirements specification (SRS) document. In order to be
able to do this, we need some metrics to quantitatively express the
reliability of a software product. A good reliability measure should be
observer-independent, so that different people can agree on the degree
of reliability a system has. However, in practice, it is very difficult to
formulate a metric using which precise reliability measurement would
be possible. In the absence of such measures, we discuss six metrics
that correlate with reliability as follows:

Rate of occurrence of failure (ROCOF): ROCOF measures the frequency
of occurrence of failures. ROCOF measure of a software product can be
obtained by observing the behaviour of a software product in operation over
a specified time interval and then calculating the ROCOF value as the ratio of
the total number of failures observed and the duration of observation.

Mean time to failure (MTTF): MTTF is the time between two successive
failures, averaged over a large number of failures. To measure MTTF, we can
record the failure data for n failures. Let the failures occur at the time

instants t1, t2, ..., tn. Then, MTTF can be calculated as

.

It is important to note that only run time is considered in the time
measurements. That is, the time for which the system is down to fix the
error, the boot time, etc. are not taken into account in the time
measurements and the clock is stopped at these times.

Mean time to repair (MTTR): Once failure occurs, some time is required to
fix the error. MTTR measures the average time it takes to track the errors
causing the failure and to fix them.

Mean time between failure (MTBF): The MTTF and MTTR metrics can be
combined to get the MTBF metric: MTBF=MTTF+MTTR. Thus, MTBF of 300
hours indicates that once a failure occurs, the next failure is expected after
300 hours. In this case, the time measurements are real time and not the
execution time as in MTTF

Probability of failure on demand (POFOD): Unlike the other metrics
discussed, this metric does not explicitly involve time measurements. POFOD
measures the likelihood of the system failing when a service request is made.

Availability: Availability of a system is a measure of how likely would the
system be available for use over a given period of time. This metric not only
considers the number of failures occurring during a time interval, but also

takes into account the repair time (down time) of a system when a failure
occurs. This metric is important for systems such as telecommunication
systems, and operating systems, and embedded controllers, etc.

11.1.3 Reliability Growth Modelling

A reliability growth model is a mathematical model of how software reliability
improves as errors are detected and repaired.

Although several different reliability growth models have been proposed, in
this text we will discuss only two very simple reliability growth models.

Jelinski and Moranda model

The simplest reliability growth model is a step function model where it is
assumed that the reliability increases by a constant increment each
time an error is detected and repaired. Such a model is shown in Figure
11.2. However, this simple model of reliability which implicitly assumes
that all errors contribute equally to reliability growth, is highly
unrealistic since we already know that correction of different errors
contribute differently to reliability growth.

Figure 11.2: Step function model of reliability growth.

Littlewood and Verall’s model

This model allows for negative reliability growth to reflect the fact that
when a repair is carried out, it may introduce additional errors. It also
models the fact that as errors are repaired, the average improvement
to the product reliability per repair decreases. It treats an error’s
contribution to reliability improvement to be an independent random
variable having Gamma distribution. This distribution models the fact

that error corrections with large contributions to reliability growth are
removed first. This represents diminishing return as test continues.

There are more complex reliability growth models, which give more
accurate approximations to the reliability growth. However, these models are
out of scope of this text.

11.2 SOFTWARE QUALITY

Traditionally, the quality of a product is defined in terms of its fitness of
purpose. That is, a good quality product does exactly what the users
want it to do, since for almost every product, fitness of purpose is
interpreted in terms of satisfaction of the requirements laid down in the
SRS document.

Although “fitness of purpose” is a satisfactory definition of quality for
many products such as a car, a table fan, a grinding machine, etc.—
“fitness of purpose” is not a wholly satisfactory definition of quality for
software products.

Unlike hardware products, software lasts a long time, in the sense that it
keeps evolving to accommodate changed circumstances. The modern view of
a quality associates with a software product several quality factors (or
attributes) such as the following:

Portability: A software product is said to be portable, if it can be easily

made to work in different hardware and operating system environments, and
easily interface with external hardware devices and software products.

Usability: A software product has good usability, if different categories of
users (i.e., both expert and novice users) can easily invoke the functions of
the product.

Reusability: A software product has good reusability, if different modules of
the product can easily be reused to develop new products.

Correctness: A software product is correct, if different requirements as
specified in the SRS document have been correctly implemented.

Maintainability: A software product is maintainable, if errors can be easily
corrected as and when they show up, new functions can be easily added to
the product, and the functionalities of the product can be easily modified, etc.

11.3 SOFTWARE QUALITY MANAGEMENT SYSTEM

A quality management system (often referred to as quality system) is
the principal methodology used by organisations to ensure that the
products they develop have the desired quality. In the following
subsections, we briefly discuss some of the important issues associated
with a quality system:

Managerial structure and individual responsibilities

A quality system is the responsibility of the organisation as a whole.
However, every organisation has a separate quality department to
perform several quality system activities. The quality system of an
organisation should have the full support of the top management.
Without support for the quality system at a high level in a company, few
members of staff will take the quality system seriously.

Quality system activities

The quality system activities encompass the following:

 Auditing of projects to check if the processes are being followed.

 Collect process and product metrics and analyse them to check if
quality goals are being met.

 Review of the quality system to make it more effective.
 Development of standards, procedures, and guidelines.
 Produce reports for the top management summarising the

effectiveness of the quality system in the organisation.

A good quality system must be well documented. Without a properly
documented quality system, the application of quality controls and
procedures become ad hoc, resulting in large variations in the quality of the
products delivered. Also, an undocumented quality system sends clear
messages to the staff about the attitude of the organisation towards quality
assurance. International standards such as ISO 9000 provide guidance on
how to organise a quality system.

11.3.1 Evolution of Quality Systems

Quality systems have rapidly evolved over the last six decades. Prior to World
War II, the usual method to produce quality products was to inspect the
finished products to eliminate defective products. Since that time, quality

systems of organisations have undergone four stages of evolution as shown in
Figure 11.3. The initial product inspection method gave way to quality control
(QC) principles.

Figure 11.3: Evolution of quality system and corresponding shift in the quality paradigm.

Thus, quality control aims at correcting the causes of errors and not just
rejecting the defective products. The next breakthrough in quality systems,
was the development of the quality assurance (QA) principles.

The modern quality assurance paradigm includes guidance for recognising,
defining, analysing, and improving the production process. Total quality
management (TQM) advocates that the process followed by an organisation
must continuously be improved through process measurements. TQM goes a
step further than quality assurance and aims at continuous process
improvement. TQM goes beyond documenting processes to optimising them
through redesign.

A term related to TQM is business process re-engineering (BPR), which is
aims at re-engineering the way business is carried out in an organisation,
whereas our focus in this text is re-engineering of the software development
process. From the above discussion, we can say that over the l a st six
decades or so, the quality paradigm has shifted from product assurance to
process assurance (see Figure 11.3).

11.3.2 Product Metrics versus Process Metrics

All modern quality systems lay emphasis on collection of certain product and
process metrics during product development. Let us first understand the basic
differences between product and process metrics.

Examples of product metrics are LOC and function point to measure size,
PM (person- month) to measure the effort required to develop it, months to
measure the time required to develop the product, time complexity of the
algorithms, etc. Examples of process metrics are review effectiveness,
average number of defects found per hour of inspection, average defect
correction time, productivity, average number of failures detected during
testing per LOC, number of latent defects per line of code in the developed
product.

11.4 ISO 9000

International standards organisation (ISO) is a consortium of 63
countries established to formulate and foster standardisation. ISO
published its 9000 series of standards in 1987.

11.4.1 What is ISO 9000 Certification?

ISO 9000 certification serves as a reference for contract between
independent parties. In particular, a company awarding a development
contract can form his opinion about the possible vendor performance
based on whether the vendor has obtained ISO 9000 certification or
not. In this context, the ISO 9000 standard specifies the guidelines for
maintaining a quality system.

We have already seen that the quality system of an organisation applies
to all its activities related to its products or services. The ISO standard
addresses both operational aspects (that is, the process) and
organisational aspects such as responsibilities, reporting, etc.

ISO 9000 is a series of three standards—ISO 9001, ISO 9002, and ISO

9003.

The types of software companies to which the different ISO standards apply
are as follows:

ISO 9001: This standard applies to the organisations engaged in design,
development, production, and servicing of goods. This is the standard that is
applicable to most software development organisations.

ISO 9002: This standard applies to those organisations which do not design
products but are only involved in production. Examples of this category of
industries include steel and car manufacturing industries who buy the product
and plant designs from external sources and are involved in only
manufacturing those products. Therefore, ISO 9002 is not applicable to
software development organisations.

ISO 9003: This standard applies to organisations involved only in
installation and testing of products.

11.4.2 ISO 9000 for Software Industry

ISO 9000 is a generic standard that is applicable to a large gamut of
industries, starting from a steel manufacturing industry to a service
rendering company. Therefore, many of the clauses of the ISO 9000
documents are written using generic terminologies and it is very difficult
to interpret them in the context of software development organisations.
An important reason behind such a situation is the fact that software
development is in many respects radically different from the
development of other types of products. Two major differences between
software development and development of other kinds of products are
as follows:

 Software is intangible and therefore difficult to control. It means that
software would not be visible to the user until the development is
complete and the software is up and running. It is difficult to control
and manage anything that you cannot see and feel. In contrast, in any
other type of product manufacturing such as car manufacturing, you
can see a product being developed through various stages such as
fitting engine, fitting doors, etc. Therefore, it becomes easy to

accurately determine how much work has been completed and to
estimate how much more time will it take.

 During software development, the only raw material consumed is data.
In contrast, large quantities of raw materials are consumed during the
development of any other product. As an example, consider a steel
making company. The company would consume large amounts of raw
material such as iron-ore, coal, lime, manganese, etc. Not surprisingly
then, many clauses of ISO 9000 standards are concerned with raw
material control. These clauses are obviously not relevant for software
development organisations.

11.4.3 Why Get ISO 9000 Certification?

There is a mad scramble among software development organisations for
obtaining ISO certification due to the benefits it offers. Let us examine
some of the benefits that accrue to organisations obtaining ISO
certification:

 Confidence of customers in an organisation increases when the
organisation qualifies for ISO 9001 certification. This is especially true
in the international market. In fact, many organisations awarding
international software development contracts insist that the
development organisation have ISO 9000 certification. For this reason,
it is vital for software organisations involved in software export to
obtain ISO 9000 certification.

 ISO 9000 requires a well-documented software production process to
be in place. A well- documented software production process
contributes to repeatable and higher quality of the developed software.

 ISO 9000 makes the development process focused, efficient, and cost-
effective.

 ISO 9000 certification points out the weak points of an organisations
and recommends remedial action.

 ISO 9000 sets the basic framework for the development of an optimal
process and TQM.

11.4.4 How to Get ISO 9000 Certification?

An organisation intending to obtain ISO 9000 certification applies to a
ISO 9000 registrar for registration. The ISO 9000 registration process
consists of the following stages:

Application stage: Once an organisation decides to go for ISO 9000
certification, it applies to a registrar for registration.

Pre-assessment: During this stage the registrar makes a rough assessment
of the organisation.

Document review and adequacy audit: During this stage, the registrar
reviews the documents submitted by the organisation and makes suggestions
for possible improvements.

Compliance audit: During this stage, the registrar checks whether the
suggestions made by it during review have been complied to by the
organisation or not.

Registration: The registrar awards the ISO 9000 certificate after successful
completion of all previous phases.

Continued surveillance: The registrar continues monitoring the
organisation periodically.

This is probably due to the fact that the ISO 9000 certificate is issued for an
organisation’s process and not to any specific product of the organisation. An
organisation using ISO certificate for product advertisements faces the risk of
withdrawal of the certificate. In India, ISO 9000 certification is offered by BIS
(Bureau of Indian Standards), STQC (Standardisation, testing, and quality
control), and IRQS (Indian Register Quality System). IRQS has been
accredited by the Dutch council of certifying bodies (RVC).

11.4.5 Summary of ISO 9001 Requirements

A summary of the main requirements of ISO 9001 as they relate of

software development are as follows:
Section numbers in brackets correspond to those in the standard itself:

Management responsibility (4.1)

 The management must have an effective quality policy.

 The responsibility and authority of all those whose work affects quality
must be defined and documented.

 A management representative, independent of the development
process, must be responsible for the quality system. This requirement
probably has been put down so that the person responsible for the
quality system can work in an unbiased manner.

 The effectiveness of the quality system must be periodically reviewed
by audits.

Quality system (4.2)

A quality system must be maintained and documented.

Contract reviews (4.3)

Before entering into a contract, an organisation must review the contract
to ensure that it is understood, and that the organisation has the
necessary capability for carrying out its obligations.

Design control (4.4)

 The design process must be properly controlled, this includes
controlling coding also. This requirement means that a good
configuration control system must be in place.

 Design inputs must be verified as adequate.
 Design must be verified.
 Design output must be of required quality.
 Design changes must be controlled.

Document control (4.5)

 There must be proper procedures for document approval, issue and
removal.

 Document changes must be controlled. Thus, use of some
configuration management tools is necessary.

Purchasing (4.6)

Purchased material, including bought-in software must be checked for
conforming to requirements.

Purchaser supplied product (4.7)

Material supplied by a purchaser, for example, client-provided software
must be properly managed and checked.

Product identification (4.8)

The product must be identifiable at all stages of the process. In software
terms this means configuration management.

Process control (4.9)

 The development must be properly managed.
 Quality requirement must be identified in a quality plan.

Inspection and testing (4.10)

In software terms this requires effective testing i.e., unit testing,
integration testing and system testing. Test records must be
maintained.

Inspection, measuring and test equipment (4.11)

If integration, measuring, and test equipments are used, they must be
properly maintained and calibrated.

Inspection and test status (4.12)

The status of an item must be identified. In software terms this implies
configuration management and release control.

Control of non-conforming product (4.13)

In software terms, this means keeping untested or faulty software out of
the released product, or other places whether it might cause damage.

Corrective action (4.14)

This requirement is both about correcting errors when found, and also
investigating why the errors occurred and improving the process to
prevent occurrences. If an error occurs despite the quality system, the

system needs improvement.

Handling (4.15)

This clause deals with the storage, packing, and delivery of the software
product.

Quality records (4.16)

Recording the steps taken to control the quality of the process is
essential in order to be able to confirm that they have actually taken
place.

Quality audits (4.17)

Audits of the quality system must be carried out to ensure that it is
effective.

Training (4.18)

Training needs must be identified and met.

Various ISO 9001 requirements are largely common sense. Official guidance
on the

interpretation of ISO 9001 is inadequate at the present time, and taking
expert advice is usually worthwhile.

11.4.6 Salient Features of ISO 9001 Requirements

In subsection 11.5.5 we pointed out the various requirements for the ISO
9001 certification. We can summarise the salient features all the the
requirements as follows:

Document control: All documents concerned with the development of a
software product should be properly managed, authorised, and controlled.
This requires a configuration management system to be in place.

Planning: Proper plans should be prepared and then progress against these
plans should be monitored.

Review: Important documents across all phases should be independently
checked and reviewed for effectiveness and correctness.

Testing: The product should be tested against specification.

Organisational aspects: Several organisational aspects should be
addressed e.g., management reporting of the quality team.

11.4.7 ISO 9000-2000

ISO revised the quality standards in the year 2000 to fine tune the
standards. The major changes include a mechanism for continuous
process improvement. There is also an increased emphasis on the role
of the top management, including establishing a measurable objectives
for various roles and levels of the organisation. The new standard
recognises that there can be many processes in an organisation.

11.5 SEI CAPABILITY MATURITY MODEL

SEI capability maturity model (SEI CMM) was proposed by Software
Engineering Institute of the Carnegie Mellon University, USA. CMM is
patterned after the pioneering work of Philip Crosby who published his
maturity grid of five evolutionary stages in adopting quality practices in
his book “Quality is Free”

In simple words, CMM is a reference model for apprising the software
process maturity into different levels. This can be used to predict the most
likely outcome to be expected from the next project that the organisation
undertakes. It must be remembered that SEI CMM can be used in two ways—
capability evaluation and software process assessment.

Capability evaluation and software process assessment differ in motivation,
objective, and the final use of the result. Capability evaluation provides a way
to assess the software process capability of an organisation. On the other
hand, software process assessment is used by an organisation with the
objective to improve its own process capability. Thus, the latter type of
assessment is for purely internal use by a company.

The different levels of SEI CMM have been designed so that it is easy for an
organisation to slowly build its quality system starting from scratch. SEI CMM
classifies software development industries into the following five maturity
levels:

Level 1: Initial

A software development organisation at this level is characterised by ad

hoc activities. Very few or no processes are defined and followed. Since
software production processes are not defined, different engineers
follow their own process and as a result development efforts become
chaotic. Therefore, it is also called chaotic level. The success of projects
depend on individual efforts and heroics. When a developer leaves the
organisation, the successor would have great difficulty in understanding

the process that was followed and the work completed. Also, no formal
project management practices are followed. As a result, time pressure
builds up towards the end of the delivery time, as a result short-cuts are
tried out leading to low quality products.

Level 2: Repeatable

At this level, the basic project management practices such as tracking
cost and schedule are established. Configuration management tools are
used on items identified for configuration control. Size and cost
estimation techniques such as function point analysis, COCOMO, etc.,
are used. The necessary process discipline is in place to repeat earlier
success on projects with similar applications. Though there is a rough
understanding among the developers about the process being followed,
the process is not documented. Since the products are very similar, the
success story on development of one product can repeated for another.

Level 3: Defined

At this level, the processes for both management and development
activities are defined and documented. There is a common
organisation-wide understanding of activities, roles, and
responsibilities.The processes though defined, the process and product
qualities are not measured. At this level, the organisation builds up the
capabilities of its employees through periodic training programs. Also,
review techniques are emphasized and documented to achieve phase
containment of errors.

Level 4: Managed

At this level, the focus is on software metrics. Both process and product
metrics are collected. Quantitative quality goals are set for the products
and at the time of completion of development it was checked whether
the quantitative quality goals for the product are met. Various tools like
Pareto charts, fishbone diagrams, etc. are used to measure the product
and process quality. The process metrics are used to check if a project
performed satisfactorily. Thus, the results of process measurements are
used to evaluate project performance rather than improve the process.

Level 5: Optimising

At this stage, process and product metrics are collected. Process and
product measurement data are analysed for continuous process

improvement. At CMM level 5, an organisation would identify the best
software engineering practices and innovations (which may be tools,
methods, or processes) and would transfer these organisation- wide.
Level 5 organisations usually have a department whose sole
responsibility is to assimilate latest tools and technologies and
propagate them organisation-wide. Since the process changes
continuously, it becomes necessary to effectively manage a changing
process. Therefore, level 5 organisations use configuration management
techniques to manage process changes.

The focus of each level and the corresponding key process areas are shown
in the Table 11.1:

Table 11.1 Focus areas of CMM levels and Key Process Areas

CMM Level Focus Key Process Areas (KPAs)

Initial Competent people

Repeatable Project management Software project planning
Software configuration management

Defined
Definition of
processes

Process definition
Training program
Peer reviews

Managed
Product and
process quality

Quantitative process metrics
Software quality management

Optimising
Continuous process
improvement

Defect prevention

Process change management
Technology change management

SEI CMM provides a list of key areas on which to focus to take an
organisation from one level of maturity to the next. Thus, it provides a way
for gradual quality improvement over several stages. Each stage has been
carefully designed such that one stage enhances the capability already built
up.

However, the organisations trying out the CMM frequently face a problem
that stems from the characteristic of the CMM itself.

CMM Shortcomings: CMM does suffer from several shortcomings. The
important among these are the following:

 The most frequent complaint by organisations while trying out the
CMM-based process improvement initiative is that they understand
what is needed to be improved, but they need more guidance about
how to improve it.

 Another shortcoming (that is common to ISO 9000) is that thicker
documents, more detailed information, and longer meetings are

considered to be better. This is in contrast to the principles of software
economics—reducing complexity and keeping the documentation to
theminimum without sacrificing the relevant details.

 Getting an accurate measure of an organisation’s current maturity level
is also an issue. The CMM takes an activity-based approach to
measuring maturity; if you do the prescribed set of activities then you
are at a certain level. There is nothing that characterises or quantifies
whether you do these activities well enough to deliver the intended
results.

11.5.1 Comparison Between ISO 9000 Certification and
SEI/CMM

Let us compare some of the key characteristics of ISO 9000 certification
and the SEI CMM model for quality appraisal:

 ISO 9000 is awarded by an international standards body. Therefore,
ISO 9000 certification can be quoted by an organisation in official
documents, communication with external parties, and in tender
quotations. However, SEI CMM assessment is purely for internal use.

 SEI CMM was developed specifically for software industry and therefore
addresses many issues which are specific to software industry alone.

 SEI CMM goes beyond quality assurance and prepares an organisation
to ultimately achieve TQM. In fact, ISO 9001 aims at level 3 of SEI
CMM model.

 SEI CMM model provides a list of key process areas (KPAs) on which an
organisation at any maturity level needs to concentrate to take it from
one maturity level to the next. Thus, it provides a way for achieving
gradual quality improvement. In contrast, an organisation adopting ISO
9000 either qualifies for it or does not qualify.

11.5.2 Is SEI CMM Applicable to Small Organisations?

Highly systematic and measured approach to software development suits
large organisations dealing with negotiated software, safety-critical
software, etc. But, what about small organisations? These organisations
typically handle applications such as small Internet, e-commerce
applications, and often are without an established product range,
revenue base, and experience on past projects, etc. For such
organisations, a CMM-based appraisal is probably excessive. These

organisations need to operate more efficiently at the lower levels of

maturity. For example, they need to practise effective project
management, reviews, configuration management, etc.

11.5.3 Capability Maturity Model Integration (CMMI)

Capability maturity model integration (CMMI) is the successor of the
capability maturity model (CMM). The CMM was developed from 1987
until 1997. CMMI aimed to improve the usability of maturity models by
integrating many different models into one framework.

After CMMI was first released in 1990, it was adopted and used in many
domains. For example, CMMs were developed for disciplines such as systems
engineering (SE-CMM), people management (PCMM), software acquisition
(SA-CMM), and others.

Although many organisations found these models to be useful, they also
struggled with problems caused by overlap, inconsistencies, and integrating
the models. In this context, CMMI is generalised to be applicable to many
domains.

11.6 SIX SIGMA

General Electric (GE) corporation first began Six Sigma in 1995 after
Motorola and Allied Signal blazed the Six Sigma trail. Since them,
thousands of companies around the world have discovered the far
reaching benefits of Six Sigma.

 The purpose of Six Sigma is to improve processes to do things better,
faster, and at lower cost. It can be used to improve every facet of
business, from production, to human resources, to order entry, to
technical support. Six Sigma can be used for any activity that is
concerned with cost, timeliness, and quality of results. Therefore, it is
applicable to virtually every industry.

Six Sigma at many organisations simply means striving for near perfection.
Six Sigma is a disciplined, data-driven approach to eliminate defects in any
process – from manufacturing to transactional and from product to service.

The statistical representation of Six Sigma describes quantitatively how a
process is performing. To achieve Six Sigma, a process must not produce
more than 3.4 defects per million opportunities. A Six Sigma defect is defined

as any system behaviour that is not as per customer specifications. Total
number of Six Sigma opportunities is then the total number of chances for a
defect. Process sigma can easily be calculated using a Six Sigma calculator.

The fundamental objective of the Six Sigma methodology is the
implementation of a measurement-based strategy that focuses on process
improvement and variation reduction through the application of Six Sigma
improvement projects. This is accomplished through the use of two Six Sigma
sub-methodologies—DMAIC and DMADV.

The Six Sigma DMAIC process (define, measure, analyse, improve, control)
is an improvement system for existing processes falling below specification
and looking for incremental improvement. The Six Sigma DMADV process
(define, measure, analyse, design, verify) is an improvement system used to
develop new processes or products at Six Sigma quality levels. It can also be
employed if a current process requires more than just incremental
improvement. Both Six Sigma processes are executed by Six Sigma Green
Belts and Six Sigma Black Belts, and are overseen by Six Sigma Master Black
Belts.

Many frameworks exist for implementing the Six Sigma methodology. Six
Sigma Consultants all over the world have also developed proprietary
methodologies for implementing Six Sigma quality, based on the similar
change management philosophies and applications of tools.

COMPUTER AIDED SOFTWARE

ENGINEERING

12.1 CASE AND ITS SCOPE

We first need to define what is a CASE tool and what is a CASE
environment. A CASE tool is a generic term used to denote any form of
automated support for software engineering, In a more restrictive sense
a CASE tool can mean any tool used to automate some activity
associated with software development. Many CASE tools are now
available. Some of these tools assist in phase-related tasks such
asspecification, structured analysis, design, coding, testing, etc. and
others to non-phase activities such as project management and
configuration management. The primary objectives in using any CASE
tool are:

 To increase productivity.
 To help produce better quality software at lower cost.

12.2 CASE ENVIRONMENT

Although individual CASE tools are useful, the true power of a tool set
can be realised only when these set of tools are integrated into a
common framework or environment. If the different CASE tools are not
integrated, then the data generated by one tool would have to input to
the other tools. This may also involve format conversions as the tools
developed by different vendors are likely to use different formats. This
results in additional effort of exporting data from one tool and importing
to another. Also, many tools do not allow exporting data and maintain
the data in proprietary formats.

CASE tools are characterised by the stage or stages of software
development life cycle on which they focus. Since different tools covering
different stages share common information, it is required that they integrate
through some central repository to have a consistent view of information
associated with the software. This central repository is usually a data
dictionary containing the definition of all composite and elementary data
items. Through the central repository all the CASE tools in a CASE
environment share common information among themselves.

Thus a CASE environment facilitates the automation of the step-by-step
methodologies for software development. In contrast to a CASE
environment, a programming environment is an integrated collection of tools
to support only the coding phase of software development. The
 tools commonly integrated in a programming environment are a
text editor, a compiler, and a debugger.

The different tools are integrated to the extent that once the compiler
detects an error, the editor takes automatically goes to the statements in
error and the error statements are highlighted. Examples of popular
 programming environments are Turbo C environment, Visual Basic,
Visual C++, etc. A schematic representation of a CASE environment is
shown in Figure 12.1.

Figure 12.1: A CASE environment.

The standard programming environments such as Turbo C, Visual C++, etc.
come equipped with a program editor, compiler, debugger, linker, etc., All
these tools are integrated. If you click on an error reported by the compiler,
not only does it take you into the editor, but also takes the cursor to the
specific line or statement causing the error.

12.2.1 Benefits of CASE

Several benefits accrue from the use of a CASE environment or even
isolated CASE tools. Let us examine some of these benefits:

 A key benefit arising out of the use of a CASE environment is cost
saving through all developmental phases. Different studies carry out to
measure the impact of CASE, put the effort reduction between 30 per
cent and 40 per cent.

 Use of CASE tools leads to considerable improvements in quality. This
is mainly due to the facts that one can effortlessly iterate through the
different phases of software development, and the chances of human
error is considerably reduced.

 CASE tools help produce high quality and consistent documents. Since
the important data relating to a software product are maintained in a
central repository, redundancy in the stored data is reduced, and
therefore, chances of inconsistent documentation is reduced to a great
extent.

 CASE tools take out most of the drudgery in a software engineers work.
For example, they need not check meticulously the balancing of the
DFDs, but can do it effortlessly through the press of a button.

 CASE tools have led to revolutionary cost saving in software
maintenance efforts. This arises not only due to the tremendous value
of a CASE environment in traceability and consistency checks, but also
due to the systematic information capture during the various phases of
software development as a result of adhering to a CASE environment.

 Introduction of a CASE environment has an impact on the style of
working of a company, and makes it oriented towards the structured
and orderly approach.

12.3 CASE SUPPORT IN SOFTWARE LIFE CYCLE

Let us examine the various types of support that CASE provides during
the different phases of a software life cycle. CASE tools should support a
development methodology, help enforce the same, and provide certain
amount of consistency checking between different phases. Some of the
possible support that CASE tools usually provide in the software
development life cycle are discussed below.

12.3.1 Prototyping Support

We have already seen that prototyping is useful to understand the
requirements of complex software products, to demonstrate a concept,
to market new ideas, and so on. The prototyping CASE tool’s
requirements are as follows:

 Define user interaction.
 Define the system control flow.

 Store and retrieve data required by the system.
 Incorporate some processing logic.

There are several stand alone prototyping tools. But a tool that integrates
with the data dictionary can make use of the entries in the data
dictionary,help in populating the data dictionary and ensure the consistency
between the design data and the prototype.

A good prototyping tool should support the following features:

 Since one of the main uses of a prototyping CASE tool is graphical user
interface (GUI) development, a prototyping CASE tool should support
the user to create a GUI using a graphics editor. The user should be
allowed to define all data entry forms, menus and controls.

 It should integrate with the data dictionary of a CASE environment.

 If possible, it should be able to integrate with external user defined
modules written in C or some popular high level programming
languages.

 The user should be able to define the sequence of states through
which a created prototype can run. The user should also be allowed to
control the running of the prototype.

 The run time system of prototype should support mock up run of the
actual system and management of the input and output data.

12.3.2 Structured Analysis and Design

Several diagramming techniques are used for structured analysis and
structured design. A CASE tool should support one or more of the
structured analysis and design technique. The CASE tool should support
effortlessly drawing analysis and design diagrams. The CASE tool should
support drawing fairly complex diagrams and preferably through a
hierarchy of levels. It should provide easy navigation through different

levels and through design and analysis. The tool must support
completeness and consistency checking across the design and analysis
and through all levels of analysis hierarchy. Wherever it is possible, the
system should disallow any inconsistent operation, but it may be very
difficult to implement such a feature. Whenever there is heavy
computational load while consistency checking, it should be possible to
temporarily disable consistency checking.

12.3.3 Code Generation

As far as code generation is concerned, the general expectation from a
CASE tool is quite low. A reasonable requirement is traceability from
source file to design data. More pragmatic support expected from a
CASE tool during code generation phase are the following:

 The CASE tool should support generation of module skeletons or
templates in one or more popular languages. It should be possible to
include copyright message, brief description of the module, author
name and the date of creation in some selectable format.

 The tool should generate records, structures, class definition
automatically from the contents of the data dictionary in one or more
popular programming languages.

 It should generate database tables for relational database
management systems.

 The tool should generate code for user interface from prototype
definition for X window and MS window based applications.

12.3.4 Test Case Generator

The CASE tool for test case generation should have the following
features:

 It should support both design and requirement testing

 It should generate test set reports in ASCII format which can be
directly imported into the test plan document.

12.4 ARCHITECTURE OF A CASE ENVIRONMENT

The architecture of a typical modern CASE environment is shown
diagrammatically in Figure 12.2. The important components of a
modern CASE environment are user interface, tool set, object
management system (OMS), and a repository. We have already seen

the characteristics of the tool set. Let us examine the other components
of a CASE environment.

Figure 12.2: Architecture of a modern CASE environment.

User interface

The user interface provides a consistent framework for accessing the
different tools thus making it easier for the users to interact with the
different tools and reducing the overhead of learning how the different
tools are used.

Object management system and repository

Different case tools represent the software product as a set of entities
such as specification, design, text data, project plan, etc. The object
management system maps these logical entities into the underlying
storage management system (repository). The commercial relational
database management systems are geared towards supporting large
volumes of information structured as simple relatively short records.
There are a few types of entities but large number of instances. By
contrast, CASE tools create a large number of entity and relation types
with perhaps a few instances of each. Thus the object management
system takes care of appropriately mapping these entities into the
underlying storage management system.

SOFTWARE MAINTENANCE

13.1 CHARACTERISTICS OF SOFTWARE MAINTENANCE
Software maintenance is becoming an important activity of a large number

of organisations. This is no surprise, given the rate of hardware obsolescence,
the immortality of a software product per se, and the demand of the user
community to see the existing software products run on newer platforms, run
in newer environments, and/or with enhanced features. When the hardware
platform changes, and a software product performs some low-level functions,
maintenance is necessary. Also, whenever the support environment of a
software product changes, the software product requires rework to cope up
with the newer interface. For instance, a software product may need to be
maintained when the operating system changes. Thus, every software
product continues to evolve after its development through maintenance
efforts.

Types of Software Maintenance

There are three types of software maintenance, which are described as
follows:

Corrective: Corrective maintenance of a software product is necessary either
to rectify the bugs observed while the system is in use.

Adaptive: A software product might need maintenance when the customers
need the product to run on new platforms, on new operating systems, or
when they need the product to interface with new hardware or software.

Perfective: A software product needs maintenance to support the new
features that users want it to support, to change different functionalities of
the system according to customer demands, or to enhance the performance
of the system.

13.1.1 Characteristics of Software Evolution

Lehman’s first law: A software product must change continually or become
progressively less useful. Every software product continues to evolve after its
development through maintenance efforts. Larger products stay in operation
for longer times because of higher replacement costs and therefore tend to
incur higher maintenance efforts. This law clearly shows that every product

irrespective of how well designed must undergo maintenance. In fact, when a
product does not need any more maintenance, it is a sign that the product is
about to be retired/discarded. This is in contrast to the common intuition that
only badly designed products need maintenance. In fact, good products are
maintained and bad products are thrown away.

Lehman’s second law: The structure of a program tends to degrade as
more and more maintenance is carried out on it. The reason for the degraded
structure is that when you add a function during maintenance, you build on
top of an existing program, often in a way that the existing program was not
intended to support. If you do not redesign the system, the additions will be
more complex that they should be. Due to quick-fix solutions, in addition to
degradation of structure, the documentations become inconsistent and
become less helpful as more and more maintenance is carried out.

Lehman’s third law: Over a program’s lifetime, its rate of development is
approximately constant. The rate of development can be quantified in terms
of the lines of code written or modified. Therefore this law states that the
rate at which code is written or modified is approximately the same during
development and maintenance.

13.1.2 Special Problems Associated with Software
Maintenance

Software maintenance work currently is typically much more expensive
than what it should be and takes more time than required. The reasons
for this situation are the following:

Software maintenance work in organisations is mostly carried out using ad
hoc techniques. The primary reason being that software maintenance is one
of the most neglected areas of software engineering. Even though software
maintenance is fast becoming an important area of work for many companies
as the software products of yester years age, still software maintenance is
mostly being carried out as fire-fighting operations, rather than through
systematic and planned activities.

Software maintenance has a very poor image in industry. Therefore, an
organisation often cannot employ bright engineers to carry out maintenance
work. Even though maintenance suffers from a poor image, the work involved
is often more challenging than development work. During maintenance it is
necessary to thoroughly understand someone else’s work, and then carry out
the required modifications and extensions.

Another problem associated with maintenance work is that the majority of

software products needing maintenance are legacy products. Though the
word legacy implies “aged” software, but there is no agreement on what
exactly is a legacy system. It is prudent to define a legacy system as any
software system that is hard to maintain. The typical problems associated
with legacy systems are poor documentation, unstructured (spaghetti code
with ugly control structure), and lack of personnel knowledgeable in the
product. Many of the legacy systems were developed long time back. But, it is
possible that a recently developed system having poor design and
documentation can be considered to be a legacy system.

13.2 SOFTWARE REVERSE ENGINEERING

Software reverse engineering is the process of recovering the design and
the requirements specification of a product from an analysis of its code.
The purpose of reverse engineering is to facilitate maintenance work by
improving the understandability of a system and to produce the
necessary documents for a legacy system. Reverse engineering is
becoming important, since legacy software products lack proper
documentation, and are highly unstructured. Even well-designed
products become legacy software as their structure degrades through a
series of maintenance efforts.

The first stage of reverse engineering usually focuses on carrying out
cosmetic changes to the code to improve its readability, structure, and
understandability, without changing any of its functionalities. A way to carry
out these cosmetic changes is shown schematically in Figure 13.1. A program
can be reformatted using any of the several available prettyprinter programs
which layout the program neatly. Many legacy software products are difficult
to comprehend with complex control structure and unthoughtful variable
names. All variables, data structures, and functions should be assigned
meaningful names wherever possible. Complex nested conditionals in the
program can be replaced by simpler conditional statements or whenever
appropriate by case statements.

Figure 13.1: A process model for reverse engineering.

After the cosmetic changes have been carried out on a legacy software, the
proces of extracting the code, design, and the requirements specification can
begin. These activities are schematically shown in Figure 13.2. In order to
extract the design, a full understanding of the code is needed. Some
automatic tools can be used to derive the data flow and control flow diagram
from the code. The structure chart (module invocation sequence and data
interchange among modules) should also be extracted. The SRS document
can be written once the full code has been thoroughly understood and the
design extracted.

Figure 13.2: Cosmetic changes carried out before reverse engineering.

13.3 SOFTWARE MAINTENANCE PROCESS MODELS

Before discussing process models for software maintenance, we need to
analyse various activities involved in a typical software maintenance
project. The activities involved in a software maintenance project are
not unique and depend on several factors such as:

(i) the extent of modification to the product required,

(ii) the resources available to the maintenance team,

(iii) the conditions of the existing product (e.g., how structured it
is, how well documented it is, etc.),

(iv) the expected project risks, etc. When the changes needed to a
software product are minor and straightforward, the code can be
directly modified and the changes appropriately reflected in all the
documents.

However, more elaborate activities are required when the required changes
are not so trivial. Usually, for complex maintenance projects for legacy
systems, the software process can be represented by a reverse engineering
cycle followed by a forward engineering cycle with an emphasis on as much
reuse as possible from the existing code and other documents.

Since the scope (activities required) for different maintenance projects vary
widely, no single maintenance process model can be developed to suit every
kind of maintenance project. However, two broad categories of process
models can be proposed.

First model

The first model is preferred for projects involving small reworks where
the code is changed directly and the changes are reflected in the
relevant documents later. This maintenance process is graphically
presented in Figure 13.3. In this approach, the project starts by
gathering the requirements for changes. The requirements are next
analysed to formulate the strategies to be adopted for code change. At
this stage, the association of at least a few members of the original
development team goes a long way in reducing the cycle time,
especially for projects involving unstructured and inadequately
documented code. The availability of a working old system to the
maintenance engineers at the maintenance site greatly facilitates the

task of the maintenance team as they get a good insight into the
working of the old system and also can compare the working of their
modified system with the old system. Also, debugging of the re-
engineered system becomes easier as the program traces of both the
systems can be compared to localise the bugs.

Second model

Figure 13.3: Maintenance process model 1.

The second model is preferred for projects where the amount of rework
required is significant. This approach can be represented by a reverse
engineering cycle followed by a forward engineering cycle. Such an
approach is also known as software re-engineering. This process model
is depicted in Figure 13.4.

Figure 13.4: Maintenance process model 2.

The reverse engineering cycle is required for legacy products. During the
reverse engineering, the old code is analysed (abstracted) to extract the
module specifications. The module specifications are then analysed to
produce the design. The design is analysed (abstracted) to produce the
original requirements specification. The change requests are then applied to
this requirements specification to arrive at the new requirements
specification. At this point a forward engineering is carried out to produce the
new code. At the design, module specification, and coding a substantial reuse
is made from the reverse engineered products.

An important advantage of this approach is that it produces a more
structured design compared to what the original product had, produces good
documentation, and very often results in increased efficiency. The efficiency
improvements are brought about by a more efficient design. However, this
approach is more costly than the first approach. An empirical study indicates
that process 1 is preferable when the amount of rework is no more than 15
per cent (see Figure 13.5).

Figure 13.5: Empirical estimation of maintenance cost versus percentage rework.

Besides the amount of rework, several other factors might affect the
decision regarding using process model 1 over process model 2 as follows:

 Re-engineering might be preferable for products which exhibit a high
failure rate.

 Re-engineering might also be preferable for legacy products having
poor design and code structure.

SOFTWARE REUSE

14.1 REUSE DEFINITION?

In software engineering, reuse refers to the practice of using existing
software components, modules, or code to build new applications or
systems, rather than creating everything from scratch. This approach can
significantly reduce development time, cost, and effort. Reuse can occur at
various levels, such as:

Code Reuse: Reusing pre-written code modules, functions, or libraries
that have been tested and optimized.

Component Reuse: Using established software components, such as
pre-built classes or services, which are integrated into new applications.

Design Reuse: Reusing design patterns, architectures, or frameworks to
solve common problems in new contexts.

System Reuse: Leveraging entire subsystems or platforms, like an
existing content management system (CMS) or customer relationship
management (CRM) system, in a new project.

The goal of software reuse is to increase productivity, improve software
quality, and reduce the effort involved in the development and
maintenance of software systems.

14.2 BASIC ISSUES IN ANY REUSE PROGRAM

The following are some of the basic issues that must be clearly
understood for starting any reuse program:

 Component creation.

 Component indexing and storing.
 Component search.

 Component understanding.
 Component adaptation.
 Repository maintenance.

Component creation: For component creation, the reusable components have

to be first identified. Selection of the right kind of components having

potential for reuse is important. In Section 14.4, we discuss domain analysis

as a promising technique which can be used to create reusable components.

Component indexing and storing

Indexing requires classification of the reusable components so that they

can be easily searched when we look for a component for reuse. The

components need to be stored in a relational database management system

(RDBMS) or an object-oriented database system (ODBMS) for efficient

access when the number of components becomes large.

Component searching

The programmers need to search for right components matching their
requirements in a database of components. To be able to search
components efficiently, the programmers require a proper method to
describe the components that they are looking for.

Component understanding

The programmers need a precise and sufficiently complete
understanding of what the component does to be able to decide whether
they can reuse the component. To facilitate understanding, the
components should be well documented and should do something simple.

Component adaptation

Often, the components may need adaptation before they can be reused,
since a selected component may not exactly fit the problem at hand.
However, tinkering with the code is also not a satisfactory solution
because this is very likely to be a source of bugs.

Repository maintenance

A component repository once is created requires continuous
maintenance. New components, as and when created have to be
entered into the repository. The faulty components have to be tracked.
Further, when new applications emerge, the older applications become

obsolete. In this case, the obsolete components might have to be
removed from the repository.

14.3 A REUSE APPROACH

A promising approach that is being adopted by many organisations is to
introduce a building block approach into the software development
process. For this, the reusable components need to be identified after
every development project is completed. The reusability of the
identified components has to be enhanced and these have to be
cataloged into a component library. It must be clearly understood that
an issue crucial to every reuse effort is the identification of reusable
components. Domain analysis is a promising approach to identify
reusable components. In the following subsections, we discuss the
domain analysis approach to create reusable components.

14.3.1 Domain Analysis

The aim of domain analysis is to identify the reusable components for a
problem domain.

Reuse domain

A reuse domain is a technically related set of application areas. A body
of information is considered to be a problem domain for reuse, if a deep
and comprehensive relationship exists among the information items as
characterised by patterns of similarity among the development
components of the software product. A reuse domain is a shared
understanding of some community, characterised by concepts,
techniques, and terminologies that show some coherence.

Examples of domains are accounting software domain, banking software
domain, business software domain, manufacturing automation software
domain, telecommunication software domain, etc.

Just to become familiar with the vocabulary of a domain requires months of
interaction with the experts. Often, one needs to be familiar with a network
of related domains for successfully carrying out domain analysis. Domain
analysis identifies the objects, operations, and the relationships among them.

During domain analysis, a specific community of software developers get

together to discuss community-wide solutions. Analysis of the application

domain is required to identify the reusable components. The actual
construction of the reusable components for a domain is called domain

engineering.

Evolution of a reuse domain

The ultimate results of domain analysis is development of problem-

oriented languages. The problem-oriented languages are also known as
application generators. These application generators, once developed

form application development standards. The domains slowly develop.

A s a domain develops, we may distinguish the various stages it

undergoes:

Stage 1 : There is no clear and consistent set of notations. Obviously, no

reusable components are available. All software is written from scratch.

Stage 2 : H e re , only experience from similar projects are used in a

development effort. This means that there is only knowledge reuse.

Stage 3 : At this stage, the domain is ripe for reuse. The set of concepts are

stabilised and the notations standardised. Standard solutions to standard

problems are available. There is both knowledge and component reuse.

Stage 4 : The domain has been fully explored. The software development for

the domain can largely be automated. Programs are not written in the

traditional sense any more. Programs are written using a domain specific
language, which is also known as an application generator.

14.3.2 Component Classification

Components need to be properly classified in order to develop an
effective indexing and storage scheme. We have already remarked that
hardware reuse has been very successful. If we look at the classification
of hardware components for clue, then we can observe that hardware
components are classified using a multilevel hierarchy. At the lowest
level, the components are described in several forms—natural language
description, logic schema, timing information, etc. The higher the level
at which a component is described, the more is the ambiguity. This has
motivated the Prieto-Diaz’s classification scheme.

Prieto-Diaz’s classification scheme

Each component is best described using a number of different
characteristics or facets. For example, objects can be classified using
the following:

 Actions they embody.

 Objects they manipulate.
 Data structures used.
 Systems they are part of, etc.

Prieto-Diaz’s faceted classification scheme requires choosing an n-tuple that

best fits a component. Faceted classification has advantages over

enumerative classification. Strictly enumerative schemes use a pre-defined

hierarchy. Therefore, these force you to search for an item that best fits the

component to be classified. This makes it very difficult to search a required

component. Though cross referencing to other items can be included, the

resulting network becomes complicated.

14.3.3 Searching

The domain repository may contain thousands of reuse items. In such
large domains, what is the most efficient way to search an item that

one is looking for? A popular search technique that has proved to be
very effective is one that provides a web interface to the repository.
Using such a web interface, one would search an item using an
approximate automated search using key words, and then from these
results would do a browsing using the links provided to look up related
items. The approximate automated search locates products that appear
to fulfill some of the specified requirements. The items located through
the approximate search serve as a starting point for browsing the
repository. These serve as the starting point for browsing the
repository.

The developer may follow links to other products until a sufficiently good
match is found. Browsing is done using the keyword- to-keyword,
keyword-to-product, and product- to-product links. These links help to
locate additional products and compare their detailed attributes. Finding
a satisfactory item from the repository may require several iterations of
approximate search followed by browsing. With each iteration, the
developer would get a better understanding of the available products
and their differences. However, we must remember that the items to be
searched may be components, designs, models, requirements, and even
knowledge.

14.3.4 Repository Maintenance

Repository maintenance involves entering new items, retiring those
items which are no more necessary, and modifying the search attributes
of items to improve the effectiveness of search. Also, the links relating
the different items may need to be modified to improve the
effectiveness of search. The software industry is always trying to
implement something that has not been quite done before. As patterns
requirements emerge, new reusable components are identified, which
may ultimately become more or less the standards. However, as
technology advances, some components which are still reusable, do not
fully address the current requirements. On the other hand, restricting
reuse to highly mature components,can sacrifice potential reuse
opportunity. Making a product available before it has been thoroughly
assessed can be counter productive. Negative experiences tend to
dissolve the trust in the entire reuse framework.

14.3.5 Reuse without Modifications

.Once standard solutions emerge, no modifications to the program parts
may be necessary. One can directly plug in the parts to develop his
application. Reuse without modification is much more useful than the
classical program libraries. These can be supported by compilers through
linkage to run-time support routines (application generators).

Application generators translate specifications into application programs.
The specification usually is written using 4GL. The specification might also be
in a visual form. The programmer would create a graphical drawing using
some standard available symbols. Defining what is variant and what is
invariant corresponds to parameterising a subroutine to make it reusable. A
subroutine’s parameters are variants because the programmer can specify
them while calling the subroutine. Parts of a subroutine that are not
parameterised, cannot be changed.

Application generators have been applied successfully to data processing
application, user interface, and compiler development. Application generators
are less successful with the development of applications with close interaction
with hardware such as real-time systems.

14.4 REUSE AT ORGANISATION LEVEL

Reusability should be a standard part in all software development
activities including specification, design, implementation, test, etc.
Ideally, there should be a steady flow of reusable components. In

practice, however, things are not so simple.
Extracting reusable components from projects that were completed in the

past presents an important difficulty not encountered while extracting a
reusable component from an ongoing project—typically, the original
developers are no longer available for consultation. Development of new
systems leads to an assortment of products, since reusability ranges from
items whose reusability is immediate to those items whose reusability is
highly improbable.

Achieving organisation-level reuse requires adoption of the following steps:

 Assess of an item’s potential for reuse.
 Refine the item for greater reusability.
 Enter the product in the reuse repository.

In the following subsections, we elaborate these three steps required to
achieve organisation- level reuse.

Assessing a product’s potential for reuse

Assessment of a components reuse potential can be obtained from an
analysis of a questionnaire circulated among the developers. The
questionnaire can be devised to assess a component’s reusability. The
programmers working in similar application domain can be used to
answer the questionnaire about the product’s reusability. Depending on
the answers given by the programmers, either the component be taken
up for reuse as it is, it is modified and refined before it is entered into
the reuse repository, or it is ignored. A sample questionnaire to assess
a component’s reusability is the following:

 Is the component’s functionality required for implementation of
systems in the future?

 How common is the component’s function within its domain?

 Would there be a duplication of functions within the domain if the
component is taken up?

 Is the component hardware dependent?
 Is the design of the component optimised enough?

 If the component is non-reusable, then can it be decomposed to yield
some reusable components?

 Can we parametrise a non-reusable component so that it becomes
reusable?

Refining products for greater reusability

For a product to be reusable, it must be relatively easy to adapt it to
different contexts. Machine dependency must be abstracted out or
localised using data encapsulation techniques. The following
refinements may be carried out:

Name generalisation: The names should be general, rather than being directly

related to a specific application.

Operation generalisation: Operations should be added to make the component

more general. Also, operations that are too specific to an application can be

removed.

Exception generalisation: This involves checking each component to see which

exceptions it might generate. For a general component, several types of

exceptions might have to be handled.

Handling portability problems: Programs typically make some assumption

regarding the representation of information in the underlying machine. These
assumptions are in general not true for all machines. The programs also often
need to call some operating system functionality and these calls may not be
the same on all machines. Also, programs use some function libraries, which
may not be available on all host machines. A portability solution to overcome
these problems is shown in Figure 14.1. The portability solution suggests that
rather than call the operating system and I/O procedures directly, abstract
versions of these should be called by the application program. Also, all
platform-related calls should be routed through the portability interface. One
problem with this solution is the significant overhead incurred, which makes it
inapplicable to many real-time systems and applications requiring very fast
response.

Figure 14.1: Improving reusability of a component by using a portability interface.

14.4.1 Current State of Reuse

In spite of all the shortcomings of the state-of-the-art reuse techniques,
it is the experience of several organisations that most of the factors
inhibiting an effective reuse program are non-technical. Some of these
factors are the following:

 Need for commitment from the top management.
 Adequate documentation to support reuse.
 Adequate incentive to reward those who reuse. Both the people

contributing new reusable components and those reusing the existing
components should be rewarded to start a reuse program and keep it
going.

 Providing access to and information about reusable components.
Organisations are often hesitant to provide an open access to the
reuse repository for the fear of the reuse components finding a way to
their competitors.

	2. Software Life Cycle Models
	INTRODUCTION
	What is software engineering?
	1.1 EVOLUTION—FROM AN ART FORM TO AN ENGINEERING DISCIPLINE
	1.1.1 Evolution of an Art into an Engineering Discipline
	1.1.2 Evolution Pattern for Engineering Disciplines
	1.1.3 A Solution to the Software Crisis

	1.2 SOFTWARE DEVELOPMENT PROJECTS
	1.2.1 Types of Software Development Projects
	Software products
	Software services
	What is wrong with the exploratory style of software development?
	Summary of the shortcomings of the exploratory style of software development:
	1.3.1 Perceived Problem Complexity: An Interpretation Based on
	1.3.2 Principles Deployed by Software Engineering to Overcome Human Cognitive Limitations
	Abstraction
	Decomposition
	Why study software engineering?

	1.4 EMERGENCE OF SOFTWARE ENGINEERING
	1.4.1 Early Computer Programming
	1.4.2 High-level Language Programming
	1.4.3 Control Flow-based Design
	1.4.4 Data Structure-oriented Design
	1.4.5 Data Flow-oriented Design
	DFDs: A crucial program representation for procedural program design
	1.4.6 Object-oriented Design
	1.4.7 What Next?
	1.4.8 Other Developments

	1.5 NOTABLE CHANGES IN SOFTWARE DEVELOPMENT PRACTICES
	1.6 COMPUTER SYSTEMS ENGINEERING

	SOFTWARE LIFE CYCLE MODELS
	2.1 WATERFALL MODEL AND ITS EXTENSIONS
	2.1.1 Classical Waterfall Model

	Phases of the classical waterfall model
	Feasibility study
	Requirements analysis and specification
	Design
	Coding and unit testing
	Integration and system testing
	Maintenance
	Shortcomings of the classical waterfall model
	Is the classical waterfall model useful at all?
	2.1.2 Iterative Waterfall Model

	Phase containment of errors
	Phase overlap
	Shortcomings of the iterative waterfall model
	2.1.3 V-Model

	Advantages of V-model
	Disadvantages of V-model
	2.1.4 Prototyping Model
	Necessity of the prototyping model

	Life cycle activities of prototyping model
	Strengths of the prototyping model
	Weaknesses of the prototyping model
	2.1.5 Incremental Development Model

	Life cycle activities of incremental development model
	Advantages
	2.1.6 Evolutionary Model

	Advantages (1)
	Disadvantages
	Applicability of the evolutionary model
	2.2 RAPID APPLICATION DEVELOPMENT (RAD)

	Main motivation
	How does RAD facilitate accommodation of change requests?
	How does RAD facilitate faster development?
	2.2.1 Applicability of RAD Model

	Application characteristics that render RAD unsuitable
	2.2.2 Comparison of RAD with Other Models
	RAD versus iterative waterfall model
	2.3 AGILE DEVELOPMENT MODELS
	2.3.1 Essential Idea behind Agile Models

	Advantages and disadvantages of agile methods
	Agile model versus iterative waterfall model
	Agile versus exploratory programming
	2.3.3 Extreme Programming Model

	Good practices that need to be practised to the extreme
	Basic idea of extreme programming model
	Applicability of extreme programming model
	Project characteristics not suited to development using agile models
	2.3.4 Scrum Model
	2.4 SPIRAL MODEL

	Risk handling in spiral model
	2.4.1 Phases of the Spiral Model

	Advantages/pros and disadvantages/cons of the spiral model
	Spiral model as a meta model
	2.5 A COMPARISON OF DIFFERENT LIFE CYCLE MODELS
	2.5.1 Selecting an Appropriate Life Cycle Model for a Pro ject

	SOFTWARE PROJECT MANAGEMENT
	3.1 SOFTWARE PROJECT MANAGEMENT COMPLEXITIES
	3.2 RESPONSIBILITIES OF A SOFTWARE PROJECT MANAGER
	3.2.1 Job Responsibilities for Managing Software Projects
	3.2.2 Skills Necessary for Managing Software Projects

	3.3 METRICS FOR PROJECT SIZE ESTIMATION
	3.3.1 Lines of Code (LOC)
	3.3.2 Function Point (FP) Metric
	Function point (FP) metric computation
	Step 1: UFP computation
	Step 2: Refine parameters
	Step 3: Refine UFP based on complexity of the overall project
	Answer:

	Critical comments on the function point and feature point metrics

	3.4 PROJECT ESTIMATION TECHNIQUES
	3.4.1 Empirical Estimation Techniques
	3.4.2 Heuristic Techniques
	3.4.3 Analytical Estimation Techniques

	3.5 EMPIRICAL ESTIMATION TECHNIQUES
	3.5.1 Expert Judgement
	3.5.2 Delphi Cost Estimation

	3.6 COCOMO—A HEURISTIC ESTIMATION TECHNIQUE
	3.6.1 Basic COCOMO Model
	Three basic classes of software development projects
	What is a person-month?
	General form of the COCOMO expressions
	Observations from the development time—size plot
	Cost estimation
	Implications of effort and duration estimate
	3.6.2 Intermediate COCOMO
	3.6.3 Complete COCOMO
	Application composition model
	Early design model
	Post-architecture model

	3.7 HALSTEAD’S SOFTWARE SCIENCE—AN ANALYTICAL TECHNIQUE
	Operators and Operands for the ANSI C language
	3.7.1 Length and Vocabulary
	3.7.2 Program Volume
	3.7.3 Potential Minimum Volume
	3.7.4 Effort and Time
	3.7.5 Length Estimation

	3.8 RISK MANAGEMENT
	3.8.1 Risk Identification
	Classification of risks in a project
	3.8.2 Risk Assessment
	3.8.3 Risk Mitigation

	REQUIREMENTS ANALYSIS AND SPECIFICATION
	4.1 REQUIREMENTS GATHERING AND ANALYSIS
	4.1.1 Requirements Gathering
	4.1.2 Requirements Analysis

	problems existing in the gathered requirements?
	4.2 SOFTWARE REQUIREMENTS SPECIFICATION (SRS)
	4.2.1 Users of SRS Document
	4.2.2 Why Spend Time and Resource to Develop an SRS Document?
	4.2.3 Characteristics of a Good SRS Document
	4.2.4 Attributes of Bad SRS Documents
	4.2.5 Important Categories of Customer Requirements

	Functional requirements
	Non-functional requirements
	Goals of implementation
	4.2.6 Functional Requirements
	4.2.7 How to Identify the Functional Requirements?
	4.2.8 How to Document the Functional Requirements?
	4.2.9 Traceability
	4.2.10 Organisation of the SRS Document
	4.3 FORMAL SYSTEM SPECIFICATION
	4.3.1 What is a Formal Technique?

	Syntactic domains
	Semantic domains
	Satisfaction relation
	Model versus property-oriented methods
	4.3.2 Operational Semantics

	Merits and limitations of formal methods
	4.4 AXIOMATIC SPECIFICATION

	How to develop an axiomatic specifications?
	4.5 ALGEBRAIC SPECIFICATION

	Properties of algebraic specifications
	4.5.1 Structured Specification

	Pros and Cons of algebraic specifications

	SOFTWARE DESIGN
	5.1 OVERVIEW OF THE DESIGN PROCESS
	5.1.1 Outcome of the Design Process
	5.1.2 Classification of Design Activities
	5.1.3 Classification of Design Methodologies
	Do design techniques result in unique solutions?

	5.2 HOW TO CHARACTERISE A GOOD SOFTWARE DESIGN?
	5.2.1 Understandability of a Design: A Ma jor Concern
	An understandable design is modular and layered
	Modularity
	Layered design

	5.3 COHESION AND COUPLING
	Functional independence
	5.3.1 Classification of Cohesiveness
	5.3.2 Classification of Coupling

	5.4 APPROACHES TO SOFTWARE DESIGN
	5.4.1 Function-oriented Design
	5.4.2 Object-oriented Design
	O b je c t - o r i e n t e d v e r s u s function-oriented design approaches
	Automated fire-alarm system—customer requirements

	FUNCTION-ORIENTED SOFTWARE DESIGN
	6.1 OVERVIEW OF SA/SD METHODOLOGY
	6.2 STRUCTURED ANALYSIS
	6.2.1 Data Flow Diagrams (DFDs)
	Primitive symbols used for constructing DFDs
	Important concepts associated with constructing DFD models
	Synchronous and asynchronous operations
	Data dictionary
	Data definition

	6.3 DEVELOPING THE DFD MODEL OF A SYSTEM
	6.3.1 Context Diagram
	6.3.2 Level 1 DFD
	Decomposition
	Numbering of bubbles
	Balancing DFDs
	How far to decompose?
	Commonly made errors while constructing a DFD model
	6.3.3 Extending DFD Technique to Make it Applicable to Real-time Systems

	6.4 STRUCTURED DESIGN
	6.4.1 Transformation of a DFD Model into Structure Chart
	Transform analysis
	Transaction analysis

	6.5 DETAILED DESIGN
	6.6 DESIGN REVIEW

	CODING AND TESTING
	10.1 CODING
	10.2 CODE REVIEW
	10.2.1 Code Walkthrough
	10.2.2 Code Inspection
	10.2.3 Clean Room Testing

	10.3 SOFTWARE DOCUMENTATION
	10.3.1 Internal Documentation
	10.3.2 External Documentation
	Gunning’s fog index

	10.4 TESTING
	10.4.1 Basic Concepts and Terminologies
	How to test a program?
	Terminologies
	Verification versus validation
	10.4.2 Testing Activities
	10.4.3 Why Design Test Cases?
	10.4.4 Testing in the Large versus Testing in the Small

	10.5 BLACK-BOX TESTING
	10.5.1 Equivalence Class Partitioning
	10.5.2 Boundary Value Analysis
	10.5.3 Summary of the Black-box Test Suite Design Approach

	10.6 WHITE-BOX TESTING
	10.6.1 Basic Concepts
	Fault-based testing
	Coverage-based testing
	Testing criterion for coverage-based testing
	Stronger versus weaker testing
	10.6.2 Statement Coverage
	10.6.3 Branch Coverage
	10.6.4 Multiple Condition Coverage
	10.6.5 Path Coverage
	Control flow graph (CFG)
	10.6.6 McCabe’s Cyclomatic Complexity Metric
	How is path testing carried out by using computed McCabe’s cyclomatic metric value?
	Steps to carry out path coverage-based testing
	10.6.7 Data Flow-based Testing
	10.6.8 Mutation Testing

	10.7 DEBUGGING
	10.7.1 Debugging Approaches
	Brute force method
	Backtracking
	Cause elimination method
	Program slicing
	10.7.2 Debugging Guidelines

	10.8 INTEGRATION TESTING
	Big-bang approach to integration testing
	Bottom-up approach to integration testing
	Top-down approach to integration testing
	Mixed approach to integration testing
	10.8.1 Phased versus Incremental Integration Testing

	10.9 TESTING OBJECT-ORIENTED PROGRAMS
	10.9.1 What is a Suitable Unit for Testing Object-oriented Programs?
	10.9.2 Do Various Object-orientation Features Make Testing Easy?
	10.9.3 Why are Traditional Techniques Considered Not Satisfactory for Testing Object-oriented Programs?
	10.9.4 Grey-Box Testing of Object-oriented Programs
	State-model-based testing
	Use case-based testing
	Class diagram-based testing
	Sequence diagram-based testing

	10.9.5 Integration Testing of Object-oriented Programs
	10.9.6 Smoke Testing

	10.10 SOME GENERAL ISSUES ASSOCIATED WITH TESTING
	Test documentation

	USER INTERFACE DESIGN
	9.1 CHARACTERISTICS OF A GOOD USER INTERFACE
	9.2 TYPES OF USER INTERFACES
	9.2.1 Command Language-based Interface
	9.2.2 Menu-based Interface
	9.2.3 Direct Manipulation Interfaces

	9.3 A USER INTERFACE DESIGN METHODOLOGY
	9.3.1 Implications of Human Cognition Capabilities on User Interface Design
	9.3.2 A GUI Design Methodology
	Examining the use case model
	Task and ob ject modelling
	Metaphor selection
	Interaction design and rough layout
	Detailed presentation and graphics design
	GUI construction
	User interface inspection

	SOFTWARE DESIGN
	FUNCTION-ORIENTED SOFTWARE DESIGN
	6.1 OVERVIEW OF SA/SD METHODOLOGY
	6.2 STRUCTURED ANALYSIS
	6.2.1 Data Flow Diagrams (DFDs)
	Primitive symbols used for constructing DFDs
	Important concepts associated with constructing DFD models
	Synchronous and asynchronous operations
	Data dictionary
	Data definition

	6.3 DEVELOPING THE DFD MODEL OF A SYSTEM
	6.3.1 Context Diagram
	6.3.2 Level 1 DFD
	Decomposition
	Numbering of bubbles
	Balancing DFDs
	How far to decompose?
	Commonly made errors while constructing a DFD model
	6.3.3 Extending DFD Technique to Make it Applicable to Real-time Systems

	6.4 STRUCTURED DESIGN
	6.4.1 Transformation of a DFD Model into Structure Chart
	Transform analysis
	Transaction analysis

	6.5 DETAILED DESIGN
	6.6 DESIGN REVIEW

	CODING AND TESTING
	10.1 CODING
	10.2 CODE REVIEW
	10.2.1 Code Walkthrough
	10.2.2 Code Inspection
	10.2.3 Clean Room Testing

	10.3 SOFTWARE DOCUMENTATION
	10.3.1 Internal Documentation
	10.3.2 External Documentation
	Gunning’s fog index

	10.4 TESTING
	10.4.1 Basic Concepts and Terminologies
	How to test a program?
	Terminologies
	Verification versus validation
	10.4.2 Testing Activities
	10.4.3 Why Design Test Cases?
	10.4.4 Testing in the Large versus Testing in the Small

	10.5 BLACK-BOX TESTING
	10.5.1 Equivalence Class Partitioning
	10.5.2 Boundary Value Analysis
	10.5.3 Summary of the Black-box Test Suite Design Approach

	10.6 WHITE-BOX TESTING
	10.6.1 Basic Concepts
	Fault-based testing
	Coverage-based testing
	Testing criterion for coverage-based testing
	Stronger versus weaker testing
	10.6.2 Statement Coverage
	10.6.3 Branch Coverage
	10.6.4 Multiple Condition Coverage
	10.6.5 Path Coverage
	Control flow graph (CFG)
	10.6.6 McCabe’s Cyclomatic Complexity Metric
	How is path testing carried out by using computed McCabe’s cyclomatic metric value?
	Steps to carry out path coverage-based testing
	10.6.7 Data Flow-based Testing
	10.6.8 Mutation Testing

	10.7 DEBUGGING
	10.7.1 Debugging Approaches
	Brute force method
	Backtracking
	Cause elimination method
	Program slicing
	10.7.2 Debugging Guidelines

	10.8 INTEGRATION TESTING
	Big-bang approach to integration testing
	Bottom-up approach to integration testing
	Top-down approach to integration testing
	Mixed approach to integration testing
	10.8.1 Phased versus Incremental Integration Testing

	10.9 TESTING OBJECT-ORIENTED PROGRAMS
	10.9.1 What is a Suitable Unit for Testing Object-oriented Programs?
	10.9.2 Do Various Object-orientation Features Make Testing Easy?
	10.9.3 Why are Traditional Techniques Considered Not Satisfactory for Testing Object-oriented Programs?
	10.9.4 Grey-Box Testing of Object-oriented Programs
	State-model-based testing
	Use case-based testing
	Class diagram-based testing
	Sequence diagram-based testing

	10.9.5 Integration Testing of Object-oriented Programs
	10.9.6 Smoke Testing

	10.10 SOME GENERAL ISSUES ASSOCIATED WITH TESTING
	Test documentation
	Regression testing

	CODING AND TESTING
	SOFTWARE RELIABILITY AND QUALITY MANAGEMENT
	11.1 SOFTWARE RELIABILITY
	11.1.1 Hardware versus Software Reliability
	11.1.2 Reliability Metrics of Software Products
	11.1.3 Reliability Growth Modelling
	Jelinski and Moranda model
	Littlewood and Verall’s model
	11.2 SOFTWARE QUALITY
	11.3 SOFTWARE QUALITY MANAGEMENT SYSTEM
	Managerial structure and individual responsibilities
	Quality system activities
	11.3.1 Evolution of Quality Systems
	11.3.2 Product Metrics versus Process Metrics

	11.4 ISO 9000
	11.4.1 What is ISO 9000 Certification?
	11.4.2 ISO 9000 for Software Industry
	11.4.3 Why Get ISO 9000 Certification?
	11.4.4 How to Get ISO 9000 Certification?
	11.4.5 Summary of ISO 9001 Requirements
	Management responsibility (4.1)
	Quality system (4.2)
	Contract reviews (4.3)
	Design control (4.4)
	Document control (4.5)
	Purchasing (4.6)
	Purchaser supplied product (4.7)
	Product identification (4.8)
	Process control (4.9)
	Inspection and testing (4.10)
	Inspection, measuring and test equipment (4.11)
	Inspection and test status (4.12)
	Control of non-conforming product (4.13)
	Corrective action (4.14)
	Handling (4.15)
	Quality records (4.16)
	Quality audits (4.17)
	Training (4.18)
	11.4.6 Salient Features of ISO 9001 Requirements

	11.5 SEI CAPABILITY MATURITY MODEL
	Level 1: Initial
	Level 2: Repeatable
	Level 3: Defined
	Level 4: Managed
	Level 5: Optimising
	11.5.1 Comparison Between ISO 9000 Certification and SEI/CMM
	11.5.2 Is SEI CMM Applicable to Small Organisations?
	11.5.3 Capability Maturity Model Integration (CMMI)

	11.6 SIX SIGMA

	COMPUTER AIDED SOFTWARE ENGINEERING
	12.1 CASE AND ITS SCOPE
	12.2 CASE ENVIRONMENT
	12.2.1 Benefits of CASE

	12.3 CASE SUPPORT IN SOFTWARE LIFE CYCLE
	12.3.1 Prototyping Support
	12.3.2 Structured Analysis and Design
	12.3.3 Code Generation
	12.3.4 Test Case Generator

	12.4 ARCHITECTURE OF A CASE ENVIRONMENT
	User interface
	Object management system and repository

	SOFTWARE MAINTENANCE
	13.1 CHARACTERISTICS OF SOFTWARE MAINTENANCE
	Types of Software Maintenance
	13.1.1 Characteristics of Software Evolution
	13.1.2 Special Problems Associated with Software Maintenance

	13.2 SOFTWARE REVERSE ENGINEERING
	13.3 SOFTWARE MAINTENANCE PROCESS MODELS
	First model
	Second model

	SOFTWARE REUSE
	14.1 REUSE DEFINITION?
	In software engineering, reuse refers to the practice of using existing software components, modules, or code to build new applications or systems, rather than creating everything from scratch. This approach can significantly reduce development time, ...
	Code Reuse: Reusing pre-written code modules, functions, or libraries that have been tested and optimized.
	Component Reuse: Using established software components, such as pre-built classes or services, which are integrated into new applications.
	Design Reuse: Reusing design patterns, architectures, or frameworks to solve common problems in new contexts.
	System Reuse: Leveraging entire subsystems or platforms, like an existing content management system (CMS) or customer relationship management (CRM) system, in a new project.
	The goal of software reuse is to increase productivity, improve software quality, and reduce the effort involved in the development and maintenance of software systems.
	14.2 BASIC ISSUES IN ANY REUSE PROGRAM
	Component indexing and storing
	Component searching
	Component understanding
	Component adaptation
	Repository maintenance

	14.3 A REUSE APPROACH
	14.3.1 Domain Analysis
	Reuse domain
	Evolution of a reuse domain
	14.3.2 Component Classification
	Prieto-Diaz’s classification scheme
	14.3.3 Searching
	14.3.4 Repository Maintenance
	14.3.5 Reuse without Modifications

	14.4 REUSE AT ORGANISATION LEVEL
	Assessing a product’s potential for reuse
	Refining products for greater reusability
	14.4.1 Current State of Reuse

