
UNIT-1 NOTES

Operating Systems Fundamentals Page 1

UNIT – I

OPERATING SYSTEMS OVERVIEW: Introduction-operating system operations, process

management,memory management, storage management, protection and security, System

structures-Operating system services, systems calls, Types of system calls, system programs

(T1: Ch-1, 2) (1.1-1.9, 2.1-2.5)

What is an Operating System?

A program that acts as an intermediary between a user of a computer and the computer

hardware

Operating system goals:

• Execute user programs and make solving user problems easier

• Make the computer system convenient to use

• Use the computer hardware in an efficient manner

Computer System Structure

Computer system can be divided into four components

• Hardware – provides basic computing resources

CPU, memory, I/O devices

• Operating system

Controls and coordinates use of hardware among various applications and users

• Application programs – define the ways in which the system resources are used to

solve the computing problems of the users

Word processors, compilers, web browsers, database systems, video games

• Users

People, machines, other computers

Four Components of a Computer System

UNIT-1 NOTES

Operating Systems Fundamentals Page 2

Operating System Definition

• An operating system as a resource allocator. A computer system has many resources

that may be required to solve a problem: CPU time, memory space, file-storage space,

I/O devices, and so on. The operating system acts as the manager of these resources.

• Decides between conflicting requests for efficient and fair resource use

• OS is a control program A control program manages the execution of user programs

to prevent errors and improper use of the computer. It is especially concerned with

the operation and control of I/O devices.

• “OS is the one program running at all times on the computer” is the kernel.

Everything else is either a system program (ships with the operating system) or an

application program

• System programs which are associated with the operating system but are not part of

the kernel, and application programs which include all programs not associated with

the operation of the system.)

Computer Startup

• bootstrap program is loaded at power-up or reboot

• Typically stored in ROM or EPROM, generally known as firmware

• Initializes all aspects of system

• Loads operating system kernel and starts execution

• Once the kernel is loaded and executing, it can start providing services to the system

and its users. Some services are provided outside of the kernel, by system programs

that are loaded into memory at boot time to become system processes, or system

daemons that run the entire time the kernel is running. On UNIX, the first system

process is “init,” and it starts many other daemons. Once this phase is complete, the

system is fully booted, and the system waits for some event to occur.

Computer System Organization

• Computer-system operation

• One or more CPUs, device controllers connect through common bus providing access

to shared memory

• Concurrent execution of CPUs and devices competing for memory cycles

UNIT-1 NOTES

Operating Systems Fundamentals Page 3

Computer-System Operation

• I/O devices and the CPU can execute concurrently

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local buffers

• Device controller informs CPU that it has finished its operation by causing An interrupt

• The occurrence of an event is usually signaled by an Interrupt from either the

hardware or the software. Hardware may trigger an interrupt at any time by sending a

signal to the CPU, usually by way of the system bus. Software may trigger an interrupt

executing a special operation called a System call (also called a monitor call)

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service routine generally, through the

interruptvector, which contains the addresses of all the service routines

• Interrupt architecture must save the address of the interrupted instruction

• Incoming interrupts are disabled while another interrupt is being processed to prevent

a lost interrupt. A trap is a software-generated interrupt caused either by an error or a

user request

• An operating system is interrupt driven

Interrupt Handling

• The operating system preserves the state of the CPU by storing registers and the

program counter

• Determines which type of interrupt has occurred:

• Separate segments of code determine what action should be taken for each type of

interrupt

UNIT-1 NOTES

Operating Systems Fundamentals Page 4

Interrupt Timeline

I/O Structure

• A general-purpose computer system consists of CPUs and multiple device controllers

that are connected through a common bus. Each device controller is in charge of a

specific type of device. Depending on the controller, more than one device may be

attached. For instance, seven or more devices can be attached to the small computer-

systems interface (SCSI) controller.

• A device controller maintains some local buffer storage and a set of special-purpose

registers. The device controller is responsible for moving the data between the

peripheral devices that it controls and its local buffer storage. Typically, operating

systems have a device driver for each device controller. This device driver

understands the device controller and provides the rest of the operating system with a

uniform interface to the device.

• To start an I/O operation, the device driver loads the appropriate registers within the

device controller. The device controller, in turn, examines the contents of these

registers to determine what action to take (such as “read a character from the

keyboard”). The controller starts the transfer of data from the device to its local buffer.

Once the transfer of data is complete, the device controller informs the device driver

via an interrupt that it has finished its operation. The device driver then returns

control to the operating system, possibly returning the data or a pointer to the data if

the operation was a read. For other operations, the device driver returns status

information.

• System call – request to the operating system to allow user to wait for I/O completion

• Device-status table contains entry for each I/O device indicating its type, address,

and state

UNIT-1 NOTES

Operating Systems Fundamentals Page 5

• Operating system indexes into I/O device table to determine device status and to

modify table entry to include interrupt

Storage Structure

The CPU can load instructions only from memory, so any programs to run must be stored

there. General-purpose computers run most of their programs from rewriteable memory,

called main memory (also called or RAM). Main commonly is implemented in a

semiconductor technology called DRAM.

All forms of memory provide an array of words. Each word has its own address.

Interaction is achieved through a sequence of load or store instructions to specific memory

addresses. The load instruction moves a word from main memory to an internal register

within the CPU, whereas the store instruction moves the content of a register to main

memory.

Ideally, we want the programs and data to reside in main memory permanently. This

arrangement usually is not possible for the following two reasons:

1) Main memory is usually too small to store all needed programs and data permanently.

2) Main memory is a volatile storage device that loses its contents when power is turned

off or otherwise lost.

Thus, most computer systems provide secondary storage as an extension of main memory.

The main requirement for secondary storage is that it be able to hold large quantities of data

permanently. The most common secondary-storage device is a magnetic disk which

provides storage for both programs and data.

• Main memory – only large storage media that the CPU can access directly

• Secondary storage – extension of main memory that provides large nonvolatile storage

capacity

• Magnetic disks – rigid metal or glass platters covered with magnetic recording

material

Storage Hierarchy

• Storage systems organized in hierarchy

• Speed

UNIT-1 NOTES

Operating Systems Fundamentals Page 6

• Cost

• Volatility

Caching – copying information into faster storage system; main memory can be viewed as a

last cache for secondary storage

Computer-System Architecture

• Most systems use a single general-purpose processor (PDAs through mainframes)

• Most systems have special-purpose processors as well

• Multiprocessors systems growing in use and importance

• Also known as parallel systems, tightly-coupled systems

Advantages include

1.Increased throughput

2.Economy of scale

3.Increased reliability – graceful degradation or fault tolerance

Two types

1.Asymmetric Multiprocessing

2.Symmetric Multiprocessing

UNIT-1 NOTES

Operating Systems Fundamentals Page 7

How a Modern Computer Works

Symmetric Multiprocessing Architecture

Multiprocessing adds CPUs to increase computing power. If the CPU has an integrated

memory controller, then adding CPUs can also increase the amount of memory addressable in

the system. Either way, multiprocessing can cause a system to change its memory access

model from uniform memory access to non-uniform memory access UMA is defined as the

situation in which access to any RAM from any CPU takes the same amount of time. With

NUMA, some parts of memory may take longer to access than other parts, creating a

performance penalty. Operating systems can minimize the NUMA penalty through resource

management.

UNIT-1 NOTES

Operating Systems Fundamentals Page 8

A Dual-Core Design

We show a dual-core design with two cores on the samechip. In this design, each core has its

own register set as well as its own localcache; other designs might use a shared cache or a

combination of local andshared caches.

Blade servers are a recent development in which multiple processor boards, I/0 boards, and

networking boards are placed in the same chassis. The difference between these and

traditional multiprocessor systems is that each blade-processor board boots independently

and runs its own operating system.

Clustered Systems

Another type of multiprocessor system is a clustered system, which gathers together multiple

CPUs. Clustered systems differ from the multiprocessor systems (loosely coupled). Clustering

is usually used to provide high-availability service — that is, service will continue even if one

or more systems in the cluster fail.

Clustering can be structured asymmetrically or symmetrically. In asymmetric clustering,

one machine is in hot-standby mode while the other is running the applications. The hot-

standby host machine does nothing but monitor the active server. If that server fails, the hot-

standby host becomes the active server. In symmetric mode, two or more hosts are running

applications and are monitoring each other. This mode is obviously more efficient, as it uses

all of the available hardware. It does require that more than one application be available to

run.

However, applications must be written to take advantage of the cluster by using a technique

known as parallelization which consists of dividing a program into separate components

that run in parallel on individual computers in the cluster.

UNIT-1 NOTES

Operating Systems Fundamentals Page 9

Because most operating systems lack support for simultaneous data access by multiple

hosts, parallel clusters are usually accomplished by use of special versions of software and

special releases of applications. For example, Oracle Real Application Cluster is a version of

Oracle's database that has been designed to run on a parallel cluster. Each machine runs

Oracle, and a layer of software tracks access to the shared disk. Each machine has full access

to all data in the database. To provide this shared access to data, the system must also supply

access control and locking to ensure that no conflicting operations occur. This function,

commonly known as a is distributed lock manager (DLM).

Operating System Structure

• Multiprogramming needed for efficiency

• Single user cannot keep CPU and I/O devices busy at all times

• Multiprogramming organizes jobs (code and data) so CPU always has one to Execute a

subset of total jobs in system is kept in memory

• Main memory is too small to accommodate all jobs, the jobs are kept initially on the

disk in the Job pool. This pool consists of all processes residing on disk awaiting

allocation of main memory.

• The operating system picks and begins to execute one of the jobs in memory.

• One job selected and run via job scheduling

• When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs so

frequently that users can interact with each job while it is running, creating

interactive computing

UNIT-1 NOTES

Operating Systems Fundamentals Page 10

Memory Layout for Multi programmed System

Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing

systems, the CPU executes multiple jobs by switching among them, but the switches occur so

frequently that the users can interact with each program while it is running.

Time sharing requires an interactive computer system, which provides direct

communication between the user and the system. The user gives instructions to the operating

system or to a program directly, using a input device such as a keyboard, mouse, touch pad, or

touch screen, and waits for immediate results on an output device. Accordingly, the response

time should be short—typically less than one second.

A time-shared operating system allows many users to share the computer

simultaneously. Since each action or command in a time-shared system tends to be short, only

a little CPU time is needed for each user.A program loaded into memory and executing is

called a process. When a process executes, it typically executes for only a short time before it

either finishes or needs to perform I/O.

Time sharing and multiprogramming require that several jobs be kept simultaneously

in memory. If several jobs are ready to be brought into memory,and if there is not enough

room for all of them, then the system must chooseamong them. Making this decision involves

job scheduling.

If several jobs are ready to run at the same time, the system must choose which job

will run first. Making this decision is CPU scheduling. In a time-sharing system, the operating

system must ensure reasonable response time. This goal is sometimes accomplished through

swapping, whereby processes are swapped in and out of main memory to the disk.

UNIT-1 NOTES

Operating Systems Fundamentals Page 11

A more common method for ensuring reasonable response time is virtual memory, a

technique that allows the execution of a process that is not completely in memory. The main

advantage of the virtual-memory scheme is that it enables users to run programs that are

larger than actual physical memory

Operating-System Operations

Modern operating systems are interrupt driven. If there are no processes to execute, no I/O

devices to service, and no users to whom to respond, an operating system will sit quietly,

waiting for something to happen. Events are almost always signaled by the occurrence of an

interrupt or a trap. A trap (or an exception) is a software-generated interrupt caused either

by an error (for example, division by zero or invalid memory access) or by a specific request

from a user program that an operating-system service be performed. For each type of

interrupt, separate segments of code in the operating system determine what action should

be taken. An interrupt service routine is provided to deal with the interrupt.

Transition from User to Kernel Mode

At the very least, we need two separate modes of operation: user mode and kernel mode (also

called supervisor mode, system mode, or privileged mode). A bit, called the mode bit, is added

to the hardware of the computer to indicate the current mode: kernel (0) or user (1). With the

mode bit, we can distinguish between a task that is executed on behalf of the operating

system and one that is executed on behalf of the user. When the computer system is executing

on behalf of a user application, the system is in user mode. However, when a user application

requests a service from the operating system (via a system call), the system must transition

from user to kernel mode to fulfill the request.

At system boot time, the hardware starts in kernel mode. The operating system is then

loaded and starts user applications in user mode. Whenever a trap or interrupt occurs, the

hardware switches from user mode to kernel mode (that is, changes the state of the mode bit

to 0). Thus, whenever the operating system gains control of the computer, it is in kernel

mode. The system always switches to user mode (by setting the mode bit to 1) before passing

control to a user program.

The hardware allows privileged instructions to be executed only in kernel mode. If an

attempt is made to execute a privileged instruction in user mode, the hardware does not

UNIT-1 NOTES

Operating Systems Fundamentals Page 12

execute the instruction but rather treats it as illegal and traps it to the operating system. The

instruction to switch to kernel mode is an example of a privileged instruction. Some other

examples include I/O control, timer management, and interrupt management.

System calls provide the means for a user program to ask the operating system to

perform tasks reserved for the operating system on the user program’s behalf. A system call

is invoked in a variety of ways, depending on the functionality provided by the underlying

processor. In all forms, it is the method used by a process to request action by the operating

system. A system call usually takes the form of a trap to a specific location in the interrupt

vector. This trap can be executed by a generic trap instruction, although some systems (such

as MIPS) have a specific syscall instruction to invoke a system call.

When a system call is executed, it is typically treated by the hardware as a software

interrupt. Control passes through the interrupt vector to a service routine in the operating

system, and the mode bit is set to kernel mode. The system-call service routine is a part of the

operating system. The kernel examines the interrupting instruction to determine what

system call has occurred; a parameter indicates what type of service the user program is

requesting.

Timer

We must ensure that the operating system maintains control over the CPU. We cannot allow a

user program to get stuck in an infinite loop or to fail to call system services and never return

control to the operating system. To accomplish this goal, we can use a timer. A timer can be

set to interrupt the computer after a specified period. The period may be fixed (for example,

1/60 second) or variable (for example, from 1 millisecond to 1 second). A variable timer is

generally implemented by a fixed-rate clock and a counter. The operating system sets the

counter. Every time the clock ticks, the counter is decremented. When the counter reaches 0,

UNIT-1 NOTES

Operating Systems Fundamentals Page 13

an interrupt occurs. For instance, a 10-bit counter with a 1-millisecond clock allows

interrupts at intervals from 1 millisecond to 1,024 milliseconds, in steps of 1 millisecond. We

can use the timer to prevent a user program from running too long.

Process Management

A program does nothing unless its instructions are executed by a CPU. A program in

execution, as mentioned, is a process. A time-shared user program such as a compiler is a

process. A word-processing program being run by an individual user on a PC is a process. A

system task, such as sending output to a printer, can also be a process (or at least part of one).

A process needs certain resources—including CPU time, memory, files, and I/O

devices—to accomplish its task. These resources are either given to the process when it is

created or allocated to it while it is running. In addition to the various physical and logical

resources that a process obtains when it is created, various initialization data (input) may be

passed along.

A single-threaded process has one program counter specifying the next instruction to

execute. The execution of such a process must be sequential. The CPU executes one

instruction of the process after another, until the process completes. A multithreaded process

has multiple program counters, each pointing to the next instruction to execute for a given

thread.

A process is the unit of work in a system. A system consists of a collection of processes,

some of which are operating-system processes (those that execute system code) and the rest

of which are user processes (those that execute user code).

The operating system is responsible for the following activities in connection with process

management:

Process Management Activities

• Scheduling processes and threads on the CPUs

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

UNIT-1 NOTES

Operating Systems Fundamentals Page 14

• A process is a program in execution. It is a unit of work within the system. Program is a

passive entity, process is an active entity.

• Process needs resources to accomplish its task

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying location of next

instruction to execute

• Process executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread

• Typically system has many processes, some user, some operating system running

concurrently on one or more CPUs

Memory Management

The main memory is central to the operation of a modern computer system. Main memory is

a large array of bytes, ranging in size from hundreds of thousands to billions. Each byte has its

own address. Main memory is a repository of quickly accessible data shared by the CPU and

I/O devices. The central processor reads instructions from main memory during the

instruction-fetch cycle and both reads and writes data from main memory during the data-

fetch cycle.

For a program to be executed, it must be mapped to absolute addresses and loaded

into memory. As the program executes, it accesses program instructions and data from

memory by generating these absolute addresses. Eventually, the program terminates, its

memory space is declared available, and the next program can be loaded and executed.

To improve both the utilization of the CPU and the speed of the computer’s response to its

users, general-purpose computers must keep several programs in memory, creating a need

for memory management.

Memory management activities

• Keeping track of which parts of memory are currently being used and by whom

• Deciding which processes (or parts thereof) and data to move into and out of memory

• Allocating and deallocating memory space as needed

UNIT-1 NOTES

Operating Systems Fundamentals Page 15

Storage Management

To make the computer system convenient for users, the operating system provides a uniform,

logical view of information storage. The operating system abstracts from the physical

properties of its storage devices to define a logical storage unit, the file. The operating system

maps files onto physical media and accesses these files via the storage devices.

File-System Management

File management is one of the most visible components of an operating system. Computers

can store information on several different types of physical media. Magnetic disk, optical disk,

and magnetic tape are the most common. Each of these media has its own characteristics and

physical organization. Each medium is controlled by a device, such as a disk drive or tape

drive, that also has its own unique characteristics. These properties include access speed,

capacity, data-transfer rate, and access method (sequential or random).

A file is a collection of related information defined by its creator. Commonly, files

represent programs (both source and object forms) and data. Data files may be numeric,

alphabetic, alphanumeric, or binary.

OS File Management activities

• Creating and deleting files and directories

• Primitives to manipulate files and directories

• Mapping files onto secondary storage

• Backup files onto stable (non-volatile) storage media

Mass-Storage Management

The operating system is responsible for the following activities in connection with disk

management:

• Free-space management

• Storage allocation

• Disk scheduling

Magnetic tape drives and their tapes and CD and DVD drives and platters are typical tertiary

storage devices.

UNIT-1 NOTES

Operating Systems Fundamentals Page 16

Caching

When we need a particular piece of information, we first check whether it is in the cache. If it

is, we use the information directly from the cache. If it is not, we use the information from the

source, putting a copy in the cache under the assumption that we will need it again soon.

In addition, internal programmable registers, such as index registers, provide a high-

speed cache for main memory. The programmer (or compiler) implements the register-

allocation and register-replacement algorithms to decide which information to keep in

registers and which to keep in main memory.

Other caches are implemented totally in hardware. For instance, most systems have an

instruction cache to hold the instructions expected to be executed next. Without this cache,

the CPU would have to wait several cycles while an instruction was fetched from main

memory.Because caches have limited size, cache management is an important design

problem. Careful selection of the cache size and of a replacement policy can result in greatly

increased performance.

Main memory can be viewed as a fast cache for secondary storage, since data in

secondary storage must be copied into main memory for use and data must be in main

memory before being moved to secondary storage for safekeeping. The file-system data,

which resides permanently on secondary storage, may appear on several levels in the storage

hierarchy. At the highest level, the operating system may maintain a cache of file-system data

in main memory.

UNIT-1 NOTES

Operating Systems Fundamentals Page 17

I/O Subsystem

The I/O subsystem consists of several components:

• A memory-management component that includes buffering, caching, and spooling

 • A general device-driver interface

• Drivers for specific hardware devices

Protection and Security

Protection, then, is any mechanism for controlling the access of processes or users to the

resources defined by a computer system.

Protection and security require the system to be able to distinguish among all its users.

Most operating systems maintain a list of user names and associated user identifiers (user

IDs). In Windows parlance, this is a security ID (SID). These numerical IDs are unique, one per

user. When a user logs in to the system, the authentication stage determines the appropriate

user ID for the user. That user ID is associated with all of the user’s processes and threads.

When an ID needs to be readable by a user, it is translated back to the user name via the user

name list.

In some circumstances, we wish to distinguish among sets of users rather than individual

users. For example, the owner of a file on a UNIX system may be allowed to issue all

operations on that file, whereas a selected set of users may be allowed only to read the file. To

accomplish this, we need to define a group name and the set of users belonging to that group.

Group functionality can be implemented as a system-wide list of group names and group

identifiers. A user can be in one or more groups, depending on operating-system design

decisions. The user’s group IDs are also included in every associated process and thread.

• Systems generally first distinguish among users, to determine who can do what

• User identities (user IDs, security IDs) include name and associated number, one per

user

• User ID then associated with all files, processes of that user to determine access

control

• Group identifier (group ID) allows set of users to be defined and controls managed,

then also associated with each process, file

• Privilege escalation allows user to change to effective ID with more rights

UNIT-1 NOTES

Operating Systems Fundamentals Page 18

Operating-System Services

An operating system provides an environment for the execution of programs. It provides

certain services to programs and to the users of those programs. The specific services

provided, of course, differ from one operating system to another, but we can identify common

classes.

User interface. Almost all operating systems have a user interface (UI). This interface can

take several forms. One is a command-line interface (CLI), which uses text commands and a

method for entering them (say, a keyboard for typing in commands in a specific format with

specific options). Another is a batch interface, in which commands and directives to control

those commands are entered into files, and those files are executed. Most commonly, a

graphical user interface (GUI) is used. Here, the interface is a window system with a

pointing device to direct I/O, choose from menus, and make selections and a keyboard to

enter text.

• Program execution. The system must be able to load a program into memory and to run

that program. The program must be able to end its execution, either normally or

abnormally (indicating error).

• I/O operations. A running program may require I/O, which may involve a file or an I/O

device. For specific devices, special functions may be desired (such as recording to a CD or

DVD drive or blanking a display screen). For efficiency and protection, users usually

cannot control I/O devices directly. Therefore, the operating system must provide a

means to do I/O.

UNIT-1 NOTES

Operating Systems Fundamentals Page 19

• File-system manipulation. The file system is of particular interest. Obviously, programs

need to read and write files and directories. They also need to create and delete them by

name, search for a given file, and list file information. Finally, some operating systems

include permissions management to allow or deny access to files or directories based on

file ownership.

• Communications. There are many circumstances in which one process needs to exchange

information with another process. Such communication may occur between processes

that are executing on the same computer or between processes that are executing on

different computer systems tied together by a computer network. Communications may

be implemented via shared memory, in which two or more processes read and write to a

shared section of memory, or message passing, in which packets of information in

predefined formats are moved between processes by the operating system.

• Error detection. The operating system needs to be detecting and correcting errors

constantly. Errors may occur in the CPU and memory hardware (such as a memory error

or a power failure), in I/O devices (such as a parity error on disk, a connection failure on a

network, or lack of paper in the printer), and in the user program (such as an arithmetic

overflow, an attempt to access an illegal memory location, or a too-great use of CPU time).

For each type of error, the operating system should take the appropriate action to ensure

correct and consistent computing.

• Resource allocation. When there are multiple users or multiple jobs running at the same

time, resources must be allocated to each of them. The operating system manages many

different types of resources. Some (such as CPU cycles, main memory, and file storage)

may have special allocation code, whereas others (such as I/O devices) may have much

more general request and release code. For instance, in determining how best to use the

CPU, operating systems have CPU-scheduling routines that take into account the speed of

the CPU, the jobs that must be executed, the number of registers available, and other

factors.

• Accounting. We want to keep track of which users use how much and what kinds of

computer resources. This record keeping may be used for accounting (so that users can be

billed) or simply for accumulating usage statistics. Usage statistics may be a valuable tool

for researchers who wish to reconfigure the system to improve computing services.

• Protection and security. The owners of information stored in a multiuser or networked

computer system may want to control use of that information. When several separate

processes execute concurrently, it should not be possible for one process to interfere with

UNIT-1 NOTES

Operating Systems Fundamentals Page 20

the others or with the operating system itself. Protection involves ensuring that all access

to system resources is controlled.

User and Operating-System Interface

One provides a command-line interface, or command interpreter, that allows users to

directly enter commands to be performed by the operating system. The other allows users to

interface with the operating system via a graphical user interface, or GUI. interpreters are

known as shells. For example, on UNIX and Linux systems, a user may choose among several

different shells, including the Bourne shell, C shell, Bourne-Again shell, Korn shell, and

others.

The main function of the command interpreter is to get and execute the next user-

specified command. Many of the commands given at this level manipulate files: create, delete,

list, print, copy, execute, and so on. The MS-DOS and UNIX shells operate in this way.

System Calls

System calls provide an interface to the services made available by an operating system.

These calls are generally available as routines written in C and C++, although certain low-level

tasks (for example, tasks where hardware must be accessed directly) may have to be written

using assembly-language instructions. An example to illustrate how system calls are used:

writing a simple program to read data from one file and copy them to another file.

Frequently, systems execute thousands of system calls per second. Most programmers

never see this level of detail, however. Typically, application developers design programs

according to an application programming interface (API). The API specifies a set of

functions that are available to an application programmer, including the parameters that are

passed to each function and the return values the programmer can expect. Three of the most

common APIs available to application programmers are the Windows API for Windows

systems, the POSIX API for POSIX-based systems (which include virtually all versions of UNIX,

Linux, and Mac OSX), and the Java API for programs that run on the Java virtual machine. A

programmer accesses an API via a library of code provided by the operating system. In the

case of UNIX and Linux for programs written in the C language, the library is called libc.

Behind the scenes, the functions that make up an API typically invoke the actual

system calls on behalf of the application programmer. For example, the Windows function

UNIT-1 NOTES

Operating Systems Fundamentals Page 21

CreateProcess() (which unsurprisingly is used to create a new process) actually invokes the

NTCreateProcess() system call in the Windows kernel.

For most programming languages, the run-time support system (a set of functions built into

libraries included with a compiler) provides a system call interface that serves as the link to

UNIT-1 NOTES

Operating Systems Fundamentals Page 22

system calls made available by the operating system. The system-call interface intercepts

function calls in the API and invokes the necessary system calls within the operating system.

Types of System Calls

• Process control

• File management

• Device management

• Information maintenance

• Communications

• Protection

Process Control

A running program needs to be able to halt its execution either normally (end()) or

abnormally (abort()). If a system call is made to terminate the currently running program

abnormally, or if the program runs into a problem and causes an error trap, a dump of

memory is sometimes taken and an error message generated. The dump is written to disk and

may be examined by a debugger—a system program designed to aid the programmer in

finding and correcting errors, or bugs—to determine the cause of the problem. Under either

normal or abnormal circumstances, the operating system must transfer control to the

invoking command interpreter. The command interpreter then reads the next command.

UNIT-1 NOTES

Operating Systems Fundamentals Page 23

UNIT-1 NOTES

Operating Systems Fundamentals Page 24

UNIT-1 NOTES

Operating Systems Fundamentals Page 25

FreeBSD (derived from Berkeley UNIX) is an example of a multitasking system. When a user

logs on to the system, the shell of the user’s choice is run. This shell is similar to the MS-DOS

shell in that it accepts commands and executes programs that the user requests. However,

since FreeBSD is a multitasking system, the command interpreter may continue running

while another program is executed (Figure 2.10).

To start a new process, the shell executes a fork() system call. Then, the selected program is

loaded into memory via an exec() system call, and the program is executed. Depending on the

way the command was issued, the shell then either waits for the process to finish or runs the

process “in the background.”

File Management

We first need to be able to create() and delete() files. Either system call requires the name of

the file and perhaps some of the file’s attributes. Once the file is created, we need to open() it

and to use it. We may also read(), write(), or reposition() (rewind or skip to the end of the file,

for example). Finally, we need to close() the file, indicating that we are no longer using it.

Device Management

Process may need several resources to execute—main memory, disk drives, access to files,

and so on. If the resources are available, they can be granted, and control can be returned to

the user process. Otherwise, the process will have to wait until sufficient resources are

available. The various resources controlled by the operating system can be thought of as

devices. Some of these devices are physical devices (for example, disk drives), while others

UNIT-1 NOTES

Operating Systems Fundamentals Page 26

can be thought of as abstract or virtual devices (for example, files).A system with multiple

users may require us to first request() a device, to ensure exclusive use of it. After we are

finished with the device, we release() it. Once the device has been requested (and allocated to

us), we can read(), write(), and (possibly) reposition() the device, just as we can with files.

Information Maintenance

Many system calls exist simply for the purpose of transferring information between the user

program and the operating system. For example, most systems have a system call to return

the current time() and date(). Other system calls may return information about the system,

such as the number of current users, the version number of the operating system, the amount

of free memory or disk space, and so on. Another set of system calls is helpful in debugging a

program. Many systems provide system calls to dump() memory. This provision is useful for

debugging.

Communication

There are two common models of inter process communication: the message passing model

and the shared-memory model. In the message-passing model, the communicating processes

exchange messages with one another to transfer information. Messages can be exchanged

between the processes either directly or indirectly through a common mailbox. Before

communication can take place, a connection must be opened.

 Each computer in a network has a host name by which it is commonly

known. A host also has a network identifier, such as an IP address. Similarly, each process has

a process name, and this name is translated into an identifier by which the operating system

can refer to the process. The get hostid() and get processid() system calls do this translation.

The identifiers are then passed to the generalpurpose open() and close() calls provided by the

file system or to specific open connection() and close connection() system calls, depending on

the system’s model of communication. The recipient process usually must give its permission

for communication to take place with an accept connection() call.

In the shared-memory model, processes use shared memory create() and shared memory

attach() system calls to create and gain access to regions of memory owned by other

processes.

UNIT-1 NOTES

Operating Systems Fundamentals Page 27

Protection

Protection provides a mechanism for controlling access to the resources provided by a

computer system. Typically, system calls providing protection include set permission() and

get permission(), which manipulate the permission settings of resources such as files and

disks. The allow user() and deny user() system calls specify whether particular users can—or

cannot—be allowed access to certain resources.

System Programs

System programs, also known as system utilities, provide a convenient environment for

program development and execution. Some of them are simply user interfaces to system calls.

Others are considerably more complex. They can be divided into these categories:

• File management: These programs create, delete, copy, rename, print, dump, list, and

generally manipulate files and directories.

• Status information: Some programs simply ask the system for the date, time, amount

of available memory or disk space, number of users, or similar status information.

Others are more complex, providing detailed performance, logging, and debugging

information.

• File modification: Several text editors may be available to create and modify the

content of files stored on disk or other storage devices. There may also be special

commands to search contents of files or perform transformations of the text.

• Programming-language support: Compilers, assemblers, debuggers, and

interpreters for common programming languages (such as C, C++, Java, and PERL) are

often provided with the operating system or available as a separate download.

• Program loading and execution: Once a program is assembled or compiled, it must

be loaded into memory to be executed. The system may provide absolute loaders,

relocatable loaders, linkage editors, and overlay loaders. Debugging systems for either

higher-level languages or machine language are needed as well.

• Background services: All general-purpose systems have methods for launching

certain system-program processes at boot time. Some of these processes terminate

after completing their tasks, while others continue to run until the system is halted.

Constantly running system-program processes are known as services, subsystems, or

daemons.

UNIT-1 NOTES

Operating Systems Fundamentals Page 28

Along with system programs, most operating systems are supplied with programs that are

useful in solving common problems or performing common operations. Such application

programs include Web browsers, word processors and text formatters, spreadsheets,

database systems, compilers, plotting and statistical-analysis packages, and games.

UNIT-2 NOTES

Operating Systems Page 1

UNIT – II

PROCESS MANAGEMENT: Process concepts- Operations on processes, IPC, Process

Scheduling (T1: Ch-3).

PROCESS COORDINATION: Process synchronization- critical section problem, Peterson’s

solution, synchronization hardware, semaphores, classic problems of synchronization,

readers and writers problem, dining philosopher’s problem, monitors (T1: Ch-5).

Introduction

Process:

A process, which is a program in execution. A process is the unit of work in a modern

time-sharing system. A system therefore consists of a collection of processes: operating

system processes executing system code and user processes executing user code. Potentially,

all these processes can execute concurrently, with the CPU (or CPUs) multiplexed among

them. By switching the CPU between processes, the operating system can make the computer

more productive.

A process is also known as job or task. A process is more than the program code, which

is sometimes known as the text section. It also includes the current activity, as represented

by the value of the program counter and the contents of the processor’s registers. A process

generally also includes the process stack, which contains temporary data (such as function

parameters, return addresses, and local variables), and a data section, which contains global

variables. A process may also include a heap, which is memory that is dynamically allocated

during process run time. The structure of a process in memory is shown in Figure 3.1.

UNIT-2 NOTES

Operating Systems Page 2

We emphasize that a program by itself is not a process. A program is a passive entity, such as

a file containing a list of instructions stored on disk (often called an executable file). In

contrast, a process is an active entity, with a program counter specifying the next instruction

to execute and a set of associated resources. A program becomes a process when an

executable file is loaded into memory.

Process State

As a process executes, it changes state. The state of a process is defined in part by the current

activity of that process. A process may be in one of the following states:

• New. The process is being created.

• Running. Instructions are being executed.

• Waiting. The process is waiting for some event to occur (such as an I/O

completion or reception of a signal).

• Ready. The process is waiting to be assigned to a processor.

• Terminated. The process has finished execution.

It is important to realize that only one process can be running on any processor at any instant.

Many processes may be ready and waiting, however. The state diagram corresponding to

these states is presented in Figure 3.2.

2.3 Process Control Block

Each process is represented in the operating system by a process control block (PCB)—also

called a task control block. A PCB is shown in Figure 3.3. It contains many pieces of

information associated with a specific process, including these:

UNIT-2 NOTES

Operating Systems Page 3

Process state. The state may be new, ready, running, and waiting, halted, and so on.

• Program counter. The counter indicates the address of the next instruction to be executed

for this process.

• CPU registers. The registers vary in number and type, depending on the computer

architecture. They include accumulators, index registers, stack pointers, and general-purpose

registers, plus any condition-code information. Along with the program counter, this state

information must be saved when an interrupt occurs, to allow the process to be continued

correctly afterward (Figure 3.4).

• CPU-scheduling information. This information includes a process priority, pointers to

scheduling queues, and any other scheduling parameters.

• Memory-management information. This information may include such items as the value

of the base and limit registers and the page tables, or the segment tables, depending on the

memory system used by the operating system.

•Accounting information. This information includes the amount of CPU and real time used,

time limits, account numbers, job or process numbers, and so on.

• I/O status information. This information includes the list of I/O devices allocated to the

process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may vary from

process to process.

UNIT-2 NOTES

Operating Systems Page 4

Threads

The process model discussed so far has implied that a process is a program that performs a

single thread of execution. For example, when a process is running a word-processor

program, a single thread of instructions is being executed. This single thread of control allows

the process to perform only one task at a time. The user cannot simultaneously type in

characters and run the spell checker within the same process, for example. Most modern

operating systems have extended the process concept to allow a process to have multiple

threads of execution and thus to perform more than one task at a time. This feature is

especially beneficial on multicore systems, where multiple threads can run in parallel.

UNIT-2 NOTES

Operating Systems Page 5

2.4 Operations on Processes

The processes in most systems can execute concurrently, and they may be created and

deleted dynamically.

Process Creation

During the course of execution, a process may create several new processes. As mentioned

earlier, the creating process is called a parent process, and the new processes are called the

children of that process. Each of these new processes may in turn create other processes,

forming a tree of processes. Most operating systems (including UNIX, Linux, and Windows)

identify processes according to a unique process identifier (or pid), which is typically an

integer number. The pid provides a unique value for each process in the system, and it can be

used as an index to access various attributes of a process within the kernel.

When a process creates a new process, two possibilities for execution exist:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

Process Termination

A process terminates when it finishes executing its final statement and asks the operating

system to delete it by using the exit() system call. At that point, the process may return a

status value (typically an integer) to its parent process (via the wait() system call). All the

UNIT-2 NOTES

Operating Systems Page 6

resources of the process—including physical and virtual memory, open files, and I/O

buffers—are deallocated by the operating system.

A parent may terminate the execution of one of its children for a variety of reasons,

such as these:

• The child has exceeded its usage of some of the resources that it has been allocated. (To

determine whether this has occurred, the parent must have a mechanism to inspect the state

of its children.)

• The task assigned to the child is no longer required.

• The parent is exiting, and the operating system does not allow a child to continue if its

parent terminates.

Some systems do not allow a child to exist if its parent has terminated. In such systems, if a

process terminates (either normally or abnormally), then all its children must also be

terminated. This phenomenon, referred to as cascading termination, is normally initiated by

the operating system. A process that has terminated, but whose parent has not yet called

wait(), is known as a zombie process. All processes transition to this state when they

terminate, but generally they exist as zombies only briefly.

2.2 Inter process Communication

Processes executing concurrently in the operating system may be either independent

processes or cooperating processes. A process is independent if it cannot affect or be affected

by the other processes executing in the system. Any process that does not share data with any

other process is independent. A process is cooperating if it can affect or be affected by the

other processes executing in the system. Clearly, any process that shares data with other

processes is a cooperating process.

There are several reasons for providing an environment that allows process cooperation:

• Information sharing. Since several users may be interested in the same piece of

information (for instance, a shared file), we must provide an environment to allow concurrent

access to such information.

• Computation speedup. If we want a particular task to run faster, we must break it into

subtasks, each of which will be executing in parallel with the others. Notice that such a

speedup can be achieved only if the computer has multiple processing cores.

• Modularity. We may want to construct the system in a modular fashion, dividing the system

functions into separate processes or threads.

UNIT-2 NOTES

Operating Systems Page 7

• Convenience. Even an individual user may work on many tasks at the same time. For

instance, a user may be editing, listening to music, and compiling in parallel.

Cooperating processes require an inter process communication (IPC) mechanism

that will allow them to exchange data and information. There are two fundamental models of

inter process communication: shared memory and message passing. In the shared-memory

model, a region of memory that is shared by cooperating processes is established. Processes

can then exchange information by reading and writing data to the shared region. In the

message-passing model, communication takes place by means of messages exchanged

between the cooperating processes.

The two communications models are contrasted in Figure 3.12.

UNIT-2 NOTES

Operating Systems Page 8

To illustrate the concept of cooperating processes, let’s consider the producer–consumer

problem, which is a common paradigm for cooperating processes. A producer process

produces information that is consumed by a consumer process. For example, a compiler may

produce assembly code that is consumed by an assembler. The assembler, in turn, may

produce object modules that are consumed by the loader.

One solution to the producer–consumer problem uses shared memory. To allow

producer and consumer processes to run concurrently, we must have available a buffer of

items that can be filled by the producer and emptied by the consumer. This buffer will reside

in a region of memory that is shared by the producer and consumer processes. A producer

can produce one item while the consumer is consuming another item. The producer and

consumer must be synchronized, so that the consumer does not try to consume an item that

has not yet been produced.

Two types of buffers can be used. The unbounded buffer places no practical limit on

the size of the buffer. The consumer may have to wait for new items, but the producer can

always produce new items. The bounded buffer assumes a fixed buffer size. In this case, the

consumer must wait if the buffer is empty, and the producer must wait if the buffer is full.

Message passing provides a mechanism to allow processes to communicate and to

synchronize their actions without sharing the same address space. It is particularly useful in a

distributed environment, where the communicating processes may reside on different

UNIT-2 NOTES

Operating Systems Page 9

computers connected by a network. For example, an Internet chat program could be designed

so that chat participants communicate with one another by exchanging messages. A message-

passing facility provides at least two operations:

send(message) receive(message)

Messages sent by a process can be either fixed or variable in size. Message passing may be

either blocking or nonblocking— also known as synchronous and asynchronous.

• Blocking send. The sending process is blocked until the message is received by the

receiving process or by the mailbox.

• Nonblocking send. The sending process sends the message and resumes operation.

• Blocking receive. The receiver blocks until a message is available.

• Nonblocking receive. The receiver retrieves either a valid message or a null.

 2.3 Process Scheduling

The objective of multiprogramming is to have some process running at all times, to maximize

CPU utilization. The objective of time sharing is to switch the CPU among processes so

frequently that users can interact with each program while it is running. To meet these

objectives, the process scheduler selects an available process (possibly from a set of several

available processes) for program execution on the CPU. For a single-processor system, there

will never be more than one running process. If there are more processes, the rest will have

to wait until the CPU is free and can be rescheduled.

Scheduling Queues

As processes enter the system, they are put into a job queue, which consists of all processes

in the system. The processes that are residing in main memory and are ready and waiting to

execute are kept on a list called the ready queue. This queue is generally stored as a linked

list. A ready-queue header contains pointers to the first and final PCBs in the list. Each PCB

includes a pointer field that points to the next PCB in the ready queue. The list of processes

waiting for a particular I/O device is called a device queue.

A common representation of process scheduling is a queueing diagram, such as that

in Figure 3.6. Each rectangular box represents a queue. Two types of queues are present: the

ready queue and a set of device queues. The circles represent the resources that serve the

queues, and the arrows indicate the flow of processes in the system.

UNIT-2 NOTES

Operating Systems Page 10

A new process is initially put in the ready queue. It waits there until it is selected for

execution, or dispatched. Once the process is allocated the CPU and is executing, one of

several events could occur:

• The process could issue an I/O request and then be placed in an I/O queue.

• The process could create a new child process and wait for the child’s termination.

• The process could be removed forcibly from the CPU, as a result of an interrupt, and be put

back in the ready queue.

Schedulers

A process migrates among the various scheduling queues throughout its lifetime. The

operating system must select, for scheduling purposes, processes from these queues in some

fashion. The selection process is carried out by the appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed

immediately. These processes are spooled to a mass-storage device (typically a disk), where

they are kept for later execution. The long-term scheduler, or job scheduler, selects

processes from this pool and loads them into memory for execution. The short-term

scheduler, or CPU scheduler, selects from among the processes that are ready to execute

and allocates the CPU to one of them. The long-term scheduler executes much less frequently;

minutes may separate the creation of one new process and the next. The long-term scheduler

controls the degree of multiprogramming (the number of processes in memory).

UNIT-2 NOTES

Operating Systems Page 11

It is important that the long-term scheduler make a careful selection. In general, most

processes can be described as either I/O bound or CPU bound. An I/O-bound process is one

that spends more of its time doing I/O than it spends doing computations. A CPU-bound

process, in contrast, generates I/O requests infrequently, using more of its time doing

computations. It is important that the long-term scheduler select a good process mix of I/O-

bound and CPU-bound processes. The system with the best performance will thus have a

combination of CPU-bound and I/O-bound processes.

Context Switch

Interrupts cause the operating system to change a CPU from its current task and to run a

kernel routine. Such operations happen frequently on general-purpose systems. When an

interrupt occurs, the system needs to save the current context of the process running on the

CPU so that it can restore that context when its processing is done, essentially suspending the

process and then resuming it.

Switching the CPU to another process requires performing a state save of the current

process and a state restore of a different process. This task is known as a context switch.

When a context switch occurs, the kernel saves the context of the old process in its PCB and

loads the saved context of the new process scheduled to run. Context-switch times are highly

dependent on hardware support.

UNIT-2 NOTES

Operating Systems Page 12

2.4 Process synchronization

A situation where several processes access and manipulate the same data concurrently and

the outcome of the execution depends on the particular order in which the access takes place,

is called a race condition. To guard against the race condition we need to ensure that only

one process at a time can be manipulating the variable counter. To make such a guarantee, we

require that the processes be synchronized in some way.

2.4.1 The Critical-Section Problem

We begin our consideration of process synchronization by discussing the so called critical-

section problem. Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process

has a segment of code, called a critical section, in which the process may be changing

common variables, updating a table, writing a file, and so on. The important feature of the

system is that, when one process is executing in its critical section, no other process is

allowed to execute in its critical section. That is, no two processes are executing in their

critical sections at the same time. The critical-section problem is to design a protocol that

the processes can use to cooperate. Each process must request permission to enter its critical

section.

The section of code implementing this request is the entry section. The critical section

may be followed by an exit section. The remaining code is the remainder section. The

general structure of a typical process Pi is shown in Figure 5.1. The entry section and exit

section are enclosed in boxes to highlight these important segments of code.

A solution to the critical-section problem must satisfy the following three requirements:

UNIT-2 NOTES

Operating Systems Page 13

1. Mutual exclusion. If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections.

2. Progress. If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder

sections can participate in deciding which will enter its critical section next, and this selection

cannot be postponed indefinitely.

3. Bounded waiting. There exists a bound, or limit, on the number of times that other

processes are allowed to enter their critical sections after a process has made a request to

enter its critical section and before that request is granted.

Two general approaches are used to handle critical sections in operating systems:

1) Preemptive kernels and

2) non-Preemptive kernels.

A preemptive (preemption is the act of temporarily interrupting a task being carried

out by a computer system) kernel allows a process to be preempted while it is running in

kernel mode. A nonpreemptive kernel does not allow a process running in kernel mode to

preempted; a kernel-mode process will run until it exits kernel mode, blocks, or voluntarily

yields control of the CPU.

2.4.2 Peterson’s Solution

A classic software-based solution to the critical-section problem known as Peterson’s

solution. Because of the way modern computer architectures perform basic machine-

language instructions, such as load and store, there are no guarantees that Peterson’s solution

will work correctly on such architectures. However, we present the solution because it

provides a good algorithmic description of solving the critical-section problem and illustrates

some of the complexities involved in designing software that addresses the requirements of

mutual exclusion, progress, and bounded waiting.

UNIT-2 NOTES

Operating Systems Page 14

Peterson’s Solution is a classical software based solution to the critical section problem. In

Peterson’s solution, we have two shared variables:

 boolean flag[i] :Initialized to FALSE, initially no one is interested in entering the critical

section

 int turn : The process whose turn is to enter the critical section.

// code for producer (j)

// producer j is ready

// to produce an item

flag[j] = true;

// but consumer (i) can consume an item

turn = i;

// if consumer is ready to consume an item

// and if its consumer's turn

while (flag[i] == true && turn == i)

 {

// then producer will wait }

 // otherwise producer will produce

 // an item and put it into buffer (critical Section)

UNIT-2 NOTES

Operating Systems Page 15

 // Now, producer is out of critical section

 flag[j] = false;

 // end of code for producer

 //--

 // code for consumer i

 // consumer i is ready

 // to consume an item

 flag[i] = true;

 // but producer (j) can produce an item

 turn = j;

 // if producer is ready to produce an item

 // and if its producer's turn

 while (flag[j] == true && turn == j)

 {

// then consumer will wait }

 // otherwise consumer will consume

 // an item from buffer (critical Section)

 // Now, consumer is out of critical section

 flag[i] = false;

// end of code for consumer

Explanation of Peterson’s algorithm –

Peterson’s Algorithm is used to synchronize two processes. It uses two variables, a bool array

flag of size 2 and an int variable turn to accomplish it. In the solution i represents the

Consumer and j represents the Producer. Initially the flags are false. When a process wants to

execute it’s critical section, it sets it’s flag to true and turn as the index of the other process.

This means that the process wants to execute but it will allow the other process to run first.

The process performs busy waiting until the other process has finished it’s own critical

section.

After this the current process enters it’s critical section and adds or removes a random

number from the shared buffer. After completing the critical section, it sets it’s own flag to

false, indication it does not wish to execute anymore.

UNIT-2 NOTES

Operating Systems Page 16

Synchronization Hardware

However, as mentioned, software-based solutions such as Peterson’s are not guaranteed to

work on modern computer architectures. In the following discussions, we explore several

more solutions to the critical-section problem using techniques ranging from hardware to

software-based APIs available to both kernel developers and application programmers. All

these solutions are based on the premise of locking —that is, protecting critical regions

through the use of locks.

Mutex Locks

operating-systems designers build software tools to solve the critical-section problem. The

simplest of these tools is the mutex lock. (In fact, the term mutex is short for mutual

exclusion.) We use the mutex lock to protect critical regions and thus prevent race conditions.

That is, a process must acquire the lock before entering a critical section; it releases the lock

when it exits the critical section. The acquire()function acquires the lock, and the release()

function releases the lock.

A mutex lock has a boolean variable available whose value indicates if the lock is

available or not. If the lock is available, a call to acquire() succeeds, and the lock is then

considered unavailable. A process that attempts to acquire an unavailable lock is blocked

until the lock is released.

The definition of acquire() is as follows:

acquire() {

while (!available)

; /* busy wait */

available = false;;

}

UNIT-2 NOTES

Operating Systems Page 17

The definition of release() is as follows:

release() {

available = true;

}

The main disadvantage of the implementation given here is that it requires busy waiting.

While a process is in its critical section, any other process that tries to enter its critical section

must loop continuously in the call to acquire(). In fact, this type of mutex lock is also called a

spinlock because the process “spins” while waiting for the lock to become available.

Semaphores

Mutex locks, as we mentioned earlier, are generally considered the simplest of

synchronization tools. In this section, we examine a more robust tool that can behave

similarly to a mutex lock but can also provide more sophisticated ways for processes to

synchronize their activities.

A semaphore S is an integer variable that, apart from initialization, is accessed only

through two standard atomic operations: wait() and signal(). The wait() operation was

originally termed P; signal() was originally called V . The definition of wait() is as follows:

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

The definition of signal() is as follows:

UNIT-2 NOTES

Operating Systems Page 18

signal(S) {

S++;

}

All modifications to the integer value of the semaphore in the wait() and signal() operations

must be executed indivisibly. That is, when one process modifies the semaphore value, no

other process can simultaneously modify that same semaphore value. In addition, in the case

of wait(S), the testing of the integer value of S (S ≤ 0), as well as its possible modification (S--),

must be executed without interruption.

Semaphore Usage

Operating systems often distinguish between counting and binary semaphores. The value of a

counting semaphore can range over an unrestricted domain. The value of a binary

semaphore can range only between 0 and 1. Thus, binary semaphores behave similarly to

mutex locks. In fact, on systems that do not provide mutex locks, binary semaphores can be

used instead for providing mutual exclusion.

Counting semaphores can be used to control access to a given resource consisting of a

finite number of instances. The semaphore is initialized to the number of resources available.

Each process that wishes to use a resource performs a wait() operation on the semaphore

(thereby decrementing the count). When a process releases a resource, it performs a signal()

operation (incrementing the count). When the count for the semaphore goes to 0, all

resources are being used. After that, processes that wish to use a resource will block until the

count becomes greater than 0.

We can also use semaphores to solve various synchronization problems. For example,

consider two concurrently running processes: P1 with a statement S1 and P2 with a

statement S2. Suppose we require that S2 be executed only after S1 has completed. We can

implement this scheme readily by letting P1 and P2 share a common semaphore synch,

initialized to 0. In process P1, we insert the statements

S1;

signal(synch);

In process P2, we insert the statements

wait(synch);

UNIT-2 NOTES

Operating Systems Page 19

S2;

Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked signal(synch),

which is after statement S1 has been executed.

Deadlocks and Starvation

 The implementation of a semaphore with a waiting queue may result in a situation

where two or more processes are waiting indefinitely for an event that can be caused only by

one of the waiting processes. The event in question is the execution of a signal() operation.

When such a state is reached, these processes are said to be deadlocked.

To illustrate this, consider a system consisting of two processes, P0 and P1, each accessing

two semaphores, S and Q, set to the value 1:

Suppose that P0 executes wait(S) and then P1 executes wait(Q).When P0 executes wait(Q), it

must wait until P1 executes signal(Q). Similarly, when P1 executes wait(S), it must wait until

P0 executes signal(S). Since these signal() operations cannot be executed, P0 and P1 are

deadlocked. We say that a set of processes is in a deadlocked state when every process in the

set is waiting for an event that can be caused only by another process in the set.

Another problem related to deadlocks is indefinite blocking or starvation, a

situation in which processes wait indefinitely within the semaphore. Indefinite blocking may

occur if we remove processes from the list associated with a semaphore in LIFO (last-in, first-

out) order.

Priority Inversion

A scheduling challenge arises when a higher-priority process needs to read or modify kernel

data that are currently being accessed by a lower-priority process—or a chain of lower-

priority processes. Since kernel data are typically protected with a lock, the higher-priority

UNIT-2 NOTES

Operating Systems Page 20

process will have to wait for a lower-priority one to finish with the resource. The situation

becomes more complicated if the lower-priority process is preempted in favor of another

process with a higher priority.

As an example, assume we have three processes—L, M, and H—whose priorities follow

the order L < M < H. Assume that process H requires resource R, which is currently being

accessed by process L. Ordinarily, process H would wait for L to finish using resource R.

However, now suppose that process M becomes runnable, thereby preempting process L.

Indirectly, a process with a lower priority—process M—has affected how long process H must

wait for L to relinquish resource R. This problem is known as priority inversion. It occurs

only in systems with more than two priorities, so one solution is to have only two priorities.

Classic Problems of Synchronization

Bounded Buffer Problem

Bounded buffer problem, which is also called producer consumer problem, is one of the

classic problems of synchronization. Let's start by understanding the problem here, before

moving on to the solution and program code.

What is the Problem Statement?

There is a buffer of n slots and each slot is capable of storing one unit of data. There are two

processes running, namely, producer and consumer, which are operating on the buffer.

Bounded Buffer Problem

A producer tries to insert data into an empty slot of the buffer. A consumer tries to remove

data from a filled slot in the buffer. As you might have guessed by now, those two processes

won't produce the expected output if they are being executed concurrently.

UNIT-2 NOTES

Operating Systems Page 21

There needs to be a way to make the producer and consumer work in an independent

manner.

Here's a Solution

One solution of this problem is to use semaphores. The semaphores which will be used here

are:

• m, a binary semaphore which is used to acquire and release the lock.

• empty, a counting semaphore whose initial value is the number of slots in the buffer,

since, initially all slots are empty.

• full, a counting semaphore whose initial value is 0.

At any instant, the current value of empty represents the number of empty slots in the buffer

and full represents the number of occupied slots in the buffer.

The Producer Operation

The pseudocode of the producer function looks like this:

do

{

 // wait until empty > 0 and then decrement 'empty'

 wait(empty);

 // acquire lock

 wait(mutex);

 /* perform the insert operation in a slot */

 // release lock

 signal(mutex);

 // increment 'full'

 signal(full);

}

while(TRUE);

UNIT-2 NOTES

Operating Systems Page 22

• it decrements the empty semaphore because, there will now be one less empty slot, since

the producer is going to insert data in one of those slots.

• Then, it acquires lock on the buffer, so that the consumer cannot access the buffer until

producer completes its operation.

• After performing the insert operation, the lock is released and the value of full is

incremented because the producer has just filled a slot in the buffer.

The Consumer Operation

The pseudocode for the consumer function looks like this:

do

{

 // wait until full > 0 and then decrement 'full'

 wait(full);

 // acquire the lock

 wait(mutex);

 /* perform the remove operation in a slot */

 // release the lock

 signal(mutex);

 // increment 'empty'

 signal(empty);

}

while(TRUE);

• The consumer waits until there is at least one full slot in the buffer.

• Then it decrements the full semaphore because the number of occupied slots will be

decreased by one, after the consumer completes its operation.

• After that, the consumer acquires lock on the buffer.

• Following that, the consumer completes the removal operation so that the data from one

of the full slots is removed.

• Then, the consumer releases the lock.

UNIT-2 NOTES

Operating Systems Page 23

• Finally, the empty semaphore is incremented by 1, because the consumer has just

removed data from an occupied slot, thus making it empty.

What is Readers Writer Problem?

Readers writer problem is another example of a classic synchronization problem. There are

many variants of this problem, one of which is examined below.

The Problem Statement

There is a shared resource which should be accessed by multiple processes. There are two

types of processes in this context. They are reader and writer. Any number of readers can

read from the shared resource simultaneously, but only one writer can write to the shared

resource. When a writeris writing data to the resource, no other process can access the

resource. A writer cannot write to the resource if there are non-zero number of readers

accessing the resource at that time.

The Solution

From the above problem statement, it is evident that readers have higher priority than writer.

If a writer wants to write to the resource, it must wait until there are no readers currently

accessing that resource.

Here, we use one mutex m and a semaphore w. An integer variable read_count is used to

maintain the number of readers currently accessing the resource. The variable read_count is

initialized to 0. A value of 1 is given initially to m and w.

Instead of having the process to acquire lock on the shared resource, we use the mutex m to

make the process to acquire and release lock whenever it is updating the read_count variable.

The code for the writer process looks like this:

while(TRUE)

{

 wait(w);

 /* perform the write operation */

 signal(w);

}

And, the code for the reader process looks like this:

while(TRUE)

UNIT-2 NOTES

Operating Systems Page 24

{

 //acquire lock

 wait(m);

 read_count++;

 if(read_count == 1)

 wait(w);

 //release lock

 signal(m);

 /* perform the reading operation */

 // acquire lock

 wait(m);

 read_count--;

 if(read_count == 0)

 signal(w);

 // release lock

 signal(m);

}

Here is the Code uncoded(explained)

• As seen above in the code for the writer, the writer just waits on the w semaphore until it

gets a chance to write to the resource.

• After performing the write operation, it increments w so that the next writer can access

the resource.

• On the other hand, in the code for the reader, the lock is acquired whenever

the read_count is updated by a process.

• When a reader wants to access the resource, first it increments the read_count value,

then accesses the resource and then decrements the read_count value.

• The semaphore w is used by the first reader which enters the critical section and the last

reader which exits the critical section.

• The reason for this is, when the first readers enters the critical section, the writer is

blocked from the resource. Only new readers can access the resource now.

UNIT-2 NOTES

Operating Systems Page 25

• Similarly, when the last reader exits the critical section, it signals the writer using

the w semaphore because there are zero readers now and a writer can have the chance to

access the resource.

Dining Philosophers Problem

The dining philosophers problem is another classic synchronization problem which is used to

evaluate situations where there is a need of allocating multiple resources to multiple

processes.

What is the Problem Statement?

Consider there are five philosophers sitting around a circular dining table. The dining table

has five chopsticks and a bowl of rice in the middle as shown in the below figure.

Dining Philosophers Problem

At any instant, a philosopher is either eating or thinking. When a philosopher wants to eat, he

uses two chopsticks - one from their left and one from their right. When a philosopher wants

to think, he keeps down both chopsticks at their original place.

Here's the Solution

From the problem statement, it is clear that a philosopher can think for an indefinite amount

of time. But when a philosopher starts eating, he has to stop at some point of time. The

philosopher is in an endless cycle of thinking and eating.

An array of five semaphores, stick[5], for each of the five chopsticks.

UNIT-2 NOTES

Operating Systems Page 26

The code for each philosopher looks like:

while(TRUE)

{

 wait(stick[i]);

 /*

 mod is used because if i=5, next

 chopstick is 1 (dining table is circular)

 */

 wait(stick[(i+1) % 5]);

 /* eat */

 signal(stick[i]);

 signal(stick[(i+1) % 5]);

 /* think */

}

When a philosopher wants to eat the rice, he will wait for the chopstick at his left and picks up

that chopstick. Then he waits for the right chopstick to be available, and then picks it too.

After eating, he puts both the chopsticks down.

But if all five philosophers are hungry simultaneously, and each of them pickup one chopstick,

then a deadlock situation occurs because they will be waiting for another chopstick forever.

The possible solutions for this are:

• A philosopher must be allowed to pick up the chopsticks only if both the left and right

chopsticks are available.

• Allow only four philosophers to sit at the table. That way, if all the four philosophers pick

up four chopsticks, there will be one chopstick left on the table. So, one philosopher can

start eating and eventually, two chopsticks will be available. In this way, deadlocks can be

avoided.

Process Synchronization | Monitors

Monitor is one of the ways to achieve Process synchronization. Monitor is supported by

programming languages to achieve mutual exclusion between processes. For example Java

Synchronized methods. Java provides wait() and notify() constructs.

UNIT-2 NOTES

Operating Systems Page 27

1. It is the collection of condition variables and procedures combined together in a

special kind of module or a package.

2. The processes running outside the monitor can’t access the internal variable of

monitor but can call procedures of the monitor.

3. Only one process at a time can execute code inside monitors.

Syntax of Monitor

Condition Variables

Two different operations are performed on the condition variables of the monitor.

1. Wait.

2. signal.

let say we have 2 condition variables

condition x, y; //Declaring variable

Wait operation

x.wait() : Process performing wait operation on any condition variable are suspended. The

suspended processes are placed in block queue of that condition variable.

Note: Each condition variable has its unique block queue.

Signal operation

x.signal(): When a process performs signal operation on condition variable, one of the

blocked processes is given chance.

If (x block queue empty)

 // Ignore signal

else

https://www.geeksforgeeks.org/wp-content/uploads/gq/2015/06/monitors.png

UNIT-2 NOTES

Operating Systems Page 28

 // Resume a process from block queue.

Dining-Philosophers Solution Using Monitors

Dining-Philosophers Problem – N philosophers seated around a circular table

• There is one chopstick between each philosopher

• A philosopher must pick up its two nearest chopsticks in order to eat

• A philosopher must pick up first one chopstick, then the second one, not both at once

We need an algorithm for allocating these limited resources(chopsticks) among several

processes(philosophers) such that solution is free from deadlock and free from starvation.

There exist some algorithm to solve Dining – Philosopher Problem, but they may have

deadlock situation. Also, a deadlock-free solution is not necessarily starvation-free.

Semaphores can result in deadlock due to programming errors. Monitors alone are not

sufficiency to solve this, we need monitors with condition variables

Monitor-based Solution to Dining Philosophers

We illustrate monitor concepts by presenting a deadlock-free solution to the dining-

philosophers problem. Monitor is used to control access to state variables and condition

variables. It only tells when to enter and exit the segment. This solution imposes the

restriction that a philosopher may pick up her chopsticks only if both of them are available.

To code this solution, we need to distinguish among three states in which we may find a

philosopher. For this purpose, we introduce the following data structure:

UNIT-2 NOTES

Operating Systems Page 29

THINKING – When philosopher doesn’t want to gain access to either fork.

HUNGRY – When philosopher wants to enter the critical section.

EATING – When philosopher has got both the forks, i.e., he has entered the section.

Philosopher i can set the variable state[i] = EATING only if her two neighbors are not eating

(state[(i+4) % 5] != EATING) and (state[(i+1) % 5] != EATING).

// Dining-Philosophers Solution Using Monitors

monitor DP

{

 status state[5];

 condition self[5];

 // Pickup chopsticks

 Pickup(int i)

 {

 // indicate that I’m hungry

 state[i] = hungry;

 // set state to eating in test()

 // only if my left and right neighbors

 // are not eating

 test(i);

 // if unable to eat, wait to be signaled

 if (state[i] != eating)

 self[i].wait;

 }

 // Put down chopsticks

 Putdown(int i)

 {

 // indicate that I’m thinking

 state[i] = thinking;

 // if right neighbor R=(i+1)%5 is hungry and

 // both of R’s neighbors are not eating,

UNIT-2 NOTES

Operating Systems Page 30

 // set R’s state to eating and wake it up by

 // signaling R’s CV

 test((i + 1) % 5);

 test((i + 4) % 5);

 }

 test(int i)

 {

 if (state[(i + 1) % 5] != eating

 && state[(i + 4) % 5] != eating

 && state[i] == hungry) {

 // indicate that I’m eating

 state[i] = eating;

 // signal() has no effect during Pickup(),

 // but is important to wake up waiting

 // hungry philosophers during Putdown()

 self[i].signal();

 }

 }

 init()

 {

 // Execution of Pickup(), Putdown() and test()

 // are all mutually exclusive,

 // i.e. only one at a time can be executing

for

 i = 0 to 4

 // Verify that this monitor-based solution is

 // deadlock free and mutually exclusive in that

 // no 2 neighbors can eat simultaneously

 state[i] = thinking;

 }

UNIT-2 NOTES

Operating Systems Page 31

} // end of monitor

Above Program is a monitor solution to the dining-philosopher problem.

We also need to declare

condition self[5];

This allows philosopher i to delay herself when she is hungry but is unable to obtain the

chopsticks she needs. We are now in a position to describe our solution to the dining-

philosophers problem. The distribution of the chopsticks is controlled by the monitor Dining

Philosophers. Each philosopher, before starting to eat, must invoke the operation pickup().

This act may result in the suspension of the philosopher process. After the successful

completion of the operation, the philosopher may eat. Following this, the philosopher invokes

the putdown() operation. Thus, philosopher i must invoke the operations pickup() and

putdown() in the following sequence:

DiningPhilosophers.pickup(i);

 ...

 eat

 ...

DiningPhilosophers.putdown(i);

It is easy to show that this solution ensures that no two neighbors are eating simultaneously

and that no deadlocks will occur. We note, however, that it is possible for a philosopher to

starve to death.

UNIT-3 NOTES

Operating Systems Page 1

UNIT – III

DEADLOCKS: System model, deadlock characterization, deadlock prevention, avoidance,

detection and recovery from deadlock. (T1: Ch-7)

MEMORY MANAGEMENT: Memory management strategies-Swapping, contiguous memory

allocation, paging, structure of the page table, segmentation, virtual-memory management-

demand paging, page-replacement algorithms, allocation of frames, thrashing. (T1: Ch-8, 9)

What is a Deadlock?

In a multiprogramming environment, several processes may compete for a finite number of

resources. A process requests resources; if the resources are not available at that time, the

process enters a waiting state. Sometimes, awaiting process is never again able to change

state, because the resources it has requested are held by other waiting processes. This

situation is called a deadlock.

Deadlocks are a set of blocked processes each holding a resource and waiting to acquire a

resource held by another process.

System Model

System consists of a finite number of resources to be distributed among a number of

competing processes. The resources may be partitioned into several types (or classes), each

consisting of some number of identical instances. CPU cycles, files, and I/O devices (such as

printers and DVD drives) are examples of resource types. If a system has two CPUs, then the

UNIT-3 NOTES

Operating Systems Page 2

resource type CPU has two instances. Similarly, the resource type printer may have five

instances.

A process must request a resource before using it and must release there source after

using it. A process may request as many resources as it requires to carry out its designated

task. Obviously, the number of resources requested may not exceed the total number of

resources available in the system. In other words, a process cannot request three printers if

the system has only two. Under the normal mode of operation, a process may utilize a

resource in only the following sequence:

1. Request. The process requests the resource. If the request cannot be granted immediately

(for example, if the resource is being used by another process), then the requesting process

must wait until it can acquire there source.

2. Use. The process can operate on the resource (for example, if the resource is a printer, the

process can print on the printer).

3. Release. The process releases the resource.

The request and release of resources may be system calls like request() and release() device,

open() and close() file, and allocate() and free() memory system calls.

Deadlocks may also involve different resource types. For example, consider a system

with one printer and one DVD drive. Suppose that process Pi is holding the DVD and process

Pj is holding the printer. If Pi requests the printer and Pj requests the DVD drive, a deadlock

occurs.

Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied up, preventing

other jobs from starting.

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultaneously in a

system:

1. Mutual exclusion. At least one resource must be held in a non-sharable mode; that is, only

one process at a time can use the resource. If another process requests that resource, the

requesting process must be delayed until the resource has been released.

2. Hold and wait. A process must be holding at least one resource and waiting to acquire

additional resources that are currently being held by other processes.

UNIT-3 NOTES

Operating Systems Page 3

3. No preemption. Resources cannot be preempted; that is, a resource can be released only

voluntarily by the process holding it, after that process has completed its task.

4. Circular wait. A set {P0, P1, ..., Pn} of waiting processes must exist such that P0 is waiting

for a resource held by P1, P1 is waiting for a resource held by P2, ..., Pn−1 is waiting for a

resource held by Pn, and Pn is waiting for a resource held by P0.

We emphasize that all four conditions must hold for a deadlock to occur. The circular-wait

condition implies the hold-and-wait condition, so the four conditions are not completely

independent.

Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a system

resource-allocation graph. This graph consists of a set of vertices V and a set of edges E. The

set of vertices V is partitioned into two different types of nodes: P = {P1, P2, ..., Pn}, the set

consisting of all the active processes in the system, and R = {R1, R2, ..., Rm}, the set consisting

of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj ;it signifies

that process Pi has requested an instance of resource type Rj and is currently waiting for that

resource. A directed edge from resource type Rjto process Pi is denoted by Rj → Pi ; it signifies

that an instance of resource type Rj has been allocated to process Pi . A directed edge Pi → Rj

is called a request edge; a directed edge Rj → Pi is called an assignment edge.

Pictorially, we represent each process Pi as a circle and each resource type Rj as a

rectangle. Since resource type Rj may have more than one instance, were present each such

instance as a dot within the rectangle. Note that a request edge points to only the rectangle Rj

, whereas an assignment edge must also designate one of the dots in the rectangle. When

UNIT-3 NOTES

Operating Systems Page 4

process Pi requests an instance of resource type Rj, a request edge is inserted in the resource-

allocation graph. When this request can be fulfilled, the request edge is instantaneously

transformed to an assignment edge. When the process no longer needs access to the resource,

it releases the resource. As a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.1 depicts the following situation.

The sets P, R, and E:

◦P = {P1, P2, P3}

R = {R1, R2, R3, R4}

◦E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3}

• Resource instances:

◦One instance of resource type R1

◦Two instances of resource type R2

◦One instance of resource type R3

◦Three instances of resource type R4

• Process states:

◦Process P1 is holding an instance of resource type R2 and is waiting for an instance of

resource type R1.

◦Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an instance of

R3.

◦Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if the graph contains

no cycles, then no process in the system is deadlocked. If the graph does contain a cycle, then

a deadlock may exist.

UNIT-3 NOTES

Operating Systems Page 5

If each resource type has exactly one instance, then a cycle implies that a deadlock has

occurred. If the cycle involves only a set of resource types, each of which has only a single

instance, then a deadlock has occurred. Each process involved in the cycle is deadlocked. In

this case, a cycle in the graph is both a necessary and a sufficient condition for the existence of

deadlock.

If each resource type has several instances, then a cycle does not necessarily imply

that a deadlock has occurred. In this case, a cycle in the graph is a necessary but not a

sufficient condition for the existence of deadlock.

To illustrate this concept, we return to the resource-allocation graph depicted in Figure 7.1.

Suppose that process P3 requests an instance of resource type R2. Since no resource instance

is currently available, we add a request edgeP3→ R2 to the graph (Figure 7.2). At this point,

two minimal cycles exist in the system:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for the resourceR3, which is

held by process P3. Process P3 is waiting for either process P1 or process P2 to release

resource R2. In addition, process P1 is waiting for processP2 to release resource R1.

Now consider the resource-allocation graph in Figure 7.3. In this example, we also have a

cycle:

P1 → R1 → P3 → R2 → P1

UNIT-3 NOTES

Operating Systems Page 6

However, there is no deadlock. Observe that process P4 may release its instance of resource

type R2. That resource can then be allocated to P3, breaking the cycle. In summary, if a

resource-allocation graph does not have a cycle, then the system is not in a deadlocked state.

If there is a cycle, then the system may or may not be in a deadlocked state. This observation

is important when we deal with the deadlock problem.

Resource Allocation Graph

The resource allocation graph is the pictorial representation of the state of a system. As its

name suggests, the resource allocation graph is the complete information about all the

processes which are holding some resources or waiting for some resources.

It also contains the information about all the instances of all the resources whether

they are available or being used by the processes. In Resource allocation graph, the process is

represented by a Circle while the Resource is represented by a rectangle.

Vertices are mainly of two types, Resource and process. Each of them will be

represented by a different shape. Circle represents process while rectangle represents

resource. A resource can have more than one instance. Each instance will be represented by a

dot inside the rectangle.

UNIT-3 NOTES

Operating Systems Page 7

Edges in RAG are also of two types, one represents assignment and other represents the wait

of a process for a resource. The above image shows each of them. A resource is shown as

assigned to a process if the tail of the arrow is attached to an instance to the resource and the

head is attached to a process. A process is shown as waiting for a resource if the tail of an

arrow is attached to the process while the head is pointing towards the resource.

Example

Let's consider 3 processes P1, P2 and P3, and two types of resources R1 and R2. The

resources are having 1 instance each.

According to the graph, R1 is being used by P1, P2 is holding R2 and waiting for R1, P3 is

waiting for R1 as well as R2.

The graph is deadlock free since no cycle is being formed in the graph.

UNIT-3 NOTES

Operating Systems Page 8

Deadlock Detection using RAG

If a cycle is being formed in a Resource allocation graph where all the resources have the

single instance then the system is deadlocked. In Case of Resource allocation graph with

multi-instanced resource types, Cycle is a necessary condition of deadlock but not the

sufficient condition. The following example contains three processes P1, P2, P3 and three

resources R2, R2, R3. All the resources are having single instances each.

If we analyze the graph then we can find out that there is a cycle formed in the graph since the

system is satisfying all the four conditions of deadlock.

Allocation Matrix

Allocation matrix can be formed by using the Resource allocation graph of a system. In

Allocation matrix, an entry will be made for each of the resource assigned. For Example, in the

following matrix, en entry is being made in front of P1 and below R3 since R3 is assigned to

P1.

Process R1 R2 R3

P1 0 0 1

UNIT-3 NOTES

Operating Systems Page 9

P2 1 0 0

P3 0 1 0

Request Matrix

In request matrix, an entry will be made for each of the resource requested. As in the

following example, P1 needs R1 therefore an entry is being made in front of P1 and below R1.

Process R1 R2 R3

P1 1 0 0

P2 0 1 0

P3 0 0 1

Avial = (0,0,0)

Neither we are having any resource available in the system nor a process going to release.

Each of the process needs at least single resource to complete therefore they will

continuously be holding each one of them. We cannot fulfill the demand of at least one

process using the available resources therefore the system is deadlocked as determined

earlier when we detected a cycle in the graph.

Deadlock Detection and Recovery

In this approach, The OS doesn't apply any mechanism to avoid or prevent the deadlocks.

Therefore the system considers that the deadlock will definitely occur. In order to get rid of

deadlocks, The OS periodically checks the system for any deadlock. In case, it finds any of the

deadlock then the OS will recover the system using some recovery techniques. The main task

of the OS is detecting the deadlocks. The OS can detect the deadlocks with the help of

Resource allocation graph.

UNIT-3 NOTES

Operating Systems Page 10

In single instanced resource types, if a cycle is being formed in the system then there will

definitely be a deadlock. On the other hand, in multiple instanced resource type graph,

detecting a cycle is not just enough. We have to apply the safety algorithm on the system by

converting the resource allocation graph into the allocation matrix and request matrix. In

order to recover the system from deadlocks, either OS considers resources or processes.

For Resource

Preempt the resource

We can snatch one of the resources from the owner of the resource (process) and give it to

the other process with the expectation that it will complete the execution and will release this

resource sooner. Well, choosing a resource which will be snatched is going to be a bit difficult.

Rollback to a safe state

System passes through various states to get into the deadlock state. The operating system can

rollback the system to the previous safe state. For this purpose, OS needs to implement check

pointing at every state. The moment, we get into deadlock, we will rollback all the allocations

to get into the previous safe state.

For Process

Kill a process

Killing a process can solve our problem but the bigger concern is to decide which process to

kill. Generally, Operating system kills a process which has done least amount of work until

now.

Kill all process

This is not a suggestible approach but can be implemented if the problem becomes very

serious. Killing all process will lead to inefficiency in the system because all the processes will

execute again from starting.

UNIT-3 NOTES

Operating Systems Page 11

Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three ways:

• We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never

enter a deadlocked state.

• We can allow the system to enter a deadlocked state, detect it, and recover.

• We can ignore the problem altogether and pretend that deadlocks never occur in the

system.

The third solution is the one used by most operating systems, including Linux and Windows.

It is then up to the application developer to write programs that handle deadlocks.

To ensure that deadlocks never occur, the system can use either a deadlock prevention

or a deadlock-avoidance scheme. Deadlock prevention provides a set of methods to ensure

that at least one of the necessary conditions (Section7.2.1) cannot hold. These methods

prevent deadlocks by constraining how requests for resources can be made.

Deadlock avoidance requires that the operating system be given additional

information in advance concerning which resources a process will request and use during its

lifetime. With this additional knowledge, the operating system can decide for each request

whether or not the process should wait. To decide whether the current request can be

satisfied or must be delayed, the system must consider the resources currently available, the

resources currently allocated to each process, and the future requests and releases of each

process.

UNIT-3 NOTES

Operating Systems Page 12

If a system does not employ either a deadlock-prevention or a deadlock avoidance

algorithm, then a deadlock situation may arise. In this environment, the system can provide

an algorithm that examines the state of the system to determine whether a deadlock has

occurred and an algorithm to recover from the deadlock.

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions must hold. By ensuring that at

least one of these conditions cannot hold, we can prevent the occurrence of a deadlock.

Deadlock Prevention

If we simulate deadlock with a table which is standing on its four legs then we can also

simulate four legs with the four conditions which when occurs simultaneously, cause the

deadlock.

However, if we break one of the legs of the table then the table will fall definitely. The

same happens with deadlock, if we can be able to violate one of the four necessary conditions

and don't let them occur together then we can prevent the deadlock.

Let's see how we can prevent each of the conditions.

1. Mutual Exclusion

Mutual section from the resource point of view is the fact that a resource can never be used

by more than one process simultaneously which is fair enough but that is the main reason

behind the deadlock. If a resource could have been used by more than one process at the

same time then the process would have never been waiting for any resource.

However, if we can be able to violate resources behaving in the mutually exclusive manner

then the deadlock can be prevented.

Spooling

For a device like printer, spooling can work. There is a memory associated with the printer

which stores jobs from each of the process into it. Later, Printer collects all the jobs and print

each one of them according to FCFS. By using this mechanism, the process doesn't have to

wait for the printer and it can continue whatever it was doing. Later, it collects the output

when it is produced.

UNIT-3 NOTES

Operating Systems Page 13

Although, Spooling can be an effective approach to violate mutual exclusion but it suffers

from two kinds of problems.

1. This cannot be applied to every resource.

2. After some point of time, there may arise a race condition between the processes to

get space in that spool.

We cannot force a resource to be used by more than one process at the same time since it will

not be fair enough and some serious problems may arise in the performance. Therefore, we

cannot violate mutual exclusion for a process practically.

2. Hold and Wait

Hold and wait condition lies when a process holds a resource and waiting for some other

resource to complete its task. Deadlock occurs because there can be more than one process

which are holding one resource and waiting for other in the cyclic order.

However, we have to find out some mechanism by which a process either doesn't hold

any resource or doesn't wait. That means, a process must be assigned all the necessary

resources before the execution starts. A process must not wait for any resource once the

execution has been started.

!(Hold and wait) = !hold or !wait (negation of hold and wait is, either you don't hold or

you don't wait)

This can be implemented practically if a process declares all the resources initially.

However, this sounds very practical but can't be done in the computer system because a

process can't determine necessary resources initially. Process is the set of instructions which

are executed by the CPU. Each of the instruction may demand multiple resources at the

multiple times. The need cannot be fixed by the OS.

UNIT-3 NOTES

Operating Systems Page 14

The problem with the approach is:

1. Practically not possible.

2. Possibility of getting starved will be increases due to the fact that some process may

hold a resource for a very long time.

3. No Preemption

Deadlock arises due to the fact that a process can't be stopped once it starts. However, if we

take the resource away from the process which is causing deadlock then we can prevent

deadlock.

This is not a good approach at all since if we take a resource away which is being used

by the process then all the work which it has done till now can become inconsistent. Consider

a printer is being used by any process. If we take the printer away from that process and

assign it to some other process then all the data which has been printed can become

inconsistent and ineffective and also the fact that the process can't start printing again from

where it has left which causes performance inefficiency.

4. Circular Wait

To violate circular wait, we can assign a priority number to each of the resource. A process

can't request for a lesser priority resource. This ensures that not a single process can request

a resource which is being utilized by some other process and no cycle will be formed.

Among all the methods, violating Circular wait is the only approach that can be implemented

practically.

UNIT-3 NOTES

Operating Systems Page 15

Deadlock Avoidance

An alternative method for avoiding deadlocks is to require additional information about how

resources are to be requested. In this the system consider the resources currently available,

the resources currently allocated to each process, and the future requests and releases of

each process. A deadlock-avoidance algorithm dynamically examines the resource-allocation

state to ensure that a circular-wait condition can never exist. The resource-allocation state is

defined by the number of available and allocated resources and the maximum demands of the

processes.

Deadlock avoidance algorithms:

1) Resource-Allocation-Graph Algorithm

2) Banker’s Algorithm

Safe State

A state is safe if the system can allocate resources to each process (up to its maximum) in

some order and still avoid a deadlock. More formally, a system is in a safe state only if there

exists a safe sequence. A sequence of processes<P1, P2, ..., Pn > is a safe sequence for the

current allocation state if, for each Pi , the resource requests that Pi can still make can be

satisfied by the currently available resources plus the resources held by all P j ,with j < i. In

this situation, if the resources that Pi needs are not immediately available, then Pi can wait

until all P j have finished. When they have finished, Pi can obtain all of its needed resources,

complete its designated task, return its allocated resources, and terminate. When Pi

terminates, Pi +1 can obtain its needed resources, and so on. If no such sequence exists, then

the system state is said to be unsafe.

Deadlock avoidance

In deadlock avoidance, the request for any resource will be granted if the resulting state of

the system doesn't cause deadlock in the system. The state of the system will continuously be

checked for safe and unsafe states. In order to avoid deadlocks, the process must tell OS, the

maximum number of resources a process can request to complete its execution.

The simplest and most useful approach states that the process should declare the

maximum number of resources of each type it may ever need. The Deadlock avoidance

algorithm examines the resource allocations so that there can never be a circular wait

condition.

UNIT-3 NOTES

Operating Systems Page 16

Safe and Unsafe States

The resource allocation state of a system can be defined by the instances of available and

allocated resources, and the maximum instance of the resources demanded by the processes.

A state of a system recorded at some random time is shown below.

Resources Assigned

Process Type 1 Type 2 Type 3 Type 4

A 3 0 2 2

B 0 0 1 1

C 1 1 1 0

D 2 1 4 0

Resources still needed

Process Type 1 Type 2 Type 3 Type 4

A 1 1 0 0

B 0 1 1 2

C 1 2 1 0

D 2 1 1 2

1. E = (7 6 8 4)

2. P = (6 2 8 3)

3. A = (1 4 0 1)

Above tables and vector E, P and A describes the resource allocation state of a system. There

are 4 processes and 4 types of the resources in a system. Table 1 shows the instances of each

resource assigned to each process. Table 2 shows the instances of the resources, each process

still needs. Vector E is the representation of total instances of each resource in the system.

UNIT-3 NOTES

Operating Systems Page 17

Vector P represents the instances of resources that have been assigned to processes. Vector A

represents the number of resources that are not in use. A state of the system is called safe if

the system can allocate all the resources requested by all the processes without entering into

deadlock. If the system cannot fulfill the request of all processes then the state of the system

is called unsafe. The key of Deadlock avoidance approach is when the request is made for

resources then the request must only be approved in the case if the resulting state is also a

safe state.

What is Banker's Algorithm?

Banker's algorithm is a deadlock avoidance algorithm. It is named so because this

algorithm is used in banking systems to determine whether a loan can be granted or not.

Consider there are n account holders in a bank and the sum of the money in all of their

accounts is S. Every time a loan has to be granted by the bank, it subtracts the loan

amount from the total money the bank has. Then it checks if that difference is greater than S.

It is done because, only then, the bank would have enough money even if all the n account

holders draw all their money at once.

Banker's algorithm works in a similar way in computers.

Whenever a new process is created, it must specify the maximum instances of each resource

type that it needs, exactly.

Let us assume that there are n processes and m resource types. Some data structures that are

used to implement the banker's algorithm are:

1. Available

It is an array of length m. It represents the number of available resources of each type.

If Available[j] = k, then there are k instances available, of resource type R(j).

2. Max

It is an n x m matrix which represents the maximum number of instances of each resource

that a process can request. If Max[i][j] = k, then the process P(i) can request

atmost k instances of resource type R(j).

UNIT-3 NOTES

Operating Systems Page 18

3. Allocation

It is an n x m matrix which represents the number of resources of each type currently

allocated to each process. If Allocation[i][j] = k, then process P(i) is currently

allocated k instances of resource type R(j).

4. Need

It is an n x m matrix which indicates the remaining resource needs of each process.

If Need[i][j] = k, then process P(i) may need k more instances of resource type R(j) to

complete its task.

Need[i][j] = Max[i][j] - Allocation [i][j]

Resource Request Algorithm

This describes the behavior of the system when a process makes a resource request in the

form of a request matrix. The steps are:

1. If number of requested instances of each resource is less than the need (which was

declared previously by the process), go to step 2.

2. If number of requested instances of each resource type is less than the available resources

of each type, go to step 3. If not, the process has to wait because sufficient resources are

not available yet.

3. Now, assume that the resources have been allocated. Accordingly do,

Available = Available - Requesti

Allocation(i) = Allocation(i) + Request(i)

Need(i) = Need(i) - Request(i)

This step is done because the system needs to assume that resources have been allocated. So

there will be less resources available after allocation. The number of allocated instances will

increase. The need of the resources by the process will reduce. That's what is represented by

the above three operations.

After completing the above three steps, check if the system is in safe state by applying

the safety algorithm. If it is in safe state, proceed to allocate the requested resources. Else, the

process has to wait longer.

UNIT-3 NOTES

Operating Systems Page 19

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initially,

2. Work = Available

3. Finish[i] =false for i = 0, 1, ... , n - 1.

This means, initially, no process has finished and the number of available resources is

represented by the Available array.

4. Find an index i such that both

5. Finish[i] ==false

6. Needi <= Work

If there is no such i present, then proceed to step 4.

It means, we need to find an unfinished process whose need can be satisfied by the

available resources. If no such process exists, just go to step 4.

7. Perform the following:

8. Work = Work + Allocation;

9. Finish[i] = true;

Go to step 2.

When an unfinished process is found, then the resources are allocated and the process is

marked finished. And then, the loop is repeated to check the same for all other processes.

10. If Finish[i] == true for all i, then the system is in a safe state.

That means if all processes are finished, then the system is in safe state.

Example:

Considering a system with five processes P0 through P4 and three resources types A, B,

C. Resource type A has 10 instances, B has 5 instances and type C has 7 instances.

Suppose at time t0 following snapshot of the system has been taken:

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/safety.png

UNIT-3 NOTES

Operating Systems Page 20

Question1. What will be the content of the Need matrix?

Need [i, j] = Max [i, j] – Allocation [i, j]

So, the content of Need Matrix is:

Question2. Is the system in safe state? If Yes, then what is the safe sequence?

Applying the Safety algorithm on the given system,

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/unnamed.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/questionsolved.png

UNIT-3 NOTES

Operating Systems Page 21

Question3. What will happen if process P1 requests one additional instance of resource

type A and two instances of resource type C?

We must determine whether this new system state is safe. To do so, we again execute Safety

algorithm on the above data structures.

Hence the new system state is safe, so we can immediately grant the request for process P1 .

https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/Allocation.png
https://www.geeksforgeeks.org/wp-content/uploads/gq/2016/01/Q31.png

UNIT-3 NOTES

Operating Systems Page 22

Example2

Assuming that the system distinguishes between four types of resources, (A, B, C and D), the

following is an example of how those resources could be distributed. Note that this example

shows the system at an instant before a new request for resources arrives. Also, the types and

number of resources are abstracted. Real systems, for example, would deal with much larger

quantities of each resource.

Total resources in system:

A B C D

6 5 7 6

Available system resources are:

A B C D

3 1 1 2

Processes (currently allocated resources):

 A B C D

P1 1 2 2 1

P2 1 0 3 3

P3 1 2 1 0

Processes (maximum resources):

 A B C D

P1 3 3 2 2

P2 1 2 3 4

P3 1 3 5 0

Need= maximum resources - currently allocated resources

Processes (need resources):

 A B C D

P1 2 1 0 1

P2 0 2 0 1

P3 0 1 4 0

UNIT-3 NOTES

Operating Systems Page 23

Deadlock Detection

If deadlock prevention and avoidance are not done properly, as deadlock may occur and only

things left to do is to detect the recover from the deadlock.

If all resource types has only single instance, then we can use a graph called wait-for-

graph, which is a variant of resource allocation graph. Here, vertices represent processes and

a directed edge from P1 to P2 indicate that P1 is waiting for a resource held by P2. Like in the

case of resource allocation graph, a cycle in a wait-for-graph indicate a deadlock. So the

system can maintain a wait-for-graph and check for cycles periodically to detect any

deadlocks.

The wait-for-graph is not much useful if there are multiple instances for a resource, as

a cycle may not imply a deadlock. In such a case, we can use an algorithm similar to Banker’s

algorithm to detect deadlock. We can see if further allocations can be made on not based on

UNIT-3 NOTES

Operating Systems Page 24

current allocations. You can refer to any operating system text books for details of these

algorithms.

Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alter-natives are

available. One possibility is to inform the operator that a deadlock has occurred and to let the

operator deal with the deadlock manually. Another possibility is to let the system recover

from the deadlock automatically. There are two options for breaking a deadlock. One is

simply to abort one or more processes to break the circular wait. The other is to preempt

some resources from one or more of the deadlocked processes.

Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In both methods,

the system reclaims all resources allocated to the terminated processes.

• Abort all deadlocked processes. This method clearly will break the deadlock cycle, but at

great expense. The deadlocked processes may have computed for a long time, and the results

of these partial computations must be discarded and probably will have to be recomputed

later.

• Abort one process at a time until the deadlock cycle is eliminated. This method incurs

considerable overhead, since after each process is aborted, a deadlock-detection algorithm

must be invoked to determine whether any processes are still deadlocked.

MEMORY MANAGEMENT

In computer each process has a separate memory space. Separate per-process memory space

protects the processes from each other and is fundamental to having multiple processes

loaded in memory for concurrent execution. To separate memory spaces, we need the ability

to determine the range of legal addresses that the process may access and to ensure that the

process can access only these legal addresses. We can provide this protection by using two

registers, usually a base and a limit, as illustrated in Figure 8.1.The base register holds the

smallest legal physical memory address; the limit register specifies the size of the range. For

example, if the base register holds300040 and the limit register is 120900, then the program

can legally access all addresses from 300040 through 420939 (inclusive).

UNIT-3 NOTES

Operating Systems Page 25

Memory management is the functionality of an operating system which handles or

manages primary memory and moves processes back and forth between main memory and

disk during execution. Memory management keeps track of each and every memory location,

regardless of either it is allocated to some process or it is free. It checks how much memory is

to be allocated to processes. It decides which process will get memory at what time. It tracks

whenever some memory gets freed or unallocated and correspondingly it updates the status.

Process Address Space

The operating system takes care of mapping the logical addresses to physical addresses at the

time of memory allocation to the program.

UNIT-3 NOTES

Operating Systems Page 26

Virtual and physical addresses are the same in compile-time and load-time address-

binding schemes. Virtual and physical addresses differ in execution-time address-binding

scheme. The set of all logical addresses generated by a program is referred to as a logical

address space. The set of all physical addresses corresponding to these logical addresses is

referred to as a physical address space.

The runtime mapping from virtual to physical address is done by the memory

management unit (MMU) which is a hardware device. MMU uses following mechanism to

convert virtual address to physical address.

• The value in the base register is added to every address generated by a user process,

which is treated as offset at the time it is sent to memory. For example, if the base register

value is 10000, then an attempt by the user to use address location 100 will be dynamically

reallocated to location 10100.

• The user program deals with virtual addresses; it never sees the real physical

addresses.

UNIT-3 NOTES

Operating Systems Page 27

Static vs Dynamic Loading

The choice between Static or Dynamic Loading is to be made at the time of computer program

being developed. If you have to load your program statically, then at the time of compilation,

the complete programs will be compiled and linked without leaving any external program or

module dependency. The linker combines the object program with other necessary object

modules into an absolute program, which also includes logical addresses.

If you are writing a dynamically loaded program, then your compiler will compile the

program and for all the modules which you want to include dynamically, only references will

be provided and rest of the work will be done at the time of execution. At the time of loading,

with static loading, the absolute program (and data) is loaded into memory in order for

execution to start. If you are using dynamic loading, dynamic routines of the library are stored

on a disk in relocatable form and are loaded into memory only when they are needed by the

program.

As explained above, when static linking is used, the linker combines all other modules needed

by a program into a single executable program to avoid any runtime dependency.

When dynamic linking is used, it is not required to link the actual module or library

with the program, rather a reference to the dynamic module is provided at the time of

compilation and linking. Dynamic Link Libraries (DLL) in Windows and Shared Objects in

Unix are good examples of dynamic libraries.

Address Binding
Usually, a program resides on a disk as a binary executable file. To be executed, the program

must be brought into memory and placed within a process. Depending on the memory

management in use, the process may be moved between disk and memory during its

execution. The processes on the disk that are waiting to be brought into memory for

execution form the input queue.

In most cases, a user program goes through several steps—some of which may be

optional—before being executed (Figure 8.3). Addresses may be represented in different

ways during these steps. Addresses in the source program are generally symbolic (such as the

variable count). A compiler typically binds these symbolic addresses to relocatable addresses

(such as “14 bytes from the beginning of this module”). The linkage editor or loader in turn

binds the relocatable addresses to absolute addresses (such as 74014). Each binding is a

UNIT-3 NOTES

Operating Systems Page 28

mapping from one address space to another. Classically, the binding of instructions and data

to memory addresses can be done at any step along the way:

• Compile time. If you know at compile time where the process will reside in memory, then

absolute code can be generated. For example, if you know that a user process will reside

starting at location R, then the generated compiler code will start at that location and extend

up from there. If, at some later time, the starting location changes, then it will be necessary to

recompile this code. The MS-DOS .COM-format programs are bound at compile time.

• Load time. If it is not known at compile time where the process will reside in memory, then

the compiler must generate relocatable code. In this case, final binding is delayed until load

time. If the starting address changes, we need only reload the user code to incorporate this

changed value.

• Execution time. If the process can be moved during its execution from one memory segment

to another, then binding must be delayed until run time. Special hardware must be available

for this scheme to work. Most general-purpose operating systems use this method.

UNIT-3 NOTES

Operating Systems Page 29

Swapping

Swapping is a mechanism in which a process can be swapped temporarily out of main

memory (or move) to secondary storage (disk) and make that memory available to other

processes. At some later time, the system swaps back the process from the secondary

storage to main memory. Though performance is usually affected by swapping process but it

helps in running multiple and big processes in parallel and that's the reason Swapping is

also known as a technique for memory compaction.

UNIT-3 NOTES

Operating Systems Page 30

The total time taken by swapping process includes the time it takes to move the entire

process to a secondary disk and then to copy the process back to memory, as well as the time

the process takes to regain main memory.

Let us assume that the user process is of size 2048KB and on a standard hard disk

where swapping will take place has a data transfer rate around 1 MB per second. The actual

transfer of the 1000K process to or from memory will take

2048KB / 1024KB per second

= 2 seconds

= 2000 milliseconds

Now considering in and out time, it will take complete 4000 milliseconds plus other

overhead where the process competes to regain main memory.

UNIT-3 NOTES

Operating Systems Page 31

Memory Allocation

Main memory usually has two partitions −

• Low Memory − Operating system resides in this memory.

• High Memory − User processes are held in high memory.

Operating system uses the following memory allocation mechanism.

S.N. Memory Allocation & Description

1 Single-partition allocation

In this type of allocation, relocation-register scheme is used to protect user

processes from each other, and from changing operating-system code and

data. Relocation register contains value of smallest physical address whereas

limit register contains range of logical addresses. Each logical address must be

less than the limit register.

2 Multiple-partition allocation

In this type of allocation, main memory is divided into a number of fixed-sized

partitions where each partition should contain only one process. When a

partition is free, a process is selected from the input queue and is loaded into

the free partition. When the process terminates, the partition becomes

available for another process.

Contiguous Memory Allocation

In contiguous memory allocation each process is contained in a single contiguous block of

memory. Memory is divided into several fixed size partitions. Each partition contains exactly

one process. When a partition is free, a process is selected from the input queue and loaded

into it. The free blocks of memory are known as holes. The set of holes is searched to

determine which hole is best to allocate.

Memory Protection

Memory protection is a phenomenon by which we control memory access rights on a

computer. The main aim of it is to prevent a process from accessing memory that has not

been allocated to it. Hence prevents a bug within a process from affecting other processes, or

the operating system itself, and instead results in a segmentation fault or storage violation

exception being sent to the disturbing process, generally killing of process.

UNIT-3 NOTES

Operating Systems Page 32

Memory Allocation

Memory allocation is a process by which computer programs are assigned memory or space.

It is of three types :

First Fit:The first hole that is big enough is allocated to program.

Best Fit:The smallest hole that is big enough is allocated to program.

Worst Fit:The largest hole that is big enough is allocated to program.

The contiguous memory allocation scheme can be implemented in operating systems with the

help of two registers, known as the base and limit registers. When a process is executing in

main memory, its base register contains the starting address of the memory location where

the process is executing, while the amount of bytes consumed by the process is stored in the

limit register.

A process does not directly refer to the actual address for a corresponding memory

location. Instead, it uses a relative address with respect to its base register. All addresses

referred by a program are considered as virtual addresses. The CPU generates the logical or

virtual address, which is converted into an actual address with the help of the memory

management unit (MMU). The base address register is used for address translation by the

MMU. Thus, a physical address is calculated as follows:

Physical Address = Base register address + Logical address/Virtual address

The address of any memory location referenced by a process is checked to ensure that

it does not refer to an address of a neighboring process. This processing security is handled

by the underlying operating system. One disadvantage of contiguous memory allocation is

that the degree of multiprogramming is reduced due to processes waiting for free memory.

Operating System keeps track of available free memory areas. There are three approaches to

select a free partition from the set of available blocks.

First Fit:

It allocates the first free large area whose size is >= program size. Searching may start from

either beginning of the list or where previous first-fit search ended. Limitation of this

UNIT-3 NOTES

Operating Systems Page 33

technique is that it may split a free area repeatedly and produce smaller size of blocks that

may consider as external fragmentation.

Best Fit:

It allocates the smallest free area with size >= program size. We have to search the entire free

list to find out the smallest free hole so it has higher allocation cost. Limitation of this

technique is that in long run it too may produce numerous unusable small free areas. It also

suffers from higher allocation cost because it has to process entire free list at every allocation.

Worst Fit (Next Fit):

The worst fit technique is a compromise between these two techniques. It remembers the

entry of last allocation. It searches the free list starting from the previous allocation for the

first free area of size >= program size. The first fit technique is better than best fit. Both first

fit and next fit performs better than best fit.

Example:A free list contains three free areas of size 200, 170 and 500 bytes respectively

(figure a). Processes sends allocation requests for 100, 50 and 400 bytes.

The first fit technique will allocate 100 and 50 bytes from the first free area leaving a free

area of 50 bytes. It allocates 400 bytes from the third free area.

The best fit technique will allocate 100 and 50 bytes from the second free area leaving a free

area of 20 bytes. The next fit technique allocates 100, 50 and 400 bytes from the three free

areas.

UNIT-3 NOTES

Operating Systems Page 34

Fragmentation

As processes are loaded and removed from memory, the free memory space is broken into

little pieces. It happens after sometimes that processes cannot be allocated to memory

blocks considering their small size and memory blocks remains unused. This problem is

known as Fragmentation.

Fragmentation is of two types −

S.N. Fragmentation & Description

1 External fragmentation

Total memory space is enough to satisfy a request or to reside a process in it,

but it is not contiguous, so it cannot be used.

2 Internal fragmentation

Memory block assigned to process is bigger. Some portion of memory is left

unused, as it cannot be used by another process.

The following diagram shows how fragmentation can cause waste of memory and a

compaction technique can be used to create more free memory out of fragmented memory −

UNIT-3 NOTES

Operating Systems Page 35

External fragmentation can be reduced by compaction or shuffle memory contents to place

all free memory together in one large block. To make compaction feasible, relocation should

be dynamic. The internal fragmentation can be reduced by effectively assigning the smallest

partition but large enough for the process.

Difference between Internal and External fragmentation

Internal Fragmentation

1. When a process is allocated more memory than required, few space is left unused

and this is called as INTERNAL FRAGMENTATION.

2. It occurs when memory is divided into fixed-sized partitions.

3. It can be cured by allocating memory dynamically or having partitions of different

sizes.

External Fragmentation

1. After execution of processes when they are swapped out of memory and other

smaller processes replace them, many small non contiguous(adjacent) blocks of

unused spaces are formed which can serve a new request if all of them are put

together but as they are not adjacent to each other a new request can't be served

and this is known as EXTERNAL FRAGMENTATION.

2. It occurs when memory is divided into variable-sized partitions based on size of

process.

3. It can be cured by Compaction, Paging and Segmentation.

UNIT-3 NOTES

Operating Systems Page 36

Internal Fragmentation

External Fragmentation

Segmentation

Segmentation is a memory management technique in which each job is divided into several

segments of different sizes, one for each module that contains pieces that perform related

functions. Each segment is actually a different logical address space of the program.

UNIT-3 NOTES

Operating Systems Page 37

When a process is to be executed, its corresponding segmentation are loaded into

non-contiguous memory though every segment is loaded into a contiguous block of available

memory. Segmentation memory management works very similar to paging but here

segments are of variable-length where as in paging pages are of fixed size.

A program segment contains the program's main function, utility functions, data

structures, and so on. The operating system maintains a segment map table for every

process and a list of free memory blocks along with segment numbers, their size and

corresponding memory locations in main memory. For each segment, the table stores the

starting address of the segment and the length of the segment. A reference to a memory

location includes a value that identifies a segment and an offset.

Segmentation Hardware

Although the programmer can now refer to objects in the program by a two-dimensional

address, the actual physical memory is still, of course, a one-dimensional sequence of bytes.

Thus, we must define an implementation to map two-dimensional user-defined addresses

UNIT-3 NOTES

Operating Systems Page 38

into one-dimensional physical addresses. This mapping is effected by a segment table. Each

entry in the segment table has a segment base and a segment limit. The segment base

contains the starting physical address where the segment resides in memory, and the

segment limit specifies the length of the segment.

The use of a segment table is illustrated in Figure 8.8. A logical address consists of two

parts: a segment number, s, and an offset into that segment, d. The segment number is used as

an index to the segment table. The offset d of the logical address must be between 0 and the

segment limit. If it is not, we trap to the operating system (logical addressing attempt beyond

end of segment).When an offset is legal, it is added to the segment base to produce the

address in physical memory of the desired byte. The segment table is thus essentially an array

of base – limit register pairs.

We have five segments numbered from 0 through 4. The segments are stored in physical

memory as shown. The segment table has a separate entry for each segment, giving the

beginning address of the segment in physical memory (or base) and the length of that

segment (or limit). For example, segment 2 is 400 bytes long and begins at location 4300.

Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 + 53 = 4353. A

reference to segment 3, byte 852, is mapped to3200 (the base of segment 3) + 852 = 4052. A

reference to byte 1222 of segment0 would result in a trap to the operating system, as this

segment is only 1,000bytes long.

UNIT-3 NOTES

Operating Systems Page 39

Paging

A computer can address more memory than the amount physically installed on the system.

This extra memory is actually called virtual memory and it is a section of a hard that's set up

to emulate the computer's RAM. Paging technique plays an important role in implementing

virtual memory.

Paging is a memory management technique in which process address space is broken

into blocks of the same size called pages (size is power of 2, between 512 bytes and 8192

bytes). The size of the process is measured in the number of pages.

Similarly, main memory is divided into small fixed-sized blocks of (physical) memory

called frames and the size of a frame is kept the same as that of a page to have optimum

utilization of the main memory and to avoid external fragmentation.

UNIT-3 NOTES

Operating Systems Page 40

Address Translation

Page address is called logical address and represented by page numberand the offset.

Logical Address = Page number + page offset

Frame address is called physical address and represented by a frame number and

the offset.

Physical Address = Frame number + page offset

A data structure called page map table is used to keep track of the relation between a page

of a process to a frame in physical memory.

UNIT-3 NOTES

Operating Systems Page 41

When the system allocates a frame to any page, it translates this logical address into a

physical address and create entry into the page table to be used throughout execution of the

program.

When a process is to be executed, its corresponding pages are loaded into any

available memory frames. Suppose you have a program of 8Kb but your memory can

accommodate only 5Kb at a given point in time, then the paging concept will come into

picture. When a computer runs out of RAM, the operating system (OS) will move idle or

unwanted pages of memory to secondary memory to free up RAM for other processes and

brings them back when needed by the program.

This process continues during the whole execution of the program where the OS

keeps removing idle pages from the main memory and write them onto the secondary

memory and bring them back when required by the program.

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging −

• Paging reduces external fragmentation, but still suffer from internal fragmentation.

• Paging is simple to implement and assumed as an efficient memory management

technique.

• Due to equal size of the pages and frames, swapping becomes very easy.

UNIT-3 NOTES

Operating Systems Page 42

• Page table requires extra memory space, so may not be good for a system having small

RAM.

UNIT-3 NOTES

Operating Systems Page 43

Paging VS Segmentation

S
No.

Paging Segmentation

1 Non-Contiguous memory allocation Non-contiguous memory allocation

2 Paging divides program into fixed size pages.
Segmentation divides program into variable
size segments.

3 OS is responsible Compiler is responsible.

4 Paging is faster than segmentation Segmentation is slower than paging

5 Paging is closer to Operating System Segmentation is closer to User

6 It suffers from internal fragmentation It suffers from external fragmentation

7 There is no external fragmentation There is no external fragmentation

8
Logical address is divided into page number and page
offset

Logical address is divided into segment
number and segment offset

9 Page table is used to maintain the page information.
Segment Table maintains the segment
information

10
Page table entry has the frame number and some flag
bits to represent details about pages.

Segment table entry has the base address
of the segment and some protection bits for
the segments.

Virtual Memory

A computer can address more memory than the amount physically installed on the system.

This extra memory is actually called virtual memory and it is a section of a hard disk that's set

up to emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than physical

memory. Virtual memory serves two purposes. First, it allows us to extend the use of physical

memory by using disk. Second, it allows us to have memory protection, because each virtual

address is translated to a physical address.

Following are the situations, when entire program is not required to be loaded fully in main

memory.

➢ User written error handling routines are used only when an error occurred in the data

or computation.

➢ Certain options and features of a program may be used rarely.

UNIT-3 NOTES

Operating Systems Page 44

➢ Many tables are assigned a fixed amount of address space even though only a small

amount of the table is actually used.

➢ The ability to execute a program that is only partially in memory would counter many

benefits.

➢ Less number of I/O would be needed to load or swap each user program into memory.

➢ A program would no longer be constrained by the amount of physical memory that is

available.

➢ Each user program could take less physical memory, more programs could be run the

same time, with a corresponding increase in CPU utilization and throughput.

Modern microprocessors intended for general-purpose use, a memory management unit, or

MMU, is built into the hardware. The MMU's job is to translate virtual addresses into physical

addresses. A basic example is given below −

Virtual memory is commonly implemented by demand paging. It can also be implemented in

a segmentation system. Demand segmentation can also be used to provide virtual memory.

UNIT-3 NOTES

Operating Systems Page 45

Demand Paging

A demand paging system is quite similar to a paging system with swapping where processes

reside in secondary memory and pages are loaded only on demand, not in advance. When a

context switch occurs, the operating system does not copy any of the old program’s pages out

to the disk or any of the new program’s pages into the main memory Instead, it just begins

executing the new program after loading the first page and fetches that program’s pages as

they are referenced.

UNIT-3 NOTES

Operating Systems Page 46

While executing a program, if the program references a page which is not available in the

main memory because it was swapped out a little ago, the processor treats this invalid

memory reference as a page fault and transfers control from the program to the operating

system to demand the page back into the memory.

Advantages

Following are the advantages of Demand Paging −

➢ Large virtual memory.

➢ More efficient use of memory.

➢ There is no limit on degree of multiprogramming.

Disadvantages

Number of tables and the amount of processor overhead for handling page interrupts are

greater than in the case of the simple paged management techniques.

Page Replacement Algorithms

Page replacement algorithms are the techniques using which an Operating System decides

which memory pages to swap out, write to disk when a page of memory needs to be allocated.

Paging happens whenever a page fault occurs and a free page cannot be used for allocation

UNIT-3 NOTES

Operating Systems Page 47

purpose accounting to reason that pages are not available or the number of free pages is

lower than required pages.

When the page that was selected for replacement and was paged out, is referenced

again, it has to read in from disk, and this requires for I/O completion. This process

determines the quality of the page replacement algorithm: the lesser the time waiting for

page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the

pages provided by hardware, and tries to select which pages should be replaced to minimize

the total number of page misses, while balancing it with the costs of primary storage and

processor time of the algorithm itself. There are many different page replacement algorithms.

We evaluate an algorithm by running it on a particular string of memory reference and

computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference strings are generated

artificially or by tracing a given system and recording the address of each memory reference.

The latter choice produces a large number of data, where we note two things.

For a given page size, we need to consider only the page number, not the entire address. If we

have a reference to a page p, then any immediately following references to page p will never

cause a page fault. Page p will be in memory after the first reference; the immediately

following references will not fault.

For example, consider the following sequence of addresses − 123,215,600,1234,76,96

If page size is 100, then the reference string is 1,2,6,12,0,0

First In First Out (FIFO) algorithm

Oldest page in main memory is the one which will be selected for replacement.

Easy to implement, keep a list, replace pages from the tail and add new pages at the head.

UNIT-3 NOTES

Operating Systems Page 48

Optimal Page algorithm

An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An

optimal page-replacement algorithm exists, and has been called OPT or MIN.

Replace the page that will not be used for the longest period of time. Use the time when a

page is to be used.

Least Recently Used (LRU) algorithm

Page which has not been used for the longest time in main memory is the one which will be

selected for replacement.

UNIT-3 NOTES

Operating Systems Page 49

Easy to implement, keep a list, replace pages by looking back into time.

What is a Page Fault?

If the referred page is not present in the main memory then there will be a miss and the

concept is called Page miss or page fault. The CPU has to access the missed page from the

secondary memory. If the number of page fault is very high then the effective access time of

the system will become very high.

What is Thrashing?

If the number of page faults is equal to the number of referred pages or the number of page

faults are so high so that the CPU remains busy in just reading the pages from the secondary

memory then the effective access time will be the time taken by the CPU to read one word

from the secondary memory and it will be so high. The concept is called thrashing.

If the page fault rate is PF %, the time taken in getting a page from the secondary

memory and again restarting is S (service time) and the memory access time is ma then the

effective access time can be given as;

 EAT = PF X S + (1 - PF) X (ma)

Thrashing

A process that is spending more time paging than executing is said to be thrashing. In other

words it means, that the process doesn't have enough frames to hold all the pages for its

UNIT-3 NOTES

Operating Systems Page 50

execution, so it is swapping pages in and out very frequently to keep executing. Sometimes,

the pages which will be required in the near future have to be swapped out.

Initially when the CPU utilization is low, the process scheduling mechanism, to

increase the level of multiprogramming loads multiple processes into the memory at the

same time, allocating a limited amount of frames to each process. As the memory fills up,

process starts to spend a lot of time for the required pages to be swapped in, again leading to

low CPU utilization because most of the proccesses are waiting for pages. Hence the scheduler

loads more processes to increase CPU utilization, as this continues at a point of time the

complete system comes to a stop.

To prevent thrashing we must provide processes with as many frames as they really need

"right now".

UNIT-4 NOTES

Operating Systems Page 1

 UNIT – IV

STORAGE MANAGEMENT: File system-Concept of a file, access methods, directory structure,

file system mounting, file sharing, protection. (T1: Ch-10) SECONDARY-STORAGE

STRUCTURE: Overview of mass storage structure, disk structure, disk attachment, disk

scheduling algorithms, swap space management, stable storage implementation, and tertiary

storage structure (T1: Ch-12).

File Concept

The operating system abstracts from the physical properties of its storage devices to define a

logical storage unit, the file. Files are mapped by the operating system onto physical devices.

These storage devices are usually nonvolatile, so the contents are persistent between system

reboots.

A file is a named collection of related information that is recorded on secondary

storage. From a user’s perspective, a file is the smallest allotment of logical secondary storage.

Commonly, files represent programs (both source and object forms) and data. Data files may

be numeric, alphabetic, alphanumeric, or binary.

The information in a file is defined by its creator. Many different types of information

maybe stored in a file—source or executable programs, numeric or text data, photos, music,

video, and so on. A file has a certain defined structure, which depends on its type. A text file is

a sequence of characters organized into lines (and possibly pages). A source file is a

sequence of functions, each of which is further organized as declarations followed by

executable statements. An executable file is a series of code sections that the loader can

bring into memory and execute.

File Attributes

file’s attributes vary from one operating system to another but typically consist of these:

• Name. The symbolic file name is the only information kept in human readable form.

• Identifier. This unique tag, usually a number, identifies the file within the file system; it is

the non-human-readable name for the file.

• Type. This information is needed for systems that support different types of files.

• Location. This information is a pointer to a device and to the location of the file on that

device.

UNIT-4 NOTES

Operating Systems Page 2

• Size. The current size of the file (in bytes, words, or blocks) and possibly the maximum

allowed size are included in this attribute.

• Protection. Access-control information determines who can do reading, writing, executing,

and so on.

• Time, date, and user identification. This information may be kept for creation, last

modification, and last use. These data can be useful for protection, security, and usage

monitoring.

File Operations

Creating a file.

Writing a file: The system must keep a write pointer to the location in the file where the

next write is to take place. The write pointer must be updated whenever a write occurs.

Reading a file: system needs to keep a read pointer to the location in the file where the next

read is to take place. the current operation location can be kept as a per-process current file-

position pointer.

Repositioning within a file: This file operation is also known as a file seek.

Deleting a file

Truncating a file

Most of the file operations mentioned involve searching the directory for the entry associated

with the named file. To avoid this constant searching, many systems require that an open()

system call be made before a file is first used. The operating system keeps a table, called the

open-file table, containing information about all open files.

Typically, the open-file table also has an open count associated with each file to

indicate how many processes have the file open. Each close() decreases this open count, and

when the open count reaches zero, the file is no longer in use, and the file’s entry is removed

from the open-file table.

In summary, several pieces of information are associated with an open file.

File pointer.

File-open count

Disk location of the file.

Access rights

UNIT-4 NOTES

Operating Systems Page 3

Some operating systems provide facilities for locking an open file (or sections of a file). File

locks allow one process to lock a file and prevent other processes from gaining access to it. A

shared lock is akin to a reader lock in that several processes can acquire the lock

concurrently. An exclusive lock behaves like a writer lock; only one process at a time can

acquire such a lock.

Furthermore, operating systems may provide either mandatory or advisory file-

locking mechanisms. If a lock is mandatory, then once a process acquires an exclusive lock,

the operating system will prevent any other process from accessing the locked file.

File Types

A common technique for implementing file types is to include the type as part of the file

name. The name is split into two parts—a name and an extension, usually separated by a

period.

Access Methods

Files store information. When it is used, this information must be accessed and read into

computer memory. The information in the file can be accessed in several ways. Some systems

provide only one access method for files. while others support many access methods, and

choosing the right one for a particular application is a major design problem.

UNIT-4 NOTES

Operating Systems Page 4

There are three ways to access a file into computer system: Sequential Access, Direct Access,

Index sequential Method.

Sequential Access

The simplest access method is sequential access. Information in the file is processed in

order, one record after the other. Reads and writes make up the bulk of the operations on a

file. A read operation—read next()—reads the next portion of the file and automatically

advances a file pointer, which tracks the I/O location. Similarly, the write operation—write

next()—appends to the end of the file and advances to the end of the newly written material

(the new end of file).

Key points:

1. Data is accessed one record right after another record in an order.

2. When we use read command, it move ahead pointer by one

3. When we use write command, it will allocate memory and move the pointer to

the end of the file

4. Such a method is reasonable for tape.

Direct Access

Another method is direct access (or relative access). Here, a file is made up of fixed-length

logical records that allow programs to read and write records rapidly in no particular order.

The direct-access method is based on a disk model of a file, since disks allow random access

to any file block.

For direct access, the file is viewed as a numbered sequence of blocks or records. Thus,

we may read block 14, then read block 53, and then write block 7. There are no restrictions

on the order of reading or writing for a direct-access file. For the direct-access method, the

file operations must be modified to include the block number as a parameter. Thus, we have

read(n), where n is the block number, rather than read next(), and write(n) rather than write

next().

UNIT-4 NOTES

Operating Systems Page 5

The block number provided by the user to the operating system is normally a relative

block number. A relative block number is an index relative to the beginning of the file. Thus,

the first relative block of the file is 0, the next is1, and so on. When file is used, information is

read and accessed into computer memory and there are several ways to accesses these

information of the file.

Index sequential method –

It is the other method of accessing a file. Which is built on the top of the direct access method.

these methods we construct an index for the file. The index, like an index in the back of a

book, contains the pointer to the various blocks. To find a record in the file, we first search the

index and then by the help of pointer we access the file directly.

Key points:

It is built on top of Sequential access.

It control the pointer by using index.

Directory and Disk Structure

For example, a disk can be partitioned into quarters, and each quarter can hold a separate file

system.

Partitioning is useful for limiting the sizes of individual file systems, putting multiple

file-system types on the same device, or leaving part of the device available for other uses,

such as swap space or unformatted (raw) disk space. A file system can be created on each of

these parts of the disk. Any entity containing a file system is generally known as a volume.

The volume may be a subset of a device, a whole device, or multiple devices linked together

into a RAID set. Each volume can be thought of as a virtual disk. Volumes can also store

multiple operating systems, allowing a system to boot and run more than one operating

system.

Each volume that contains a file system must also contain information about the files

in the system. This information is kept in entries in a device directory or volume table of

contents. The device directory (more commonly known simply as the directory) records

information—such as name, location, size, and type—for all files on that volume. Figure 11.7

shows a typical file-system organization.

UNIT-4 NOTES

Operating Systems Page 6

Directory Overview

 The directory can be viewed as a symbol table that translates file names into their

directory entries. If we take such a view, we see that the directory itself can be organized in

many ways. The organization must allow us to insert entries, to delete entries, to search for a

named entry, and to list all the entries in the directory.

Operations that are to be performed on a directory:

➢ Search for a file

➢ Create a file

➢ Delete a file

➢ List a directory

➢ Rename a file

➢ Traverse the file system

What is a directory?

Directory can be defined as the listing of the related files on the disk. The directory may store

some or the entire file attributes. To get the benefit of different file systems on the different

operating systems, A hard disk can be divided into the number of partitions of different sizes.

The partitions are also called volumes or mini disks.

UNIT-4 NOTES

Operating Systems Page 7

Each partition must have at least one directory in which, all the files of the partition

can be listed. A directory entry is maintained for each file in the directory which stores all the

information related to that file.

A directory can be viewed as a file which contains the Meta data of the bunch of files.

Single Level Directory

The simplest method is to have one big list of all the files on the disk. The entire system will

contain only one directory which is supposed to mention all the files present in the file

system. The directory contains one entry per each file present on the file system.

This type of directories can be used for a simple system.

Advantages

1. Implementation is very simple.

2. If the sizes of the files are very small then the searching becomes faster.

3. File creation, searching, deletion is very simple since we have only one directory.

UNIT-4 NOTES

Operating Systems Page 8

Disadvantages

1. We cannot have two files with the same name.

2. The directory may be very big therefore searching for a file may take so much time.

3. Protection cannot be implemented for multiple users.

4. There are no ways to group same kind of files.

5. Choosing the unique name for every file is a bit complex and limits the number of files

in the system because most of the Operating System limits the number of characters

used to construct the file name.

Two Level Directory

In two level directory systems, we can create a separate directory for each user. There is one

master directory which contains separate directories dedicated to each user. For each user,

there is a different directory present at the second level, containing group of user's file. The

system doesn't let a user to enter in the other user's directory without permission.

In the two-level directory structure, each user has his own user file directory (UFD).

The UFDs have similar structures, but each lists only the files of a single user. When a user job

starts or a user logs in, the system’s master file directory (MFD) is searched. The MFD is

indexed by user name or account number, and each entry points to the UFD for that user.

Every file in the system has a path name. To name a file uniquely, a user must know the path

name of the file desired.

▪ There are two ways to specify a file path:

 Absolute Path

▪ In this path we can reach to a specified file from the main or root directory.

▪ In this case current directory is not involved; file path is specified starting from the

root directory.

 Relative Path

▪ The user working in any directory that directory is called current directory.

▪ To reach to a specified file we have to search from the current directory.

UNIT-4 NOTES

Operating Systems Page 9

Characteristics of two level directory system

1. Each files has a path name as /User-name/directory-name/

2. Different users can have the same file name.

3. Searching becomes more efficient as only one user's list needs to be traversed.

4. The same kind of files cannot be grouped into a single directory for a particular user.

Tree Structured Directory

In Tree structured directory system, any directory entry can either be a file or sub directory.

Tree structured directory system overcomes the drawbacks of two level directory system.

The similar kind of files can now be grouped in one directory.

Each user has its own directory and it cannot enter in the other user's directory.

However, the user has the permission to read the root's data but he cannot write or modify

this. Only administrator of the system has the complete access of root directory.

Searching is more efficient in this directory structure. The concept of current working

directory is used. A file can be accessed by two types of path, either relative or absolute. In

tree structured directory systems, the user is given the privilege to create the files as well as

directories.

UNIT-4 NOTES

Operating Systems Page 10

Acyclic-Graph Structured Directories

The tree structured directory system doesn't allow the same file to exist in multiple

directories therefore sharing is major concern in tree structured directory system. We can

provide sharing by making the directory an acyclic graph. In this system, two or more

directory entry can point to the same file or sub directory. That file or sub directory is shared

between the two directory entries.

These kinds of directory graphs can be made using links or aliases. We can have

multiple paths for a same file. Links can either be symbolic (logical) or hard link (physical).

If a file gets deleted in acyclic graph structured directory system, then

1. In the case of soft link, the file just gets deleted and we are left with a dangling pointer.

2. In the case of hard link, the actual file will be deleted only if all the references to it gets

deleted.

File Systems

UNIT-4 NOTES

Operating Systems Page 11

File system is the part of the operating system which is responsible for file management. It

provides a mechanism to store the data and access to the file contents including data and

programs. Some Operating systems treats everything as a file for example Ubuntu.

The File system takes care of the following issues

o File Structure

We have seen various data structures in which the file can be stored. The task of the

file system is to maintain an optimal file structure.

o Recovering Free space

Whenever a file gets deleted from the hard disk, there is a free space created in the

disk. There can be many such spaces which need to be recovered in order to reallocate

them to other files.

o disk space assignment to the files

The major concern about the file is deciding where to store the files on the hard disk.

o tracking data location

A File may or may not be stored within only one block. It can be stored in the non

contiguous blocks on the disk. We need to keep track of all the blocks on which the

part of the files reside.

File-System Mounting

• The basic idea behind mounting file systems is to combine multiple file systems into

one large tree structure.

• The mount command is given a file system to mount and a mount point (directory)

on which to attach it.

• Once a file system is mounted onto a mount point, any further references to that

directory actually refer to the root of the mounted file system.

• Any files (or sub-directories) that had been stored in the mount point directory prior

to mounting the new file system are now hidden by the mounted file system, and are

no longer available. For this reason some systems only allow mounting onto empty

directories.

• File systems can only be mounted by root, unless root has previously configured

certain file systems to be mountable onto certain pre-determined mount points. (E.g.

root may allow users to mount floppy file systems to /mnt or something like it.)

Anyone can run the mount command to see what file systems are currently mounted.

• File systems may be mounted read-only, or have other restrictions imposed.

UNIT-4 NOTES

Operating Systems Page 12

Figure 11.14 - File system. (a) Existing system. (b) Unmounted volume.

Figure 11.15 - Mount point.

• The traditional Windows OS runs an extended two-tier directory structure, where the

first tier of the structure separates volumes by drive letters, and a tree structure is

implemented below that level.

• Macintosh runs a similar system, where each new volume that is found is

automatically mounted and added to the desktop when it is found.

• More recent Windows systems allow file systems to be mounted to any directory in

the file system, much like UNIX.

File Sharing

Multiple Users

• On a multi-user system, more information needs to be stored for each file:

o The owner (user) who owns the file, and who can control its access.

o The group of other user IDs that may have some special access to the file.

o What access rights are afforded to the owner (User), the Group, and to the rest

of the world (the universe, a.k.a. Others.)

UNIT-4 NOTES

Operating Systems Page 13

o Some systems have more complicated access control, allowing or denying

specific accesses to specifically named users or groups.

Remote File Systems

• The advent of the Internet introduces issues for accessing files stored on remote

computers

o The original method was FTP (File Transfer Protocol), allowing individual files

to be transported across systems as needed. FTP can be either account or

password controlled, or anonymous, not requiring any user name or password.

o Various forms of distributed file systems allow remote file systems to be

mounted onto a local directory structure, and accessed using normal file access

commands.

o The WWW has made it easy once again to access files on remote systems

without mounting their file systems, generally using (anonymous) ftp as the

underlying file transport mechanism.

The Client-Server Model

• When one computer system remotely mounts a filesystem that is physically located on

another system, the system which physically owns the files acts as a server, and the

system which mounts them is the client.

• User IDs and group IDs must be consistent across both systems for the system to work

properly

• The same computer can be both a client and a server. (E.g. cross-linked file systems.)

• There are a number of security concerns involved in this model:

o Servers commonly restrict mount permission to certain trusted systems only.

Spoofing (a computer pretending to be a different computer) is a potential

security risk.

o Servers may restrict remote access to read-only.

o Servers restrict which file systems may be remotely mounted. Generally the

information within those subsystems is limited, relatively public, and protected

by frequent backups.

• The NFS (Network File System) is a classic example of such a system.

Protection

UNIT-4 NOTES

Operating Systems Page 14

• Files must be kept safe for reliability (against accidental damage), and protection

(against deliberate malicious access.) The former is usually managed with backup

copies.

• One simple protection scheme is to remove all access to a file. However this makes the

file unusable, so some sort of controlled access must be arranged.

Access Control

In access-control list (ACL) specifying user names and the types of access allowed for each

user. When a user requests access to a particular file, the operating system checks the access

list associated with that file. If that user is listed for the requested access, the access is

allowed. Otherwise, a protection violation occurs, and the user job is denied access to the file.

This technique has two undesirable consequences:

• Constructing such a list may be a tedious and unrewarding task, especially if we do not know in

advance the list of users in the system.

• The directory entry, previously of fixed size, now must be of variable size, resulting in more

complicated space management.

These problems can be resolved by use of a condensed version of the access list. To

condense the length of the access-control list, many systems recognize three classifications of

users in connection with each file:

• Owner. The user who created the file is the owner.

• Group. A set of users who are sharing the file and need similar access is a group, or work

group.

• Universe. All other users in the system constitute the universe.

To illustrate, consider a person, Sara, who is writing a new book. She has hired three

graduate students (Jim, Dawn, and Jill) to help with the project. The text of the book is kept in

a file named book.tex. The protection associated with this file is as follows:

• Sara should be able to invoke all operations on the file.

• Jim, Dawn, and Jill should be able only to read and write the file; they should not be allowed

to delete the file.

• All other users should be able to read, but not write, the file. (Sara is interested in letting as

many people as possible read the text so that she can obtain feedback.)

Types of Access

• The following low-level operations are often controlled:

UNIT-4 NOTES

Operating Systems Page 15

o Read - View the contents of the file

o Write - Change the contents of the file.

o Execute - Load the file onto the CPU and follow the instructions contained

therein.

o Append - Add to the end of an existing file.

o Delete - Remove a file from the system.

o List -View the name and other attributes of files on the system.

• Higher-level operations, such as copy, can generally be performed through

combinations of the above.

• UNIX uses a set of 9 access control bits, in three groups of three. These correspond to

R, W, and X permissions for each of the Owner, Group, and Others. (See "man chmod"

for full details.) The RWX bits control the following privileges for ordinary files and

directories:

bit Files Directories

R
Read (view)

file contents.

Read directory contents. Required to get a listing of the

directory.

W

Write

(change) file

contents.

Change directory contents. Required to create or delete files.

X

Execute file

contents as a

program.

Access detailed directory information. Required to get a long

listing, or to access any specific file in the directory. Note that if a

user has X but not R permissions on a directory, they can still

access specific files, but only if they already know the name of

the file they are trying to access.

• In addition there are some special bits that can also be applied:

o The set user ID (SUID) bit and/or the set group ID (SGID) bits applied to

executable files temporarily change the identity of whoever runs the program

to match that of the owner / group of the executable program. This allows users

running specific programs to have access to files (while running that

program) to which they would normally be unable to access. Setting of these

two bits is usually restricted to root, and must be done with caution, as it

introduces a potential security leak.

UNIT-4 NOTES

Operating Systems Page 16

o The sticky bit on a directory modifies write permission, allowing users to only

delete files for which they are the owner. This allows everyone to create files in

/tmp, for example, but to only delete files which they have created, and not

anyone else's.

o The SUID, SGID, and sticky bits are indicated with an S, S, and T in the positions

for execute permission for the user, group, and others, respectively. If the letter

is lower case, (s, s, t), then the corresponding execute permission is not also

given. If it is upper case, (S, S, T), then the corresponding execute permission

IS given.

o The numeric form of chmod is needed to set these advanced bits.

Sample permissions in a UNIX system.

• Windows adjusts files access through a simple GUI:

UNIT-4 NOTES

Operating Systems Page 17

Figure - Windows 7 access-control list management.

Overview of mass storage structure

Magnetic disks provide the bulk of secondary storage for modern computer systems.

Conceptually, disks are relatively simple (Figure 10.1). Each disk platter has a flat circular

shape, like a CD. Common platter diameters range from 1.8 to 3.5 inches. The two surfaces of

a platter are covered with a magnetic material. We store information by recording it

magnetically on the platters.

UNIT-4 NOTES

Operating Systems Page 18

A read–write head “flies” just above each surface of every platter. The heads are attached to a

disk arm that moves all the heads as a unit. The surface of a platter is logically divided into

circular tracks, which are subdivided into sectors. The set of tracks that are at one arm

position makes up a cylinder. There may be thousands of concentric cylinders in a disk drive,

and each track may contain hundreds of sectors. The storage capacity of common disk drives

is measured in gigabytes.

When the disk is in use, a drive motor spins it at high speed. Most drives rotate 60 to

250 times per second, specified in terms of rotations per minute (RPM). Common drives

spin at 5,400, 7,200, 10,000, and 15,000 RPM. Disk speed has two parts. The transfer rate is

the rate at which data flow between the drive and the computer. The positioning time, or

random-access time, consists of two parts: the time necessary to move the disk arm to the

desired cylinder, called the seek time, and the time necessary for the desired sector to rotate

to the disk head, called the rotational latency.

Typical disks can transfer several megabytes of data per second, and they have seek

times and rotational latencies of several milliseconds Other forms of removable disks include

CDs, DVDs, and Blu-ray discs as well as removable flash-memory devices known as flash

drives (which are a type of solid-state drive).

A disk drive is attached to a computer by a set of wires called an I/O bus. Several kinds

of buses are available, including advanced technology attachment (ATA), serial ATA (SATA),

eSATA, universal serial bus (USB), and fibre channel (FC). The data transfers on a bus are

carried out by special electronic processors called controllers. The host controller is the

controller at the computer end of the bus. A disk controller is built into each disk drive. To

perform a disk I/O operation, the computer places a command into the host controller,

typically using memory-mapped I/O ports.

Solid-State Disks

Sometimes old technologies are used in new ways as economics change or the technologies

evolve. An example is the growing importance of solid-state disks, or SSDs. Simply described,

an SSD is nonvolatile memory that is used like a hard drive. There are many variations of this

technology, from DRAM with a battery to allow it to maintain its state in a power failure

through flash-memory technologies like single-level cell (SLC) and multilevel cell (MLC) chips.

UNIT-4 NOTES

Operating Systems Page 19

SSDs have the same characteristics as traditional hard disks but can be more reliable

because they have no moving parts and faster because they have no seek time or latency. In

addition, they consume less power. However, they are more expensive per megabyte than

traditional hard disks, have less capacity than the larger hard disks, and may have shorter life

spans than hard disks, so their uses are somewhat limited.

SSDs are also used in some laptop computers to make them smaller, faster, and more

energy-efficient. Because SSDs can be much faster than magnetic disk drives, standard bus

interfaces can cause a major limit on throughput.

Magnetic Tapes

Magnetic tape was used as an early secondary-storage medium. Although it is relatively

permanent and can hold large quantities of data, its access time is slow compared with that of

UNIT-4 NOTES

Operating Systems Page 20

main memory and magnetic disk. In addition, random access to magnetic tape is about a

thousand times slower than random access to magnetic disk, so tapes are not very useful for

secondary storage.

Tapes are used mainly for backup, for storage of infrequently used information, and as

a medium for transferring information from one system to another

Tapes and their drivers are usually categorized by width, including 4, 8, and 19 millimeters

and 1/4 and 1/2 inch. Some are named according to technology, such as LTO-5 and SDLT.

Disk Structure

Modern magnetic disk drives are addressed as large one-dimensional arrays of logical blocks,

where the logical block is the smallest unit of transfer. The size of a logical block is usually

512 bytes, although some disks can be low-level formatted to have a different logical block

size, such as 1,024 bytes.

The one-dimensional array of logical blocks is mapped onto the sectors of the disk

sequentially. Sector 0 is the first sector of the first track on the outermost cylinder. The

mapping proceeds in order through that track, then through the rest of the tracks in that

cylinder, and then through the rest of the cylinders from outermost to innermost.

Tracks in the outermost zone typically hold 40 percent more sectors than do tracks in

the innermost zone. The drive increases its rotation speed as the head moves from the outer

to the inner tracks to keep the same rate of data moving under the head. This method is used

in CD-ROM 10.3 Disk Attachment 471 and DVD-ROM drives. Alternatively, the disk rotation

speed can stay constant; in this case, the density of bits decreases from inner tracks to outer

tracks to keep the data rate constant. This method is used in hard disks and is known as

constant angular velocity (CAV).

UNIT-4 NOTES

Operating Systems Page 21

The number of sectors per track has been increasing as disk technology improves, and

the outer zone of a disk usually has several hundred sectors per track. Similarly, the number

of cylinders per disk has been increasing; large disks have tens of thousands of cylinders.

Disk Attachment

Computers access disk storage in two ways. One way is via I/O ports (or host-attached

storage); this is common on small systems. The other way is via a remote host in a distributed

file system; this is referred to as network-attached storage.

Host-Attached Storage

Host-attached storage is storage accessed through local I/O ports. These ports use several

technologies. The typical desktop PC uses an I/O bus architecture called IDE or ATA. This

architecture supports a maximum of two drives per I/O bus. A newer, similar protocol that

has simplified cabling is SATA.

High-end workstations and servers generally use more sophisticated I/O architectures such

as fibre channel (FC), a high-speed serial architecture that can operate over optical fiber or

over a four-conductor copper cable. It has two variants. One is a large switched fabric having

a 24-bit address space. This variant is expected to dominate in the future and is the basis of

storage-area networks (SANs), because of the large address space and the switched nature of

the communication, multiple hosts and storage devices can attach to the fabric, allowing great

flexibility in I/O communication.

The other FC variant is an arbitrated loop (FC-AL) that can address 126 devices (drives

and controllers). A wide variety of storage devices are suitable for use as host-attached

storage. Among these are hard disk drives, RAID arrays, and CD, DVD, and tape drives.

Network-Attached Storage

➢ Network attached storage connects storage devices to computers using a remote

procedure call, RPC, interface, typically with something like NFS filesystem mounts.

This is convenient for allowing several computers in a group common access and

naming conventions for shared storage.

➢ NAS can be implemented using SCSI cabling, or ISCSI uses Internet protocols and

standard network connections, allowing long-distance remote access to shared files.

UNIT-4 NOTES

Operating Systems Page 22

➢ NAS allows computers to easily share data storage, but tends to be less efficient than

standard host-attached storage.

Figure - Network-attached storage.

Storage-Area Network

➢ A Storage-Area Network, SAN, connects computers and storage devices in a network,

using storage protocols instead of network protocols.

➢ One advantage of this is that storage access does not tie up regular networking

bandwidth.

➢ SAN is very flexible and dynamic, allowing hosts and devices to attach and detach on

the fly.

➢ SAN is also controllable, allowing restricted access to certain hosts and devices.

Disk Scheduling Algorithms

As we know, a process needs two type of time, CPU time and IO time. For I/O, it requests the

Operating system to access the disk.

However, the operating system must be fare enough to satisfy each request and at the same

time, operating system must maintain the efficiency and speed of process execution.

UNIT-4 NOTES

Operating Systems Page 23

The technique that operating system uses to determine the request which is to be satisfied

next is called disk scheduling.

Let's discuss some important terms related to disk scheduling.

Seek Time

Seek time is the time taken in locating the disk arm to a specified track where the read/write

request will be satisfied.

Rotational Latency

It is the time taken by the desired sector to rotate itself to the position from where it can

access the R/W heads.

Transfer Time

It is the time taken to transfer the data.

Disk Access Time

Disk access time is given as,

Disk Access Time = Rotational Latency + Seek Time + Transfer Time

Disk Response Time

It is the average of time spent by each request waiting for the IO operation.

Purpose of Disk Scheduling

The main purpose of disk scheduling algorithm is to select a disk request from the queue of IO

requests and decide the schedule when this request will be processed.

Goal of Disk Scheduling Algorithm

o Fairness

o High throughout

o Minimal traveling head time

Disk Scheduling Algorithms

The list of various disks scheduling algorithm is given below. Each algorithm is carrying some

advantages and disadvantages. The limitation of each algorithm leads to the evolution of a

new algorithm.

o FCFS scheduling algorithm

o SSTF (shortest seek time first) algorithm

o SCAN scheduling

o C-SCAN scheduling

o LOOK Scheduling

o C-LOOK scheduling

UNIT-4 NOTES

Operating Systems Page 24

FCFS Scheduling Algorithm

It is the simplest Disk Scheduling algorithm. It services the IO requests in the order in which

they arrive. There is no starvation in this algorithm, every request is serviced.

Disadvantages

o The scheme does not optimize the seek time.

o The request may come from different processes therefore there is the possibility of

inappropriate movement of the head.

Example

Consider the following disk request sequence for a disk with 100 tracks 45, 21, 67, 90, 4, 50,

89, 52, 61, 87, 25

Head pointer starting at 50 and moving in left direction. Find the number of head movements

in cylinders using FCFS scheduling.

Solution

Number of cylinders moved by the head

= (50-45)+(45-21)+(67-21)+(90-67)+(90-4)+(50-4)+(89-50)+(61-52)+(87-61)+(87-25)

= 5 + 24 + 46 + 23 + 86 + 46 + 49 + 9 + 26 + 62

= 376

UNIT-4 NOTES

Operating Systems Page 25

SSTF Scheduling Algorithm

Shortest seek time first (SSTF) algorithm selects the disk I/O request which requires the least

disk arm movement from its current position regardless of the direction. It reduces the total

seek time as compared to FCFS.

It allows the head to move to the closest track in the service queue.

Disadvantages

o It may cause starvation for some requests.

o Switching direction on the frequent basis slows the working of algorithm.

o It is not the most optimal algorithm.

Example

Consider the following disk request sequence for a disk with 100 tracks

45, 21, 67, 90, 4, 89, 52, 61, 87, 25

Head pointer starting at 50. Find the number of head movements in cylinders using SSTF

scheduling.

Solution:

Number of cylinders = 5 + 7 + 9 + 6 + 20 + 2 + 1 + 65 + 4 + 17 = 136

Scan Algorithm

It is also called as Elevator Algorithm. In this algorithm, the disk arm moves into a particular

direction till the end, satisfying all the requests coming in its path, and then it turns back and

moves in the reverse direction satisfying requests coming in its path.

UNIT-4 NOTES

Operating Systems Page 26

It works in the way an elevator works, elevator moves in a direction completely till the last

floor of that direction and then turns back.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78

Head pointer starting at 54 and moving in left direction. Find the number of head movements

in cylinders using SCAN scheduling.

Number of Cylinders = 40 + 14 + 65 + 13 + 20 + 24 + 11 + 4 + 46 = 237

C-SCAN algorithm

In C-SCAN algorithm, the arm of the disk moves in a particular direction servicing requests

until it reaches the last cylinder, then it jumps to the last cylinder of the opposite direction

without servicing any request then it turns back and start moving in that direction servicing

the remaining requests.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78

Head pointer starting at 54 and moving in left direction. Find the number of head movements

in cylinders using C-SCAN scheduling.

UNIT-4 NOTES

Operating Systems Page 27

No. of cylinders crossed = 40 + 14 + 199 + 16 + 46 + 4 + 11 + 24 + 20 + 13 = 387

Look Scheduling

It is like SCAN scheduling Algorithm to some extant except the difference that, in this

scheduling algorithm, the arm of the disk stops moving inwards (or outwards) when no more

request in that direction exists. This algorithm tries to overcome the overhead of SCAN

algorithm which forces disk arm to move in one direction till the end regardless of knowing if

any request exists in the direction or not.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78

Head pointer starting at 54 and moving in left direction. Find the number of head movements

in cylinders using LOOK scheduling.

UNIT-4 NOTES

Operating Systems Page 28

Number of cylinders crossed = 40 + 51 + 13 + +20 + 24 + 11 + 4 + 46 = 209

C Look Scheduling

C Look Algorithm is similar to C-SCAN algorithm to some extent. In this algorithm, the arm of

the disk moves outwards servicing requests until it reaches the highest request cylinder, then

it jumps to the lowest request cylinder without servicing any request then it again start

moving outwards servicing the remaining requests.

It is different from C SCAN algorithm in the sense that, C SCAN force the disk arm to move till

the last cylinder regardless of knowing whether any request is to be serviced on that cylinder

or not.

Example

Consider the following disk request sequence for a disk with 100 tracks

98, 137, 122, 183, 14, 133, 65, 78

Head pointer starting at 54 and moving in left direction. Find the number of head movements

in cylinders using C LOOK scheduling.

UNIT-4 NOTES

Operating Systems Page 29

Number of cylinders crossed = 11 + 13 + 20 + 24 + 11 + 4 + 46 + 169 = 298

UNIT-4 NOTES

Operating Systems Page 30

UNIT-4 NOTES

Operating Systems Page 31

Swap space management

A computer has sufficient amount of physical memory but most of times we need more so we

swap some memory on disk. Swap space is a space on hard disk which is a substitute of

physical memory. It is used as virtual memory which contains process memory image.

Whenever our computer run short of physical memory it uses it’s virtual memory and stores

information in memory on disk. Swap space helps the computer’s operating system in

pretending that it have more RAM than it actually has. It is also called as swap file.This

interchange of data between virtual memory and real memory is called as swapping and

space on disk as “swap space”.

Virtual memory is a combination of RAM and disk space that running processes can

use. Swap space is the portion of virtual memory that is on the hard disk, used when RAM

is full.

Swap space can be useful to computer in various ways:

• It can be used as a single contiguous memory which reduces i/o operations to read or

write a file.

• Applications which are not used or are used less can be kept in swap file.

• Having sufficient swap file helps the system keep some physical memory free all the

time.

• The space in physical memory which has been freed due to swap space can be used by

OS for some other important tasks.

In operating systems such as Windows, Linux, etc systems provide a certain amount of swap

space by default which can be changed by users according to their needs. If you don’t want to

use virtual memory you can easily disable it all together but in case if you run out of memory

then kernel will kill some of the processes in order to create a sufficient amount of space in

physical memory.

So it totally depends upon user whether he wants to use swap space or

not.Alternatively, swap space can be created in a separate raw partition. No file system or

directory structure is placed in this space. Rather, a separate swap-space storage manager is

used to allocate and deallocate the blocks from the raw partition. This manager uses

algorithms optimized for speed rather than for storage efficiency, because swap space is

accessed much more frequently than file systems (when it is used).

UNIT-4 NOTES

Operating Systems Page 32

Stable-Storage Implementation

By definition, information residing in stable storage is never lost. To implement such storage,

we need to replicate the required information on multiple storage devices (usually disks)

with independent failure modes. We also need to coordinate the writing of updates in a way

that guarantees that a failure during an update will not leave all the copies in a damaged state

and that, when we are recovering from a failure, we can force all copies to a consistent and

correct value, even if another failure occurs during the recovery. A disk write results in one of

three outcomes:

1. Successful completion. The data were written correctly on disk.

2. Partial failure. A failure occurred in the midst of transfer, so only some of the sectors were

written with the new data, and the sector being written during the failure may have been

corrupted.

3. Total failure. The failure occurred before the disk write started, so the previous data values

on the disk remain intact.

Whenever a failure occurs during writing of a block, the system needs to detect it and

invoke a recovery procedure to restore the block to a consistent state. To do that, the system

must maintain two physical blocks for each logical block. An output operation is executed as

follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto the second

physical block.

3. Declare the operation complete only after the second write completes successfully.

UNIT-4 NOTES

Operating Systems Page 33

During recovery from a failure, each pair of physical blocks is examined. If both are the same

and no detectable error exists, then no further action is necessary. If one block contains a

detectable error then we replace its contents with the value of the other block. If neither

block contains a detectable error, but the blocks differ in content, then we replace the content

of the first block with that of the second. This recovery procedure ensures that a write to

stable storage either succeeds completely or results in no change.

Tertiary storage structure

➢ Low cost is the defining characteristic of tertiary storage

➢ Generally, tertiary storage is built using removable media

➢ Common examples of removable media are floppy disks and CD-ROMs; other types are

available

Removable Disks

➢ Floppy disk — thin flexible disk coated with magnetic material, enclosed in a

protective plastic case

 Most floppies hold about 1 MB; similar technology is used for removable disks that hold

more than 1 GB

 Removable magnetic disks can be nearly as fast as hard disks, but they are at a greater risk

of damage from exposure

➢ A magneto-optic disk records data on a rigid platter coated with magnetic material

 Laser heat is used to amplify a large, weak magnetic field to record a bit  Laser light is also

used to read data (Kerr effect)

 The magneto-optic head flies much farther from the disk surface than a magnetic disk head,

and the magnetic material is covered with a protective layer of plastic or glass; resistant to

head crashes

➢ Optical disks do not use magnetism; they employ special materials that are altered by

laser light

WORM Disks

 The data on read-write disks can be modified over and over

 WORM (“Write Once, Read Many Times”) disks can be written only once Thin aluminum

film sandwiched between two glass or plastic platters

 To write a bit, the drive uses a laser light to burn a small hole through the aluminum;

information can be destroyed by not altered

UNIT-4 NOTES

Operating Systems Page 34

 Very durable and reliable  Read-only disks, such ad CD-ROM and DVD, come from the

factory with the data pre-recorded

Tapes

 Compared to a disk, a tape is less expensive and holds more data, but random access is

much slower.

 Tape is an economical medium for purposes that do not require fast random access, e.g.,

backup copies of disk data, holding huge volumes of data.

 Large tape installations typically use robotic tape changers that move tapes between tape

drives and storage slots in a tape library

stacker – library that holds a few tapes

silo – library that holds thousands of tapes

 A disk-resident file can be archived to tape for low cost storage; the computer can stage it

back into disk storage for active use.

VARDHAMAN COLLEGE OF ENGINEERING
(AUTONOMOUS)

Shamshabad, Hyderabad – 501 218

DEPARTMENT OF INFORMATION TECHNOLOGY

B. Tech IV Semester (VCE-R19 Regulations)

IMPORTANT QUESTIONS

1) List the attributes of the file and discuss it

2) How operations are performed on the files? Explain each operation in detail

3) a) Identify the importance of the extension associated with the files.

b) List the common file extensions associated with the same group of files

4) Explain file type and their function in detail

5) Compare and contrast of different file access methods

6) What is a directory? List the various operations performed on the directories?

7) Outline the advantages and disadvantages of single level directory

8) Compare and contrast two level directory and tree structured directory

9) What are the issues are associated with the file systems? Explain in detail

UNIT-4 NOTES

Operating Systems Page 35

UNIT-5 NOTES

Operating Systems Page 1

UNIT – V

PROTECTION: System protection-Goals of protection, principles of protection, domain of

protection access matrix, implementation of access matrix, access control, revocation of

access rights. (T1: Ch-13)

SECURITY: System security-The security problem, program threats, system and network

threats, implementing security defenses, firewalling to protect systems(T1: Ch -18).

Goals of Protection

• Obviously to prevent malicious misuse of the system by users or programs.

• To ensure that each shared resource is used only in accordance with

system policies, which may be set either by system designers or by system

administrators.

• To ensure that errant programs cause the minimal amount of damage possible.

• Note that protection systems only provide the mechanisms for enforcing policies and

ensuring reliable systems. It is up to administrators and users to implement those

mechanisms effectively.

Principles of Protection

• The principle of least privilege dictates that programs, users, and systems be given

just enough privileges to perform their tasks.

• This ensures that failures do the least amount of harm and allow the least of harm to

be done.

• For example, if a program needs special privileges to perform a task, it is better to

make it a SGID program with group ownership of "network" or "backup" or some

other pseudo group, rather than SUID with root ownership. This limits the amount of

damage that can occur if something goes wrong.

• Typically each user is given their own account, and has only enough privilege to

modify their own files.

• The root account should not be used for normal day to day activities - The System

Administrator should also have an ordinary account, and reserve use of the root

account for only those tasks which need the root privileges

UNIT-5 NOTES

Operating Systems Page 2

Note that mechanisms are distinct from policies. Mechanisms determine how something will

be done; policies decide what will be done.

Domain of Protection

• A computer can be viewed as a collection of processes and objects (both HW & SW).

• The need to know principle states that a process should only have access to those

objects it needs to accomplish its task, and furthermore only in the modes for which it

needs access and only during the time frame when it needs access.

• The modes available for a particular object may depend upon its type.

Domain Structure

• A protection domain specifies the resources that a process may access.

• Each domain defines a set of objects and the types of operations that may be invoked

on each object.

• An access right is the ability to execute an operation on an object.

• A domain is defined as a set of < object, { access right set } > pairs, as shown below.

Note that some domains may be disjoint while others overlap.

System with three protection domains.

• The association between a process and a domain may be static or dynamic.

o If the association is static, then the need-to-know principle requires a way of

changing the contents of the domain dynamically.

o If the association is dynamic, then there needs to be a mechanism for domain

switching.

• Domains may be realized in different fashions - as users, or as processes, or as

procedures. E.g. if each user corresponds to a domain, then that domain defines the

access of that user, and changing domains involves changing user ID.

UNIT-5 NOTES

Operating Systems Page 3

A domain can be realized in a variety of ways:

• Each user may be a domain. In this case, the set of objects that can be accessed depends on

the identity of the user. Domain switching occurs when the user is changed—generally when

one user logs out and another user logs in.

• Each process may be a domain. In this case, the set of objects that can be accessed depends

on the identity of the process. Domain switching occurs when one process sends a message to

another process and then waits for a response.

• Each procedure may be a domain. In this case, the set of objects that can be accessed

corresponds to the local variables defined within the procedure. Domain switching occurs

when a procedure call is made.

Example: UNIX

• UNIX associates domains with users.

• Certain programs operate with the SUID bit set, which effectively changes the user ID,

and therefore the access domain, while the program is running. (and similarly for the

SGID bit.) Unfortunately this has some potential for abuse.

• An alternative used on some systems is to place privileged programs in special

directories, so that they attain the identity of the directory owner when they run. This

prevents crackers from placing SUID programs in random directories around the

system.

• Yet another alternative is to not allow the changing of ID at all. Instead, special

privileged daemons are launched at boot time, and user processes send messages to

these daemons when they need special tasks performed.

Example: MULTICS

• The MULTICS system uses a complex system of rings, each corresponding to a different

protection domain, as shown below:

MULTICS ring structure

UNIT-5 NOTES

Operating Systems Page 4

• Rings are numbered from 0 to 7, with outer rings having a subset of the privileges of

the inner rings.

• Each file is a memory segment, and each segment description includes an entry that

indicates the ring number associated with that segment, as well as read, write, and

execute privileges.

• Each process runs in a ring, according to the current-ring-number, a counter associated

with each process.

• A process operating in one ring can only access segments associated with higher

(farther out) rings, and then only according to the access bits. Processes cannot

access segments associated with lower rings.

• Domain switching is achieved by a process in one ring calling upon a process operating

in a lower ring, which is controlled by several factors stored with each segment

descriptor:

o An access bracket, defined by integers b1 <= b2.

o A limit b3 > b2

o A list of gates, identifying the entry points at which the segments may be

called.

• If a process operating in ring i calls a segment whose bracket is such that b1 <= i <= b2,

then the call succeeds and the process remains in ring i.

• Otherwise a trap to the OS occurs, and is handled as follows:

o If i < b1, then the call is allowed, because we are transferring to a procedure

with fewer privileges. However if any of the parameters being passed are of

segments below b1, then they must be copied to an area accessible by the called

procedure.

o If i > b2, then the call is allowed only if i <= b3 and the call is directed to one of

the entries on the list of gates.

• Overall this approach is more complex and less efficient than other protection

schemes.

Access Matrix

• The model of protection that we have been discussing can be viewed as an access

matrix, in which columns represent different system resources and rows represent

different protection domains. Entries within the matrix indicate what access that

domain has to that resource.

UNIT-5 NOTES

Operating Systems Page 5

Access matrix

• Domain switching can be easily supported under this model, simply by providing

"switch" access to other domains:

Access matrix of Figure 14.3 with domains as objects

• The ability to copy rights is denoted by an asterisk, indicating that processes in that

domain have the right to copy that access within the same column, i.e. for the same

object. There are two important variations:

o If the asterisk is removed from the original access right, then the right

is transferred, rather than being copied. This may be termed a transfer right as opposed

to a copy right.

o If only the right and not the asterisk is copied, then the access right is added to the new

domain, but it may not be propagated further. That is the new domain does not also

receive the right to copy the access. This may be termed a limited copy right, as shown in

Figure 14.5 below:

UNIT-5 NOTES

Operating Systems Page 6

Access matrix with copy rights

• The owner right adds the privilege of adding new rights or removing existing ones:

Access matrix with owner rights

UNIT-5 NOTES

Operating Systems Page 7

• Copy and owner rights only allow the modification of rights within a column. The

addition of control rights, which only apply to domain objects, allow a process

operating in one domain to affect the rights available in other domains. For example in

the table below, a process operating in domain D2 has the right to control any of the

rights in domain D4.

Modified access matrix of above Figure

Implementation of Access Matrix

 Global Table

• The simplest approach is one big global table with < domain, object, rights > entries.

• Unfortunately this table is very large (even if sparse) and so cannot be kept in

memory (without invoking virtual memory techniques.)

• There is also no good way to specify groupings - If everyone has access to some

resource, then it still needs a separate entry for every domain.

 Access Lists for Objects

• Each column of the table can be kept as a list of the access rights for that particular

object, discarding blank entries.

• For efficiency a separate list of default access rights can also be kept, and checked first.

 Capability Lists for Domains

• In a similar fashion, each row of the table can be kept as a list of the capabilities of that

domain.

• Capability lists are associated with each domain, but not directly accessible by the

domain or any user process.

UNIT-5 NOTES

Operating Systems Page 8

• Capability lists are themselves protected resources, distinguished from other data in

one of two ways:

o A tag, possibly hardware implemented, distinguishing this special type of data.

(other types may be floats, pointers, booleans, etc.)

o The address space for a program may be split into multiple segments, at least

one of which is inaccessible by the program itself, and used by the operating

system for maintaining the process's access right capability list.

 A Lock-Key Mechanism

• Each resource has a list of unique bit patterns, termed locks.

• Each domain has its own list of unique bit patterns, termed keys.

• Access is granted if one of the domain's keys fits one of the resource's locks.

• Again, a process is not allowed to modify its own keys.

 Comparison

• Each of the methods here has certain advantages or disadvantages, depending on the

particular situation and task at hand.

• Many systems employ some combination of the listed methods.

Access Control

• Role-Based Access Control, RBAC, assigns privileges to users, programs, or roles as

appropriate, where "privileges" refer to the right to call certain system calls, or to use

certain parameters with those calls.

• RBAC supports the principle of least privilege, and reduces the susceptibility to abuse

as opposed to SUID or SGID programs.

UNIT-5 NOTES

Operating Systems Page 9

Role-based access control in Solaris 10

Revocation of Access Rights

• The need to revoke access rights dynamically raises several questions:

o Immediate versus delayed - If delayed, can we determine when the revocation

will take place?

o Selective versus general - Does revocation of an access right to an object

affect all users who have that right, or only some users?

o Partial versus total - Can a subset of rights for an object be revoked, or are all

rights revoked at once?

o Temporary versus permanent - If rights are revoked, is there a mechanism for

processes to re-acquire some or all of the revoked rights?

• With an access list scheme revocation is easy, immediate, and can be selective, general,

partial, total, temporary, or permanent, as desired.

• With capabilities lists the problem is more complicated, because access rights are

distributed throughout the system. A few schemes that have been developed include:

o Reacquisition - Capabilities are periodically revoked from each domain, which

must then re-acquire them.

o Back-pointers - A list of pointers is maintained from each object to each

capability which is held for that object.

o Indirection - Capabilities point to an entry in a global table rather than to the

object. Access rights can be revoked by changing or invalidating the table entry,

UNIT-5 NOTES

Operating Systems Page 10

which may affect multiple processes, which must then re-acquire access rights

to continue.

o Keys - A unique bit pattern is associated with each capability when created,

which can be neither inspected nor modified by the process.

▪ A master key is associated with each object.

▪ When a capability is created, its key is set to the object's master key.

▪ As long as the capability's key matches the object's key, then the

capabilities remain valid.

▪ The object master key can be changed with the set-key command,

thereby invalidating all current capabilities.

▪ More flexibility can be added to this scheme by implementing a list of

keys for each object, possibly in a global table.

Capability-Based Systems (Optional)

Example: Hydra

• Hydra is a capability-based system that includes both system-defined rights and user-

defined rights. The interpretation of user-defined rights is up to the specific user

programs, but the OS provides support for protecting access to those rights, whatever

they may be

• Operations on objects are defined procedurally, and those procedures are themselves

protected objects, accessed indirectly through capabilities.

• The names of user-defined procedures must be identified to the protection system if it

is to deal with user-defined rights.

• When an object is created, the names of operations defined on that object

become auxiliary rights, described in a capability for an instance of the type. For a

process to act on an object, the capabilities it holds for that object must contain the

name of the operation being invoked. This allows access to be controlled on an

instance-by-instance and process-by-process basis.

• Hydra also allows rights amplification, in which a process is deemed to

be trustworthy, and thereby allowed to act on any object corresponding to its

parameters.

• Programmers can make direct use of the Hydra protection system, using suitable

libraries which are documented in appropriate reference manuals.

UNIT-5 NOTES

Operating Systems Page 11

Example: Cambridge CAP System

• The CAP system has two kinds of capabilities:

o Data capability, used to provide read, write, and execute access to objects. These

capabilities are interpreted by microcode in the CAP machine.

o Software capability, is protected but not interpreted by the CAP microcode.

▪ Software capabilities are interpreted by protected (privileged) procedures, possibly

written by application programmers.

▪ When a process executes a protected procedure, it temporarily gains the ability to read or

write the contents of a software capability.

▪ This leaves the interpretation of the software capabilities up to the individual subsystems,

and limits the potential damage that could be caused by a faulty privileged procedure.

▪ Note, however, that protected procedures only get access to software capabilities for the

subsystem of which they are a part. Checks are made when passing software capabilities

to protected procedures that they are of the correct type.

▪ Unfortunately the CAP system does not provide libraries, making it harder for an

individual programmer to use than the Hydra system.

Language-Based Protection (Optional)

o As systems have developed, protection systems have become more powerful, and also

more specific and specialized.

o To refine protection even further requires putting protection capabilities into

the hands of individual programmers, so that protection policies can be

implemented on the application level, i.e. to protect resources in ways that are

known to the specific applications but not to the more general operating

system.

Compiler-Based Enforcement

• In a compiler-based approach to protection enforcement, programmers directly

specify the protection needed for different resources at the time the resources are

declared.

• This approach has several advantages:

1. Protection needs are simply declared, as opposed to a complex series of

procedure calls.

UNIT-5 NOTES

Operating Systems Page 12

2. Protection requirements can be stated independently of the support provided

by a particular OS.

3. The means of enforcement need not be provided directly by the developer.

4. Declarative notation is natural, because access privileges are closely related to

the concept of data types.

• Regardless of the means of implementation, compiler-based protection relies upon the

underlying protection mechanisms provided by the underlying OS, such as the

Cambridge CAP or Hydra systems.

• Even if the underlying OS does not provide advanced protection mechanisms, the

compiler can still offer some protection, such as treating memory accesses differently

in code versus data segments. (E.g. code segments cannot be modified, data segments

can't be executed.)

• There are several areas in which compiler-based protection can be compared to

kernel-enforced protection:

o Security. Security provided by the kernel offers better protection than that

provided by a compiler. The security of the compiler-based enforcement is

dependent upon the integrity of the compiler itself, as well as requiring that

files not be modified after they are compiled. The kernel is in a better position

to protect itself from modification, as well as protecting access to specific files.

Where hardware support of individual memory accesses is available, the

protection is stronger still.

o Flexibility. A kernel-based protection system is not as flexible to provide the

specific protection needed by an individual programmer, though it may provide

support which the programmer may make use of. Compilers are more easily

changed and updated when necessary to change the protection services offered

or their implementation.

o Efficiency. The most efficient protection mechanism is one supported by

hardware and microcode. Insofar as software based protection is concerned,

compiler-based systems have the advantage that many checks can be made off-

line, at compile time, rather that during execution.

The concept of incorporating protection mechanisms into programming languages is in its

infancy, and still remains to be fully developed. However the general goal is to provide

mechanisms for three functions:

UNIT-5 NOTES

Operating Systems Page 13

0. Distributing capabilities safely and efficiently among customer processes. In

particular a user process should only be able to access resources for which it

was issued capabilities.

1. Specifying the type of operations a process may execute on a resource, such as

reading or writing.

2. Specifying the order in which operations are performed on the resource, such

as opening before reading.

Security

The Security Problem

We say that a system is secure if its resources are used and accessed as intended under all

circumstances. Unfortunately, total security cannot be achieved.

Security violations (or misuse) of the system can be categorized as intentional

(malicious) or accidental. It is easier to protect against accidental misuse than against

malicious misuse. For the most part, protection mechanisms are the core of protection from

accidents. The following list includes several forms of accidental and malicious security

violations. We should note that in our discussion of security, we use the terms intruder and

cracker for those attempting to breach security. In addition, a threat is the potential for a

security violation, such as the discovery of a vulnerability, whereas an attack is the attempt

to break security.

• Breach of confidentiality. This type of violation involves unauthorized reading of data (or

theft of information). Typically, a breach of confidentiality is the goal of an intruder. Capturing

secret data from a system or a data stream, such as credit-card information or identity

information for identity theft, can result directly in money for the intruder.

• Breach of integrity. This violation involves unauthorized modification of data. Such attacks

can, for example, result in passing of liability to an innocent party or modification of the

source code of an important commercial application.

• Breach of availability. This violation involves unauthorized destruction of data. Some

crackers would rather wreak havoc and gain status or bragging rights than gain financially.

Website defacement is a common example of this type of security breach.

• Theft of service. This violation involves unauthorized use of resources. For example, an

intruder (or intrusion program) may install a daemon on a system that acts as a file server.

UNIT-5 NOTES

Operating Systems Page 14

• Denial of service. This violation involves preventing legitimate use of the system. Denial-

of-service (DOS) attacks are sometimes accidental.

Methods to breach security

• One common attack is masquerading, in which the attacker pretends to be a trusted

third party. A variation of this is the man-in-the-middle, in which the attacker

masquerades as both ends of the conversation to two targets.

• A replay attack involves repeating a valid transmission. Sometimes this can be the

entire attack, (such as repeating a request for a money transfer), or other times the

content of the original message is replaced with malicious content.

Standard security attacks

There are four levels at which a system must be protected:

1. Physical - The easiest way to steal data is to pocket the backup tapes. Also, access to

the root console will often give the user special privileges, such as rebooting the

system as root from removable media. Even general access to terminals in a computer

UNIT-5 NOTES

Operating Systems Page 15

room offers some opportunities for an attacker, although today's modern high-speed

networking environment provides more and more opportunities for remote attacks.

2. Human - There is some concern that the humans who are allowed access to a system

be trustworthy, and that they cannot be coerced into breaching security. However

more and more attacks today are made via social engineering, which basically means

fooling trustworthy people into accidentally breaching security.

o Phishing involves sending an innocent-looking e-mail or web site designed to

fool people into revealing confidential information. E.g. spam e-mails

pretending to be from e-Bay, PayPal, or any of a number of banks or credit-card

companies.

o Dumpster Diving involves searching the trash or other locations for

passwords that are written down. (Note: Passwords that are too hard to

remember, or which must be changed frequently are more likely to be written

down somewhere close to the user's station.)

o Password Cracking involves divining user’s passwords, either by watching

them type in their passwords, knowing something about them like their pet's

names, or simply trying all words in common dictionaries. (Note: "Good"

passwords should involve a minimum number of characters, include non-

alphabetical characters, and not appear in any dictionary (in any language), and

should be changed frequently. Note also that it is proper etiquette to look away

from the keyboard while someone else is entering their password.)

3. Operating System - The OS must protect itself from security breaches, such as

runaway processes (denial of service), memory-access violations, stack overflow

violations, the launching of programs with excessive privileges, and many others.

4. Network - As network communications become ever more important and pervasive in

modern computing environments, it becomes ever more important to protect this area

of the system. (Both protecting the network itself from attack, and protecting the local

system from attacks coming in through the network.) This is a growing area of concern

as wireless communications and portable devices become more and more prevalent.

UNIT-5 NOTES

Operating Systems Page 16

Program Threats

• There are many common threats to modern systems. Only a few are discussed here.

Trojan Horse

• A Trojan Horse is a program that secretly performs some maliciousness in addition to

its visible actions.

• Some Trojan horses are deliberately written as such, and others are the result of

legitimate programs that have become infected with viruses, (see below.)

• One dangerous opening for Trojan horses is long search paths, and in particular paths

which include the current directory (".") as part of the path. If a dangerous program

having the same name as a legitimate program (or a common mis-spelling, such as "sl"

instead of "ls") is placed anywhere on the path, then an unsuspecting user may be

fooled into running the wrong program by mistake.

• Another classic Trojan Horse is a login emulator, which records a users account name

and password, issues a "password incorrect" message, and then logs off the system.

The user then tries again (with a proper login prompt), logs in successfully, and

doesn't realize that their information has been stolen.

• Two solutions to Trojan Horses are to have the system print usage statistics on

logouts, and to require the typing of non-trappable key sequences such as Control-Alt-

Delete in order to log in. (This is why modern Windows systems require the Control-

Alt-Delete sequence to commence logging in, which cannot be emulated or caught by

ordinary programs. I.e. that key sequence always transfers control over to the

operating system.)

• Spyware is a version of a Trojan Horse that is often included in "free" software

downloaded off the Internet. Spyware programs generate pop-up browser windows,

and may also accumulate information about the user and deliver it to some central

site. (This is an example of covert channels, in which surreptitious communications

occur.) Another common task of spyware is to send out spam e-mail messages, which

then purportedly come from the infected user.

 Trap Door

• A Trap Door is when a designer or a programmer (or hacker) deliberately inserts a

security hole that they can use later to access the system.

UNIT-5 NOTES

Operating Systems Page 17

• Because of the possibility of trap doors, once a system has been in an untrustworthy

state, that system can never be trusted again. Even the backup tapes may contain a

copy of some cleverly hidden back door.

• A clever trap door could be inserted into a compiler, so that any programs compiled

with that compiler would contain a security hole. This is especially dangerous, because

inspection of the code being compiled would not reveal any problems.

Logic Bomb

• A Logic Bomb is code that is not designed to cause havoc all the time, but only when a

certain set of circumstances occurs, such as when a particular date or time is reached

or some other noticeable event.

• A classic example is the Dead-Man Switch, which is designed to check whether a

certain person (e.g. the author) is logging in every day, and if they don't log in for a

long time (presumably because they've been fired), then the logic bomb goes off and

either opens up security holes or causes other problems.

Stack and Buffer Overflow

• This is a classic method of attack, which exploits bugs in system code that allows

buffers to overflow. Consider what happens in the following code, for example, if argv[

1] exceeds 256 characters:

o The strcpy command will overflow the buffer, overwriting adjacent areas of

memory.

o (The problem could be avoided using strncpy, with a limit of 255 characters

copied plus room for the null byte.)

Viruses

• A virus is a fragment of code embedded in an otherwise legitimate program, designed

to replicate itself (by infecting other programs), and (eventually) wreaking havoc.

UNIT-5 NOTES

Operating Systems Page 18

• Viruses are more likely to infect PCs than UNIX or other multi-user systems, because

programs in the latter systems have limited authority to modify other programs or to

access critical system structures (such as the boot block.)

• Viruses are delivered to systems in a virus dropper, usually some form of a Trojan

Horse, and usually via e-mail or unsafe downloads.

• Viruses take many forms (see below.) Figure 15.5 shows typical operation of a boot

sector virus:

A boot-sector computer virus

• Some of the forms of viruses include:

o File - A file virus attaches itself to an executable file, causing it to run the virus

code first and then jump to the start of the original program. These viruses are

termed parasitic, because they do not leave any new files on the system, and

the original program is still fully functional.

o Boot - A boot virus occupies the boot sector, and runs before the OS is loaded.

These are also known as memory viruses, because in operation they reside in

memory, and do not appear in the file system.

o Macro - These viruses exist as a macro (script) that are run automatically by

certain macro-capable programs such as MS Word or Excel. These viruses can

exist in word processing documents or spreadsheet files.

UNIT-5 NOTES

Operating Systems Page 19

o Source code viruses look for source code and infect it in order to spread.

o Polymorphic viruses change every time they spread - Not their underlying

functionality, but just their signature, by which virus checkers recognize them.

o Encrypted viruses travel in encrypted form to escape detection. In practice

they are self-decrypting, which then allows them to infect other files.

o Stealth viruses try to avoid detection by modifying parts of the system that

could be used to detect it. For example the read() system call could be modified

so that if an infected file is read the infected part gets skipped and the reader

would see the original unadulterated file.

o Tunneling viruses attempt to avoid detection by inserting themselves into the

interrupt handler chain, or into device drivers.

o Multipartite viruses attack multiple parts of the system, such as files, boot

sector, and memory.

o Armored viruses are coded to make them hard for anti-virus researchers to

decode and understand.

System and Network Threats

• Most of the threats described above are termed program threats, because they attack

specific programs or are carried and distributed in programs. The threats in this

section attack the operating system or the network itself, or leverage those systems to

launch their attacks.

Worms

• A worm is a process that uses the fork / spawn process to make copies of itself in

order to wreak havoc on a system. Worms consume system resources, often blocking

out other, legitimate processes. Worms that propagate over networks can be especially

problematic, as they can tie up vast amounts of network resources and bring down

large-scale systems.

• One of the most well-known worms was launched by Robert Morris, a graduate

student at Cornell, in November 1988. Targeting Sun and VAX computers running BSD

UNIX version 4, the worm spanned the Internet in a matter of a few hours, and

consumed enough resources to bring down many systems.

• This worm consisted of two parts:

UNIT-5 NOTES

Operating Systems Page 20

1. A small program called a grappling hook, which was deposited on the target

system through one of three vulnerabilities, and

2. The main worm program, which was transferred onto the target system and

launched by the grappling hook program.

The Morris Internet worm.

• The three vulnerabilities exploited by the Morris Internet worm were as follows:

1. rsh (remote shell) is a utility that was in common use at that time for

accessing remote systems without having to provide a password. If a user had

an account on two different computers (with the same account name on both

systems), then the system could be configured to allow that user to remotely

connect from one system to the other without having to provide a password.

Many systems were configured so that any user (except root) on system A

could access the same account on system B without providing a password.

2. finger is a utility that allows one to remotely query a user database, to find the

true name and other information for a given account name on a given system.

For example "finger joeUser@somemachine.edu" would access the finger

daemon at somemachine.edu and return information regarding joeUser.

Unfortunately the finger daemon (which ran with system privileges) had the

buffer overflow problem, so by sending a special 536-character user name the

worm was able to fork a shell on the remote system running with root

privileges.

3. sendmail is a routine for sending and forwarding mail that also included a

debugging option for verifying and testing the system. The debug feature was

convenient for administrators, and was often left turned on. The Morris worm

UNIT-5 NOTES

Operating Systems Page 21

exploited the debugger to mail and execute a copy of the grappling hook

program on the remote system.

• Once in place, the worm undertook systematic attacks to discover user passwords:

1. First it would check for accounts for which the account name and the password

were the same, such as "guest", "guest".

2. Then it would try an internal dictionary of 432 favorite password choices. (I'm

sure "password", "pass", and blank passwords were all on the list.)

3. Finally it would try every word in the standard UNIX on-line dictionary to try

and break into user accounts.

• Once it had gotten access to one or more user accounts, then it would attempt to use

those accounts to rsh to other systems, and continue the process.

• With each new access the worm would check for already running copies of itself, and 6

out of 7 times if it found one it would stop. (The seventh was to prevent the worm

from being stopped by fake copies.)

• Fortunately the same rapid network connectivity that allowed the worm to propagate

so quickly also quickly led to its demise - Within 24 hours remedies for stopping the

worm propagated through the Internet from administrator to administrator, and the

worm was quickly shut down.

• There is some debate about whether Mr. Morris's actions were a harmless prank or

research project that got out of hand or a deliberate and malicious attack on the

Internet. However the court system convicted him, and penalized him heavy fines and

court costs.

• There have since been many other worm attacks, including the W32.Sobig.F@mm

attack which infected hundreds of thousands of computers and an estimated 1 in 17 e-

mails in August 2003. This worm made detection difficult by varying the subject line of

the infection-carrying mail message, including "Thank You!", "Your details", and "Re:

Approved".

Port Scanning

• Port Scanning is technically not an attack, but rather a search for vulnerabilities to

attack. The basic idea is to systematically attempt to connect to every known (or

common or possible) network port on some remote machine, and to attempt to make

contact. Once it is determined that a particular computer is listening to a particular

UNIT-5 NOTES

Operating Systems Page 22

port, then the next step is to determine what daemon is listening, and whether or not it

is a version containing a known security flaw that can be exploited.

• Because port scanning is easily detected and traced, it is usually launched from zombie

systems, i.e. previously hacked systems that are being used without the knowledge or

permission of their rightful owner. For this reason it is important to protect

"innocuous" systems and accounts as well as those that contain sensitive information

or special privileges.

• There are also port scanners available that administrators can use to check their own

systems, which report any weaknesses found but which do not exploit the weaknesses

or cause any problems. Two such systems are nmap

(http://www.insecure.org/nmap) and nessus (http://www.nessus.org). The former

identifies what OS is found, what firewalls are in place, and what services are listening

to what ports. The latter also contains a database of known security holes, and

identifies any that it finds.

Denial of Service

• Denial of Service (DOS) attacks do not attempt to actually access or damage systems,

but merely to clog them up so badly that they cannot be used for any useful work.

Tight loops that repeatedly request system services are an obvious form of this attack.

• DOS attacks can also involve social engineering, such as the Internet chain letters that

say "send this immediately to 10 of your friends, and then go to a certain URL", which

clogs up not only the Internet mail system but also the web server to which everyone

is directed. (Note: Sending a "reply all" to such a message notifying everyone that it

was just a hoax also clogs up the Internet mail service, just as effectively as if you had

forwarded the thing.)

• Security systems that lock accounts after a certain number of failed login attempts are

subject to DOS attacks which repeatedly attempt logins to all accounts with invalid

passwords strictly in order to lock up all accounts.

• Sometimes DOS is not the result of deliberate maliciousness. Consider for example:

o A web site that sees a huge volume of hits as a result of a successful advertising

campaign.

o CNN.com occasionally gets overwhelmed on big news days, such as Sept 11,

2001.

http://www.insecure.org/nmap
http://www.nessus.org/

UNIT-5 NOTES

Operating Systems Page 23

o CS students given their first programming assignment involving fork() often

quickly fill up process tables or otherwise completely consume system

resources. :-)

Implementing Security Defenses

Security Policy

The first step toward improving the security of any aspect of computing is to have a security

policy. Policies vary widely but generally include a statement of what is being secured. For

example, a policy might state that all outside accessible applications must have a code review

before being deployed, or that users should not share their passwords, or that all connection

points between a company and the outside must have port scans run every six months.

Without a policy in place, it is impossible for users and administrators to know what is

permissible, what is required, and what is not allowed. The policy is a road map to security,

and if a site is trying to move from less secure to more secure, it needs a map to know how to

get there. Once the security policy is in place, the people it affects should know it well. It

should be their guide. The policy should also be a living document that is reviewed and

updated periodically to ensure that it is still pertinent and still followed.

Vulnerability Assessment

How can we determine whether a security policy has been correctly implemented? The best

way is to execute a vulnerability assessment. Such assessments can cover broad ground, from

social engineering through risk assessment to port scans. Risk assessment, for example,

attempts to value the assets of the entity in question (a program, a management team, a

system, or a facility) and determine the odds that a security incident will affect the entity and

decrease its value. When the odds of suffering a loss and the amount of the potential loss are

known, a value can be placed on trying to secure the entity. The core activity of most

vulnerability assessments is a penetration test, in which the entity is scanned for known

vulnerabilities. A scan within an individual system can check a variety of aspects of the

system:

• Short or easy-to-guess passwords

• Unauthorized privileged programs, such as setuid programs

• Unauthorized programs in system directories

• Unexpectedly long-running processes

UNIT-5 NOTES

Operating Systems Page 24

• Improper directory protections on user and system directories

• Improper protections on system data files, such as the password file, device drivers, or the

operating-system kernel itself

• Dangerous entries in the program search path (for example, the Trojan horse discussed in

Section 15.2.1)

• Changes to system programs detected with checksum values

• Unexpected or hidden network daemons

Any problems found by a security scan can be either fixed automatically or reported to the

managers of the system. Networked computers are much more susceptible to security attacks

than are standalone systems.

Intrusion(Obstruction) Detection

Securing systems and facilities is intimately linked to intrusion detection. Intrusion

detection, as its name suggests, strives to detect attempted or successful intrusions into

computer systems and to initiate appropriate responses to the intrusions. Intrusion detection

encompasses a wide array of techniques that vary on a number of axes, including the

following:

• The time at which detection occurs. Detection can occur in real time (while the intrusion is

occurring) or after the fact.

• The types of inputs examined to detect intrusive activity. These may include user-shell

commands, process system calls, and network packet headers or contents. Some forms of

intrusion might be detected only by correlating information from several such sources.

• The range of response capabilities. Simple forms of response include alerting an

administrator to the potential intrusion or somehow halting the potentially intrusive activity.

These degrees of freedom in the design space for detecting intrusions have yielded a wide

range of solutions, known as intrusion-detection systems (IDSs) and intrusion-

prevention systems (IDPs). IDS systems raise an alarm when an intrusion is detected, while

IDP systems act as routers, passing traffic unless an intrusion is detected.

UNIT-5 NOTES

Operating Systems Page 25

Anomaly detection can find previously unknown methods of intrusion (so-called zero-day

attacks). Signature-based detection, in contrast, will identify only known attacks that can be

codified in a recognizable pattern.

Digital signature

A digital signature is a mathematical technique used to validate the authenticity and integrity

of a message, software or digital document. The digital equivalent of a handwritten signature

or stamped seal, a digital signature offers far more inherent security, and it is intended to

solve the problem of tampering and impersonation in digital communications.

Digital signatures can provide the added assurances of evidence of origin, identity and

status of an electronic document, transaction or message and can acknowledge informed

consent by the signer.

UNIT-5 NOTES

Operating Systems Page 26

How digital signatures work

Digital signatures are based on public key cryptography, also known as asymmetric

cryptography. Using a public key algorithm, such as RSA, one can generate two keys that are

mathematically linked: one private and one public.

Digital signatures work because public key cryptography depends on two mutually

authenticating cryptographic keys. The individual who is creating the digital signature uses

their own private key to encrypt signature-related data; the only way to decrypt that data is

with the signer's public key. This is how digital signatures are authenticated.

How to create a digital signature

To create a digital signature, signing software -- such as an email program -- creates a one-

way hash of the electronic data to be signed. The private key is then used to encrypt the hash.

The encrypted hash -- along with other information, such as the hashing algorithm -- is the

digital signature.

Virus Protection

As we have seen, viruses can and do wreak havoc on systems. Protection from viruses thus is

an important security concern. Antivirus programs are often used to provide this protection.

Some of these programs are effective against only particular known viruses. They work by

searching all the programs on a system for the specific pattern of instructions known to make

up the virus. When they find a known pattern, they remove the instructions, disinfecting the

program. Antivirus programs may have catalogs of thousands of viruses for which they

search.

Both viruses and antivirus software continue to become more sophisticated. Some

viruses modify themselves as they infect other software to avoid the basic pattern-match

approach of antivirus programs. Antivirus programs in turn now look for families of patterns

rather than a single pattern to identify a virus. In fact, some antivirus programs implement a

variety of detection algorithms. They can decompress compressed viruses before checking for

a signature. Some also look for process anomalies. A process opening an executable file for

writing is suspicious, for example, unless it is a compiler. Another popular technique is to run

a program in a sandbox, which is a controlled or emulated section of the system. The

antivirus software analyzes the behavior of the code in the sandbox before letting it run

https://searchsecurity.techtarget.com/definition/asymmetric-cryptography
https://searchsecurity.techtarget.com/definition/asymmetric-cryptography
https://searchsecurity.techtarget.com/definition/public-key
https://whatis.techtarget.com/definition/algorithm
https://searchsecurity.techtarget.com/definition/RSA
https://searchsecurity.techtarget.com/definition/private-key
https://searchsqlserver.techtarget.com/definition/hashing

UNIT-5 NOTES

Operating Systems Page 27

unmonitored. Some antivirus programs also put up a complete shield rather than just

scanning files within a file system. They search boot sectors, memory, inbound and outbound

e-mail, files as they are downloaded, files on removable devices or media, and so on. The best

protection against computer viruses is prevention, or the practice of safe computing.

Purchasing unopened software from vendors and avoiding free or pirated copies from

public sources or disk exchange offer the safest route to preventing infection. For macro

viruses, one defense is to exchange Microsoft Word documents in an alternative file format

called rich text format (RTF). Unlike the native Word format, RTF does not include the

capability to attach macros.

Another defense is to avoid opening any e-mail attachments from unknown users.

Another safeguard, although it does not prevent infection, does permit early detection. A user

must begin by completely reformatting the hard disk, especially the boot sector, which is

often targeted for viral attack.

Firewalling to Protect Systems and Networks

A firewall is a computer, appliance, or router that sits between the trusted and the untrusted.

A network firewall limits network access between the two security domains and monitors

and logs all connections. It can also limit connections based on source or destination address,

source or destination port, or direction of the connection. For instance, web servers use HTTP

to communicate with web browsers. A firewall therefore may allow only HTTP to pass from

all hosts outside the firewall to the web server within the firewall.

In fact, a network firewall can separate a network into multiple domains. A common

implementation has the Internet as the untrusted domain; a semi trusted and semi secure

network, called the demilitarized zone (DMZ), as another domain; and a company’s

computers as a third domain (Figure 15.10). Connections are allowed from the Internet to the

DMZ computers and from the company computers to the Internet but are not allowed from

the Internet or DMZ computers to the company computers. Optionally, controlled

communications maybe allowed between the DMZ and one company computer or more. For

instance, a web server on the DMZ may need to query a database server on the corporate

network. With a firewall, however, access is contained, and any DMZ systems that are broken

into still are unable to access the company computers.

UNIT-5 NOTES

Operating Systems Page 28

Firewalls do not prevent attacks that tunnel, or travel within protocols or connections that

the firewall allows. A buffer-overflow attack to a web server will not be stopped by the

firewall, for example, because the HTTP connection is allowed; Likewise, denial of- service

attacks can affect firewalls as much as any other machines. Another vulnerability of firewalls

is spoofing, in which an unauthorized host pretends to be an authorized host by meeting

some authorization criterion. In addition to the most common network firewalls, there are

other, newer kinds of firewalls, each with its pros and cons. A personal firewall is a software

layer either included with the operating system or added as an application. Rather than

limiting communication between security domains, it limits communication to (and possibly

from) a given host.

An application proxy firewall understands the protocols that applications speak

across the network. For example, SMTP is used for mail transfer. An application proxy accepts

a connection just as an SMTP server would and then initiates a connection to the original

destination SMTP server. It can monitor the traffic as it forwards the message, watching for

and disabling illegal commands, attempts to exploit bugs, and so on. Some firewalls are

designed for one specific protocol.

An XML firewall, for example, has the specific purpose of analyzing XML traffic and blocking

disallowed or malformed XML.

System-call firewalls sit between applications and the kernel, monitoring system-call

execution. For example, in Solaris 10, the “least privilege” feature implements a list of more

than fifty system calls that processes may or may not be allowed to make.

UNIT-5 NOTES

Operating Systems Page 29

UNIT-5

QNO QUESTION
COURSE

OUTCOME

BLOOM’S

LEVEL

1
What is a deadlock? Identify the necessary conditions

which create a deadlock.
III III

2

Apply the resource allocation graph to identify the

deadlock situation in the operating system with an

example

III III

3

How do you represent the following resource allocation

graph with allocation matrix and request matrix

III IV

4
Explain how a deadlock can be recovered in the operating

system
III II

5

Draw the corresponding wait-for-graph for the following

resource allocation graph

III V

6
Compare logical address and physical address. Illustrate

importance of the memory management unit with
III IV

UNIT-5 NOTES

Operating Systems Page 30

diagram.

7
“Swapping is also known as a technique for memory

compaction” justify your answer.
III IV

8
Classify the types of memory techniques to select a free

partition from the set of available blocks
III IV

9
What is fragmentation? Compare fragmentation

techniques used in the operating system
III IV

10
What is segmentation? Explain segmentation hardware

with its neat diagram
III II

11
How paging is implemented in the operating system? List

the advantages and disadvantages of paging
III II

12) Discuss the strengths and weaknesses of implementing an access matrix using

capabilities that are associated with domains

13) List the various goals of protection and principles of protection

14) How a system can be protected with domain structure? Explain with MULTICS

ring structure

15) Illustrate the process of access matrix implementation with an example

	What is an Operating System?
	Computer System Structure
	Four Components of a Computer System
	Operating System Definition
	Computer Startup
	Computer System Organization
	Computer-System Operation
	Common Functions of Interrupts
	Interrupt Handling
	Interrupt Timeline
	I/O Structure
	Storage Hierarchy
	Computer-System Architecture
	How a Modern Computer Works
	A Dual-Core Design
	We show a dual-core design with two cores on the samechip. In this design, each core has its own register set as well as its own localcache; other designs might use a shared cache or a combination of local andshared caches.
	Clustered Systems
	Operating System Structure
	Memory Layout for Multi programmed System
	Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing systems, the CPU executes multiple jobs by switching among them, but the switches occur so frequently that the users can interact with each program while it is ...
	Time sharing requires an interactive computer system, which provides direct communication between the user and the system. The user gives instructions to the operating system or to a program directly, using a input device such as a keyboard, mouse, to...
	Operating-System Operations
	Transition from User to Kernel Mode
	Process Management
	Process Management Activities
	Memory management activities
	File-System Management
	OS File Management activities
	I/O Subsystem
	Protection and Security

	Bounded Buffer Problem
	What is the Problem Statement?
	Here's a Solution
	The Producer Operation
	The Consumer Operation

	What is Readers Writer Problem?
	The Problem Statement
	The Solution
	Here is the Code uncoded(explained)

	Dining Philosophers Problem
	What is the Problem Statement?
	Here's the Solution

	Process Synchronization | Monitors
	Dining-Philosophers Solution Using Monitors
	Monitor-based Solution to Dining Philosophers
	Example
	Avial = (0,0,0)
	Preempt the resource
	Rollback to a safe state
	Kill a process
	Kill all process
	Deadlock Prevention
	1. Mutual Exclusion
	Spooling

	2. Hold and Wait
	3. No Preemption
	4. Circular Wait

	Deadlock avoidance
	Resources Assigned
	Resources still needed

	What is Banker's Algorithm?
	4. Need
	Resource Request Algorithm
	Safety Algorithm
	Example2

	Memory Allocation
	Address Translation
	Advantages and Disadvantages of Paging

	Advantages
	Disadvantages
	Absolute Path
	Relative Path
	Multiple Users
	Remote File Systems
	Access Control
	This technique has two undesirable consequences:
	• Constructing such a list may be a tedious and unrewarding task, especially if we do not know in advance the list of users in the system.
	• The directory entry, previously of fixed size, now must be of variable size, resulting in more complicated space management.
	These problems can be resolved by use of a condensed version of the access list. To condense the length of the access-control list, many systems recognize three classifications of users in connection with each file:
	• Owner. The user who created the file is the owner.
	• Group. A set of users who are sharing the file and need similar access is a group, or work group.
	• Universe. All other users in the system constitute the universe.
	Types of Access
	Seek Time
	Rotational Latency
	Transfer Time
	Disk Access Time
	Disk Response Time
	Purpose of Disk Scheduling
	Goal of Disk Scheduling Algorithm
	Disk Scheduling Algorithms

	Disadvantages
	Example
	Solution

	Disadvantages
	Example
	Solution:
	Example
	Example
	Example
	Example

	Example: UNIX
	Example: MULTICS
	Global Table
	Access Lists for Objects
	Capability Lists for Domains
	A Lock-Key Mechanism
	Comparison
	Example: Hydra
	Example: Cambridge CAP System
	Compiler-Based Enforcement
	How digital signatures work
	How to create a digital signature

