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Course Objectives: The objectives of the course are

e Understand the basic concepts of machine Learning
e Apply different machine learning algorithms
e Implement clustering techniques

Course Outcomes:

Identify machine learning techniques suitable for a given problem. (L3)
Solve the problems using various machine learning algorithms(L3)

Apply data processing techniques (L3)

Apply the design of intelligent machines (L3)

Evaluate different clustering techniques(L5)

UNIT-I: Introduction to Machine Learning:

Evolution of Machine Learning, Paradigms for ML, Learning by Rote, Learning by
Induction, Reinforcement Learning, Types of Data, Matching, Stages in Machine
Learning, Data Acquisition, Feature Engineering, Data Representation, Model Selection,
Model Learning, Model Evaluation, Model Prediction, Search and Learning, Data Sets.

UNIT-II: Nearest Neighbor-Based Models:

Introduction to Proximity Measures, Distance Measures, Non-Metric Similarity Functions,
Proximity Between Binary Patterns, Different Classification Algorithms Based on the
Distance Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor
Algorithm, KNN Regression, Performance of Classifiers, Performance of Regression
Algorithms.

UNIT-III: Models Based on Decision Trees:

Decision Trees for Classification, Impurity Measures, Properties, Regression Based on
Decision Trees, Bias—Variance Trade-off, Random Forests for Classification and
Regression.

The Bayes Classifier: Introduction to the Bayes Classifier, Bayes’ Rule and Inference,
The Bayes Classifier and its Optimality, Multi-Class Classification | Class Conditional
Independence and Naive Bayes Classifier (NBC)

UNIT-IV: Linear Discriminants for Machine Learning:

Introduction to Linear Discriminants, Linear Discriminants for Classification, Perceptron
Classifier, Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-
Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear Regression,
Multi-Layer Perceptrons (MLPs), Back propagation for Training an MLP.




UNIT-V: Clustering :

Introduction to Clustering, Partitioning of Data, Matrix Factorization | Clustering of
Patterns, Divisive Clustering, Agglomerative Clustering, Partitional Clustering, K-Means
Clustering, Soft Partitioning, Soft Clustering, Fuzzy C-Means Clustering, Rough
Clustering, Rough K-Means Clustering Algorithm, Expectation Maximization-Based

Clustering, Spectral Clustering.

Text Books:

1.“Machine Learning Theory and Practice”, M N Murthy, V S Ananthanarayana,
UniversitiesPress (India), 2024

Reference Books:

1.“Machine Learning”, Tom M. Mitchell, McGraw-Hill Publication,
20172.“Machine Learning in Action”,Peter Harrington, DreamTech
3.“Introduction to Data Mining”, Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th

Edition, 2019.



Introduction to Machine Learning:

Machine learning is the practice of programming computers to
learn from data. The program will easily be able to
determine if given are important or spam.

ML is defined as a discipline of Al (Artificial Intelligence) that
provides machines the ability to automatically learn from
data and past experiences to identify patterns and make
predictions with minimal human intervention.

It uses computer algorithms and classifiers that improve their
efficiency automatically through experience.

It is an application of Al that enables systems to learn from vast
volumes of data and solve specific problems.

What is learning?

It is a process by which a system improves performance (P) from
experience (E) at some specific task (T).

Example: A well-defined learning task is given by (P, T, E).
How does ML work?

A machine learning system learns from historical data, builds the
prediction models, and whenever it receives new data, predicts
the output for it.

Flow chart:

Past Data — Process & Analyze Data — Create Models



The below block diagram explains the working of ML algorithm:
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Why ML (or Need for Machine Learning):

The need for ML is increasing day by day. The reason behind
the need for ML is that it is capable of doing tasks that are
too complex for a person to implement directly.

As a human, we have some limitations as we cannot access the
huge amount of data manually. So for this, we need some
computer systems and here comes the ML to make things
easy for us.
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Evolution of Machine Learning:

1.The birth of ML(1950):

Before 1950, there was a lot of research and theoretical studies
for machine learning, but the year 1950 is marked as the real birth
of machine learning.

“Alan Turing” the famous mathematician,researcher,

Computer genius submitted a paper called “imitation game” and
made the world astonished.

2)1951 - First Neural Network:

The very first neural network was made by "Marvin Minsky with
Dean Edmonds in 1951. Neural networks connect the thinking
process of machines and computers.

3)1974 - Naming of Machine Learning:

It was 1974, the year coined the name for ML from the proposed
words like Informatics, Computational Intelligence, and Artificial
Intelligence.

4)1996 - Game Changer:IBM's Deep Blue computer beat the
world-famous champion Garry Kasparov in chess. This proved that
machines can also think like humans.

5)ML at Present:



It is now responsible for some of the most significant
advancements in technology. It is being used for the new industry
of "self-driving vehicles".

Some of the most trending real-world applications of
ML at present are:

Image Recognition

Speech Recognition

Traffic Prediction

Product Recommendations

Email Spam & Malware Filtering

Self driving cars

Online fraud detection etc.



— Alan Turing proposes “learning machine™

1950

Arthur Samuel developed first machine
1952 learning program that could play Checkers

Frank Rosenblatt designed the first neural
1957 network program simulating human brain

Nearest neighbour algorithm created - start of
1967 basic pattemn recognition

Stanford University students develop first selfl - driving
cari that can pavigate and avoid obstacles in a room

1979
Recurrent Neural Network developed
1982
- Reinf ent 1 ing conceptualized
1989 - Beginning of inlization of Machine Learning

Random Forest and Support Vector machine
1995 algorithms developed

—— IBM"s Deep Blue beats the world chess champion Gary
1997 Kasparov

THE JOURNEY OF MACHINE LEARNING

- First machine learning competition launched byNetflix
- Geolfrey Hinton conceptualizes Deep Learning

2006

Kaggle, a website for machine learning competitions, lsunched
2010

TBM's Watson beats 1wo human champions in Jeopardy
01

Google’s AlphaGo program beats unhand, i
— i * unhandicapped professiona)

FIG. 1.1
Evolution of machine learning

Paradigms (or) Types of ML Analysis (or) Taxonomy of
ML

1.ML is divided into three primary learning model approaches:
® Supervised
® Unsupervised

® Reinforcement
2. Each model differs in training. Each has its strengths and faces

different tasks or problems.

3. When choosing an ML model to deploy, an organization needs
to understand the available data and the problem to be solved.



Types of
Learning

Unsupervised Reinforcement
Learning Learning

Dimensionality

Regression Classification Clustering

Reduction

1) Supervised Machine Learning:

1)Supervised ML algorithms are the most commonly used for predictive
analytics.

2)It requires human interaction to label data ready for accurate supervised
learning.

3)The model is taught by example using input and output datasets
processed by human experts, usually data scientists.
4)It is commonly used for solving regression and classification problems.

Supervised Learning

Regression classification

Regression:

1.lt involves estimating the mathematical relationship between a
continuous variable and one or more other variables.



2.1t is used for the prediction of continuous variables such as
weather forecasting, market trends, etc.

3.Below are some popular regression algorithms:
Linear Regression
Non-linear Regression
Regression Trees
Polynomial Regression
Bayesian Linear Regression

S

Classification:

1. Classification algorithms are used when the output variable is
categorical, which means there are two classes such as Yes-No,
Male-Female, True-False, Pass-Fail, etc.
2.Below are some popular classification algorithms. They are:

< Random Forest

< Decision Trees

< Logistic Regression

< Support Vector Machines

Advantages of supervised learning:

1.1t helps us to solve various real-world problems such as "fraud
detection," "spam filtering," etc.
2.1t can predict the output on the basis of prior experience.

Disadvantages of supervised learning:

1.lt is not suitable for handling complex tasks.
2.1t requires lots of computation time.

3.It cannot predict the correct output if the test data is different from
the training dataset.

2) Unsupervised learning:

1.lt is a type of ML in which models are trained using unlabeled
datasets and are allowed to act on that data without any supervision.



2.1t is to find the underlying structure of datasets, group that data
according to similarities and represent that dataset in a compressed

format.

3.It works on unlabeled and uncategorized data, which makes
unsupervised learning more important.

4.1t is commonly used for solving clustering methods and association

methods.

Unsupervised learning

Association

1.lt is the grouping of data that have similar characteristics.

2.1t helps segment data into groups and analyze each to find patterns.
Example: Clustering algorithms identify groups of users based on
their online purchasing history and then send each member targeted
ads.

Clustering:

Association:

1.1t consists of discovering groups of items frequently observed

together.
2.0nline retailers use associations to suggest additional purchases
to a user based on the content of their shopping cart.

Unsupervised Learning Algorithms:
Below is the list of some popular unsupervised learning algorithms:

< K-means Clustering
< KNN (K-Nearest Neighbors)



< Neural networks
< Independent component analysis etc.

Advantages of Unsupervised Learning:

1.It is easy to get unlabeled data in comparison to labeled data.
2.1t is used for more complex tasks as compared to supervised
learning because, in unsupervised learning, we don't have labeled
input data.

Disadvantages of Unsupervised Learning:

1.lt is intrinsically more difficult than supervised learning, as it does
not have corresponding output.

2.The result of the unsupervised learning algorithm may be less
accurate as input data is not labeled.

The main differences between Supervised and Unsupervised
Learning are given below:

Supervised Learning Unsupervised Learning
1) Supervised learning algorithms 1) Unsupervised learning algorithms
are trained using labeled data. are trained using unlabeled data.

2) It takes direct feedback to check if 2) It does not take feedback.
it is predicting the correct output or

not.

3) Supervised learning models 3) Unsupervised learning models
predict the output. find the hidden patterns in data.
4) It can be categorized in 4) It can be classified in clustering

Classification and regression problems and Association problems



5) It produces an accurate result 5) It may give less accurate
result as
Compared to supervised learning

3) Reinforcement Learning:

< It works on a feedback-based process, in which an agent (Al)
automatically explores its surroundings by hit & trial, taking action,
learning from experiences, and improving its performances.

< Agent get rewarded for each good action and get punished for each bad
action, hence the goal of these learning agents is to maximize the
rewards.

< lts learning process is similar to a human being.
For example: A child learns various things by experiences in his
day-to-day life.

< Reinforcement learning problems can be formalized using the "Markov
Decision Process (MDP)". In MDP, the agent constantly interacts with
the environment & performs actions. At each action, the environment
responds & generates a new state.

\[ Environment Jl

| Action ‘ Feedback State

‘ Model Agent

Categories of RL:

It is mainly categorized into two types of methods:

1.Positive RL
2.Negative RL



1)Positive RL:
It enhances the strength of the behavior of the agent and positively
impacts it.

2)Negative RL:

It works exactly opposite to the positive RL.

Real-world use cases of Reinforcement Learning:

1.Video games
2.Resource management
3.Robotics

4. Text mining

Advantages of RL:

1.Versatility: Wide range of applications like robotics, autonomous
vehicles, healthcare, and game playing, etc.

2.Scalability: It can be scaled to handle large and complex
problems.

Disadvantages of RL:

1.High computational cost
2.0Overfitting to specific environments

Note:
To overcome the drawbacks of supervised learning & unsupervised
learning algorithms, the concept of supervised learning is introduced.

Learning by Rote:

1)Learning by rote in machine learning refers to the phenomenon where a
model memorizes the training data instead of learning the underlying
patterns or generalizations.

2)It is compared to how students might memorize answers without
understanding concepts.

3)In ML, this behavior often manifests as "overfitting."



4)lt is a memorization technique based on repetition.This involves
memorization in an effective manner. It is a form of learning that is popular
in elementary schools where the alphabet and numbers are memorized.

5) Memorizing simple addition and multiplication tables are also examples
of rote learning. In the case of data caching, we store computed values so
that we do not have to recompute them later.

6)Caching is implemented by search engines and it may be viewed as
another popular scheme of rote learning. When computation is more
expensive than recall, this strategy can save a significant amount of time.

Learn
Exam Forget
Preparation Preparation
Learn
Forget Exam

Fig: The Rote Loop

Rote Learning vs. Meaningful Learning:

Rote learning:

< Requires the learner to repeat facts and procedures until they are
thoroughly memorized.

Meaningful learning:



< Focuses on understanding rather than just memorizing.
< Requires connecting new information to prior knowledge.

How It Works:

< A machine is programmed to store new information and compare new
input to its history of inputs and outputs.

< If the machine has previously encountered the input, it can retrieve the
stored output.

Benefits of Rote Learning:

It can save time compared to recomputing values. It can also be used to
establish a foundational understanding of basic concepts.

Learning by Deduction:

Deductive learning deals with the exploitation of deductions made earlier.
This type of learning is based on reasoning that is truth-preserving. Given
AAA, and if AAA then BBB (A—BA \rightarrow BA—B), we can deduce
BBB. We can use BBB along with B—CB \rightarrow CB—C (B—CB
\rightarrow CB—C) to deduce CCC. Note that whenever AAA and A—BA
\rightarrow BA—B are True, then BBB is True, ratifying the truth-preserving
nature of learning by deduction.

Consider the following statements:

1.It is raining.
2.If it rains, the roads get wet.
3.If a road is wet, it is slippery.

Learning by Abduction:

Here, we infer A from B and (A—B). Notice that this is not truth-preserving
like in deduction, as both B and (A—B) can be True and A can be False.
Consider the following inference:

1)An aeroplane is a flying object (aeroplane—flying object).
2)A is a flying object.

From (1) and (2), we infer using abduction that A is an aeroplane. This
kind of reasoning can lead to incorrect conclusions. For example, A could
be a bird or a kite.



Learning by Induction:

This is the most popular and effective form of ML. Here, learning is
achieved with the help of examples or observations. It may be categorized
as follows:

< Learning from Examples: Here, it is assumed that a collection of
labeled examples is provided, and the ML system uses these examples
to make a prediction on a new data pattern. In supervised classification
or learning from examples, we deal with two ML problems:
classification and regression.
1.Classification:. The problem is to learn an ML model using such data to
classify a new data pattern. This is also called supervised learning as the
model is trained with the help of such exemplar data. It may be provided by
an expert in several practical situations. For example, a medical doctor may
provide examples of normal patients and patients infected by COVID-19
based on some test results.

2.Regression: Contrary to classification, there are several
prediction applications where labels come from a possibly
infinite set. For example, the share value of a stock could be a
positive real number. The stock may have different values at a
particular time, and each of these values is a real number. This
is a typical regression or curve-fitting problem.

< Learning from Observations: Observations are also instances like
examples but are different because observations need not be labeled.
In this case, we cluster or group observations into a smaller number of
groups. Such grouping is performed with the help of a clustering
algorithm that assigns similar patterns to the same group/cluster.

Challenges in Inductive Learning:

1.Noise in Data: Can lead to incorrect generalizations.
2.0ver-generalization: Creating overly broad rules that don't fit well
with specific data points.

3.Computational Complexity: Searching through large hypothesis
spaces can be resource-intensive.

Applications of Learning by Induction:



< Image Classification (e.g., recognizing handwritten digits).
< Natural Language Processing (e.g., spam detection).

< Predictive Analytics (e.g., forecasting sales).

<> Robotics (e.g., learning motion patterns).
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___1950 Alan Turing proposes “learning machine

——— ATthur Samuel developed first machine
1952 learning program that could play Checkers

e— [ Ta0K Rosenblatt designed the first neural
1957 network program simulating human brain

Nearest neighbour algorithm created - start of
1967 basic pattern recognition

Stanford University students develop first self — driving
1979 cart thaf can navigate and avoid obstacles in a room

—— Recurrent Neural Network developed
1982

- Reinforcement Learning conceptualized
1989 - Beginning of commercialization of Machine Learning

Random Forest and Support Vector machine
1995 algorithms developed

IBM’s Deep Blue beats the world chess champion Gary
1997 Kasparov

THE JOURNEY OF MACHINE LEARNING

- First machine learning competition launched byNetflix
2006 - Geoffrey Hinton conceptualizes Deep Learning

Kaggle, a website for machine learning competitions, launched
2010

IBM’s Watson beats two human champions in Jeopardy
2011

Google’s AlphaGo program beats unhandicapped proleuhml
2016 human player
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1.2.1 Learning by Rote

This involves memorization in an effective manner It s o form of learning that is popular in
clementary schools where the nlphabet and numbers are memorized. Memorizing simple addition
aned mnltiplieation tables ure also examples of rote learning, In the case of data caching, we store
comnpiitin] vidues sot it wie ddo not hiave to recompute them later. Caching s implemented by srarch
engines and it may be viewed as another popular schetne of rote learning When computation =
fore expensive than recall, this strategy can save a signibeant amount af time. Chess masters
spetd alot of time memorizing the great games of the past. It is this rote learnimg that teaches
them how to ‘think” in chess. Various board positions and their potential to reach the winning
confignuration are exploited in games lke chess and checkers.
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1.2.4 Learning by Induction
This is the must popular and effective furm of ML. Here, learning is achieved with the hedp 4

examples or observations It may be categorized a8 foliows:
Learning from Examples: Here, it is assumed that a collection ﬂf.laht'"f'l] examples g
i provided and the ML system uses these examples to make a pmhﬂrm 0 A hew daty
pattern. In supervised classification or learning from examples, we deal with two ML problens

classification and regression
I Classification: Consider the handwritten digits shown in Fig. 1.3. Here, each row has 15
pxmnp[ﬁu af cach of the digits The [Il'ﬂh]!'m is to learn an ML model I.L'lillg such data to
classify a new data pattern. This is also ealled supervised learning as the mode| s learnt
with the help of such exemplar data. It may be provided by an expert in several practical
situations. For example, a medical doctor may provide examples of normal patients and
patients infected by COVID-19 based on some test results, In the case of handwritten digits,
we have 10 class labels, one class label corresponding to each of the digits from 0 1o §.
In classification, we would like to assign an appropriate class label from these labels to »
new pattern.
2. Regression: Contrary to classification, there are several prediction applications where the
labels come from a possibly infinite set. For example, the share value of a stock could be
A positive real number. The stock may have different values at a particular time and each
of these values is a real number. This is a typical regression or curve fitting problem The
practical need here is to predict the share value of a stock at a future time instance hased
on past data in the form of examples.

Learning from Observations: Observations are also instances like examples but they ar
different because observations need not be labelled. In this case, we cluster or group th /
observations into a smaller number of groups. Such grouping is performed with the help o
a clustering algorithm that assigns similar patterns to the same group/cluster. Each cluste
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set of 3 classes: 0, 1 and 3. By using the ¢ lass labels

< consider the handwritten digit data
the 9 centroids

I,1-1 1
of each class separately, we obtain 3 clusters that give us

and clustering patterns
=W L Flga I l-
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Fic. 1.4 Cluster centroids using the class labels in clustering

However, when we cluster the entire data of digits 0, 1 and 3 into 9 clusters, we obtain the

centroids shown in Fig. 1.5. So, the clusters and their representatives could differ based on how

we exploit the class labels.
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Types of data

Apart from the approach detailed above, attributes can also be categorized into
types based on a number of values that can be assigned. The attributes can be either
discrete or continuous based on this factor,

Discrete attributes can assume a finite or countably infinite number of values.
Nominal attributes such as roll number, street number, pin code, etc. can have a finite
number of values whereas numeric attributes such as count, rank of students, etc. can
have countably infinite values. A special type of discrete attribute which can assume
two values only is called binary attribute. Examples of binary attribute include male/
female, positive/negative, yes/no, elc.

Continuous attnbutes can assume any possible value which is a real number.
Examples of continuous attribute include length, height, weight, price, etc.

Note:

In general, nominal and ordinal attributes are discrete. On the other hand, interval
and ratio attributes are continuous, barring a few exceptions, e.g. ‘count’ attribute.




Data set records and attributes

Now that a context of data sets is given, let’s try to understand the different types

of data that we generally come across in machine learning problems. Data can broadly
be divided into following two types:

1. Qualitative data
2. Quanutative data

Qualitative data provides information about the quality of an object or informa-
tion which cannot be measured For example, if we consider the quality of perfor-
mance of students in terms of *Good ‘Average’, and ‘Poor’, it falls under the category
of qualitative data. Also,name or roll number of students are information that cannot
be measured using some scale of measurement. So they would fall under qualitative
data. Qualitative data is also called categorical data. Qualitative data can be further
subdivided into two types as follows:

1. Nominal data
L 2. Ordinal data
Nominal data is one which has no numeric value, but a named value. It is used for

assigning named values to attributes. Nominal values cannot be quantified. Examples
of nominal data are

1. Blood group: A, B, O, AB, etc.
2. Nationality: Indian, American, British, etc.
3. Gender: Male, Female, Other

Note:

A special case of nominal data is when only two labels are possible, €.g: passlfa,il asa
result of an examination. This sub-type of nominal data is called ‘dichotomous.

It is obvious, mathematical operations such as addition, subtraction, multiplication,
etc. cannot be performed on nominal data. For that reason, statistical functions



——ﬁ

Chapter 2 Preparing to Model

s mean. vanance, etc. can also not be applied on nominal data Howev.

er, a bayg
count i possible. So mode, 1.e. most frequently occurring value, can be identified fop
nomanal data.

Ordinal data. in addition 10 possessing the properties of nominal data, can also be
naturally ordered. This means ordinal data also assigns named values to attnbutes by
unhke nominal data, they can be arranged in a sequence of increasing or decreasing

value so that we can say whether a value 1s better than or greater than another valye
Examples of ordinal data are

L. Customer satisfaction: “Very Happy'
2. Grades: A, B. C_etce

3. Hardness of Metal ‘Very Hard' "Hard "Soft’ etc.

‘Happy' "Unhappy ' etc

Like nominal data, basic counting is possible for ordinal data. Hence, the mode can
be identified. Since ordering is possible in case of ordinal data, median, and quartiles
can be identified in addition. Mean can still not be calculated

| Quantitative data relates 1o mformation
can be measured. For example, if we consid
using a scale of measurement. Quantt
are two types of quantitative data:

about the quantity of an object - hence it
cr the attnbute ‘'marks’ it can be measured
atve datais also termed as numeric data. There

' L Interval data

2. Ratio data

Interval data is numeric data for which not only the order is known, but the exact
difference between values is also known. An ideal example of interval data is Celsius
temperature. The difference between each value remains the same in Celsius tem-
perature. For example, the difference between 12°C and 18°C degrees is measurable
and is 6°C as in the case of difference between 15.5°C and 21.5°C. Other examples
include date, time, etc.

For interval data, mathematical operations such as addition and subtraction are
possible. For that reason, for interval data, the central tendency can be measured by
mean, median, or mode. Standard deviation can also be calculated.

However, interval data do not have something called a ‘true zero’ value. For exam-
ple, there is nothing called ‘0 temperature’ or ‘no temperature’ Hence, only addition
and subtraction applies for interval data. The ratio cannot be applied. This means, we
can say a temperature of 40°C is equal to the temperature of 20°C + temperature of
20°C. However, we cannot say the temperature of 40°C means it is twice as hot as in
temperature of 20°C,

Ratio data represents numeric data for which exact value can be measured.
Absolute zero is available for ratio data. Also, these variables can be added, sub-
tracted, multiplied, or divided. The central tendency can be measured by mean,
median, or mode and methods of dispersion such as standard deviation. Examples of
ratio data include height, weight, age, salary, etc.

Figure 2.4 gives a summarized view of different types of data that we may find in
a typical machine learning problem,
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1.4 MATCHING

pervised learning and in learning

Matching is an important activity in ML, Tt is used in both su .
asure which can he a

from observations. Matching is carried out by using o proximity me
distance /dissimilarity measure or a simiilarity measure, Two data 1items, u and . ”‘lm‘-"'-'*llh"l

as I-dimensional vectors, match better when the distance between them is smaller or when the

similarity between them is larger.
A popular distance measure is the
the cosine of the angle between vec

Euclidean distance and a popular similarity measure s

tors. The Euclidean distance is given by

|
dlw, n) = Zlﬂfi} - v(8))?

=]

The cosine similarity is given by
(i) u'y
cos(u.v) = ——»

{1

where u'v is the dot product between vectors and v and ||u|| is the Euclidean distance between
u and the origin: it is also called the Euclidean norm.

Some of the important applications of matching in ML a
Neighbor of a Pattern: Let x be an [-dimensional pattern vector.
collection of n data vectors. The nearest neighbor of x from X,

e in:

« Finding the Nearest
Let X = {21,2Z2,....%n} bE B
denoted by NN (X), is z, if

da,ry) € dlx,x;), Vi € X

This is an approximate search where a pattern that best matches r is obtained. If there is a
tie, that is, when both o, € X and r, € A" are the nearest neighbors of r, we can break the
tie arbitrarily of choose either of the two to be the nearest neighbor of . This step is useful in
classification and will be discussed in the next chapter,

. Aﬁsigning to a Set with the Nearest Representative: Let 'y, Cy. ... O be K sets with

- LI H as their respective representatives. A pattern r is assigned to C, if

d(r. ') < d(r.2?). for je{1,2..... K}
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1.5.4 Model Selection

Selection of the model to be used to train an ML system depends upon the nature of the data and
nowledge of the application domain. For some applications. only a subset of the ML models can
he used, For example, if some features are numerical and others are categorical, then classibers
based on perceptrons and support vector machine (SVM) are not suitable as they compute the dot
product between vectors and dot products do not make sense when some values in the corresponding
vectors are non-numerical. On the other hand, Bayesian models and decision tree-based models are
ideally suited to deal with such data as they depend upon the frequency of occurrence of values.

1.5.5 Model Learning

This step depends on the size and type of the training data. In practice, a subset of the labelled data
s used as training data for learning the model and another subset is used for mode! validation or
model evaluation, Some of the ML models are highly transparent while others are opaque or black
hox models. For example, decision tree—based models are ideally suited to provide transparency;
this is because in a decision tree, at each internal or decision node, branching is carried out hased
an the value assumed by a feature. For example, if the height of an object is larger than 5 feet, it
is likely to be an adult and not a child: such easy-to-understand rules are abstracted by dECi.‘ft‘ﬂﬂ
trees. Neural networks are typically opaque as the outputs of intermediate/hidden layer neurons
may not offer transparency. | '

1.5.6 Model Evaluation

Enli;:dsl,up is also raliplr] mnrjlel validation. This step requires specifically earmarked data called
ation data. It is possible that the ML model works well on the tn;ining data: then we say



(e vislldation data. In sy o
Yot b overcomne overfitbing, we
ke well on buth the Lrnining

that the model s well tralned, However, it may not work well un
case, we say that the ML model overfits the tralning dats. In o
typically use the validation data to tune the ML model so that It wor

and validation data sets

1.5.7 Model Prediction

‘ o b m
This step deals with testing the model that i learnt and enlidntasd, 1t in umesd for prediothon becnis
Philw whaspy eanploys Lher Lot ddntn st

both classification and regresston tnaks are predictive thaks.
sdletion me new pabhernn kiey

carmarked for the purpose, In the real world, the wmodal s used Tor p1 b0 oredicts and
coming in. Imagine an ML model bullt for medical dingnosis, It in Nike m doctor who preaie

makes a diagnosis when a new patient comes in

1.5.8 Model Explanation

This step is important to explain to an expert or a msnnger why n decinion was taken by the M1,
model, This will help in explicit or implicit feedback (rom the user o further improve the tmiode),
Explanation had an important role earlier in-expert systerm and other Al systemns, However,
explanation has become very important in the era of DL, ‘Thin s because DI, systems Ly pleally
employ neural networks that are relatively opague Yo, thelr functioning cannot be ensily expinined
at a level of detail that can be appreciated by the dommnin expert [user. Such opague behavionr hins

created the need for explainable AL

1.6 SEARCH AND LEARNING

Search is a very basic and fundamental operation in both ML and AT, Senrch had a special role in
conventional Al where it was successfully used in problem solving, theorem proving, planning and

knowledge-based systems.
Further, search plays an important role in several computer science npplications, Some of them nre

as follows:

o Exact search is popular in databases for answering querien, in opernting systems for operations

like grep, and in looking for entries in symbol tables,
o In ML, search is important in learning a classification model, a proximity messure for clustering

and classification, and the appropriate model for regression.
o Inference is search in logic and probability. In lincar slgebra, matrix factorization is search, In
optimization, we use a regularizer to simplify the search in finding s solution, In information

theory, we search for purity (low entropy).

So, several activities including optimization, inference and matrix factorization that are esmntial
for ML are all based on search. Learning itself is search. We will examine how search aids learning
of each ML model in the respective chapters.

1.7 EXPLANATION OFFERED BY THE MODEL

Conventional Al sy stems were logic-based or rule-based systems. So, the corresponding reasoning
systems naturally exhibited transparency and, as a consequence, explainability, Both forward and

L
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backward reasoning was possible. In fact, the same knowledge base, based on experts’ input, was
used in both diagnosis and in teaching because of this flexibility. Specifically, the knowledge base
used by the MYCIN expert system was used in tutoring medical students using another expert
system called GUIDON.

However, there were some problems associated with conventional Al systems:

« There was no general framework for building Al systems. Acquiring knowledge, using additional
heuristics and dealing with exceptions led to adhocism; experience in building one Al system
did not simplify the building of another Al system.

. Acquiring knowledge was a great challenge. Different experts typically differed in their con-
clusions, leading to inconsistencies. Conventional logic-based systems found it difficult to deal
with such inconsistent knowledge.

There has been a gradual shift from using knowledge to using data in building Al systems.
Current-day Al systems, which are mostly based on DL, are by and large data dependent. They
can learn representations automatically. They employ variants of multi-layer neural networks and
backpropagation algorithms in training models.

Some difficulties associated with DL systems are:
improves as the size of the data set increases.

« They are data dependent. Their performance :
ot difficult to provide large data sets in most

So, they need larger data sets. Fortunately, it is 1

of the current applications. o
o Learning in DL systems involves a simple change of weights in the neural network to optimize

the objective function. This is done with the help of backpropagation, which is a gradient-
descent algorithm and which can get stuck with a locally optimal solution. Combining this
with large data sets may possibly lead to overfitting. This is typically avoided by using a
variety of simplifications in the form of regularizers and other heuristics.

« A major difficulty is that DL systems are black box systems and lack explanation capability.
This problem is currently attracting the attention of Al researchers.

We will be discussing how each of the ML models is equipped with explanation capability in the
respective chapters.

1.8 DATA SETS USED

In this book, we make use of two data sets to conduct experiments and present results in various

chapters. These are:
« Data Sets for Classification

1. MNIST Handwritten Digits Data Set:

_ There are 10 classes (corresponding to digits 0, 1, ..., 9) and each digit is viewed as an
image of size 28 x 28 (= 784) pixels; each pixel having values in the range 0 to 255.
There are around 6000 digits as training patterns and around 1000 test patterns in each
class and the class label is also provided for each of the digits.

_ For more details, visit http://yann.lecun. com/exdb/mnist/

2. Fashion MNIST Data Set:
_ Itisa data set of Zalando’s article images, consisting of a training set of 60,000 examples
and a test set of 10,000 examples.
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Each example is a 28 x 28 greyscale image, associated with a label from 10 classes
It is intended to serve as a possible replacement for the original MNIST data set for

benchmarking ML models. b . )
It has the same image size and structure of training and testing splits as the MNIST

data.
For more details, visit https://www.kaggle.com/datasets/zalando-research,

fashionmnist
3. Olivetti Face Data Set:
It consists of 10 different images each of 40 distinct subjects. For some gubjects, the
images were taken at different times, varying the lighting, facial expressions (open /

closed eyes, smiling / not smiling) and facial details (glasses / no glassgs). -
All the images were taken against a dark homogeneous background with the subjects

in an upright, frontal position (with tolerance for some side movement).

— Each image is of size 64 x 64 = 4096.

— It is available on the scikit-learn platform.
For more details, visit https://ai.stanford.edu/~marinka/nimfa/nimfa.examples.

orl\_images.html

4. Wisconsin Breast Cancer Data Set:

It consists of 569 patterns and each is a 30-dimensional vector.
There are two classes Benign and Malignant. The number of patterns from Benign is
357 and the number of Malignant class patterns is 212.
— It is available on the scikit-learn platform.

— For more details, visit
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load\

_breast\_cancer.html
« Data Sets for Regression
1. Boston Housing Data Set:

— It has 506 patterns.
— FEach pattern is a 13-dimensional vector.

— It is available on the scikit-learn platform.

— For more details, visit
https://scikit-learn.org/0.15/modules/ generated/sklearn.datasets.load\

_boston.html

2. Airline Passengers Data Set:

- Th.is data set prow’des monthly totals of US airline passengers from 1949 to 1960.
~ This data set is taken from an inbuilt data set of Kaggle called AirPassengers.
— For more details, visit

https://wuw.kaggle. com/datasets/ chiragl9/air-passengers

3.  Australian Weather Data Set:

— It provides va.rious weather record details for cities in Australia.

= g‘he features u.lclude location, min and max temperature, etc.

~ ror more details, visit https:// WV-kaggle.com/datasets/aru.navakrcha.krab"rty/
australia-weather-data




- Unit-2

* MODELLING AND EVALUATION & BASICS OF FEATURE
ENGINEERING

. Part-1
INTRODUCTION

The basic learning process, irrespective of the fact that the learner is
a human or a machine, can be divided into three parts:

» Data Input
» Abstraction
» Generalization

The detective department of New City Police has got a tip that in
a campaign gathering for the upcoming election, a criminal is going
to launch an attack on the main candidate.

However, it is not known who the person is and quite obviously
the person might use some disguise.

They have to match the photos from the criminal database with the
faces in the gathering to spot the potential attacker.

So the main problem here is to spot the face of the criminal based
on the match with the photos in the criminal database.

This can be done using human learning where a person from the
detective department can scan through each shortlisted photo and try
to match that photo with the faces in the gathering.

A person having a strong memory can take a glance at the photos
of all criminals in one shot and then try to find a face in the gathering
which closely resembles one of the criminal photos that she has
viewed.



But that is not possible in reality.

The number of criminals in the database and hence the count of
photos runs in hundreds, if not thousands. So taking a look at all the
photos and memorizing them is not possible.

The same thing can be done using machine learning too.

The machine can also use the same input data, i.e. criminal database
photos, apply computational techniques to abstract feature-based
concept map from the input data and generalize the same in the form
of a classification algorithm to decide whether a face in the gathering
is potentially criminal or not.

When we talk about the learning process, abstraction is a
significant step as it represents raw input data in a summarized and
structured format, such that a meaningful insight is obtained from
the data.

This structured representation of raw input data to the meaningful
pattern is called a model.

Generalization searches through the huge set of abstracted
knowledge to come up with a small and manageable set of key
findings.

It is not possible to do an exhaustive search by reviewing each of
the abstracted findings one-by-one.

A heuristic search is employed, an approach which is also used
for human learning (often termed as ‘gut-feel’).



It is quite obvious that the heuristics sometimes result in
erroneous result. If the outcome is systematically incorrect, the
learning is said to have a bias.

« SELECTING A MODEL

An association between potential causes of disturbance and criminal
incidents has to be determined.

In other words, the goal or target is to develop a model to infer how
the criminal incidents change based on the potential influencing
factors mentioned above.

In machine learning paradigm, the potential causes of disturbance,
e.g. average income of the local population, weapon sales, the inflow
of immigrants, etc. are input variables.

They are also called predictors, attributes, features, independent
variables, or simply variables.

The number of criminal incidents is an output variable (also called
response or dependent variable).

Input variables can be denoted by X, while individual input
variables are represented as Xi, Xz, Xs,..., Xn and output variable by
symbol Y.

The relationship between X and Y is represented in the general
form: Y =f (X) + e, where ‘f ’ is the target function and ‘e’ is a
random error term.

Just like a target function with respect to a machine learning
model, some other functions which are frequently tracked are



A cost function (also called error function) helps to measure the extent to
which the model is going wrong in estimating the relationship between X and Y.

In that sense, cost function can tell how bad the model is performing. For
example, R-squared (to be discussed later in this chapter) is a cost function of
regression model.

Loss function is almost synonymous to cost function — only difference being
loss function is usually a function defined on a data point, while cost function is
for the entire training data set.

Machine learning is an optimization problem. We try to define a model and tune
the parameters to find the most suitable solution to a problem.

However, we need to have a way to evaluate the quality or optimality of a
solution. This is done using objective function. Objective means goal.

Objective function takes in data and model (along with parameters) as input and
returns a value. Target is to find values of model parameter to maximize or
minimize the return value.

When the objective is to minimize the value, it becomes synonymous to cost
function.

Examples:
maximize the reward function in reinforcement learning, maximize the
posterior probability in Naive Bayes, minimize squared error in regression.
There are three broad categories of machine learning approaches
used for resolving different types of problems.
They are
 1.Supervised

» Classification
» Regression

2.Unsupervised
» Clustering
Association analysis
3.Reinforcement

For each of the cases, the model that has to be created/trained is
different.



Multiple factors play a role when we try to select the model for
solving a machine learning problem.

The most important factors are (i) the kind of problem we want
to solve using machine learning and

(i) the nature of the underlying data.

The problem may be related to the prediction of a class value like
whether a tumour is malignant or benign, whether the next day will
be snowy or rainy, etc. to be selected.

In other words, there is no one model that works best for every
machine learning problem. This is what ‘No Free Lunch’ theorem
also states.

Machine learning algorithms are broadly of two types: models
for supervised learning, which primarily focus on solving predictive
problems and models for unsupervised learning, which solve
descriptive problems.

. 1.Predictive models

Models for supervised learning or predictive models, as is
understandable from the name itself, try to predict certain value
using the values in an input data set.

The learning model attempts to establish a relation between the
target feature, i.e. the feature being predicted, and the predictor
features.

The predictive models have a clear focus on what they want to learn
and how they want to learn.

Predictive models, in turn, may need to predict the value of a
category or class to which a data instance belongs to. Below are
some examples:



* Predicting win/loss in a cricket match
» Predicting whether a transaction is fraud
* Predicting whether a customer may move to another product

The models which are used for prediction of target features of
categorical value are known as classification models.

The target feature is known as a class and the categories to which
classes are divided into are called levels.

Some of the popular classification models include k-Nearest
Neighbor (kNN), Naive Bayes, and Decision Tree.

Predictive models may also be used to predict numerical
values of the target feature based on the predictor features.
Below are some examples:

* Prediction of revenue growth in the succeeding year
* Prediction of rainfall amount in the coming monsoon
« Prediction of potential flu patients and demand for flu shots next winter

The models which are used for prediction of the numerical value
of the target feature of a data instance are known as regression
models.

Linear Regression and Logistic Regression models are popular
regression models.

. 2.Descriptive models

Models for unsupervised learning or descriptive models are used to
describe a data set or gain insight from a data set.

There is no target feature or single feature of interest in case of
unsupervised learning.

Based on the value of all features, interesting patterns or insights are
derived about the data set.



Descriptive models which group together similar data instances,
I.e. data instances having a similar value of the different features are
called clustering models.

Examples of clustering include

» Customer grouping or segmentation based on social, demographic, ethnic, etc.
factors

» Grouping of music based on different aspects like genre, language, time-period,
etc.

» Grouping of commodities in an inventory

The most popular model for clustering is k-Means.

Descriptive models related to pattern discovery is used for market
basket analysis of transactional data.

In market basket analysis, based on the purchase pattern available
in the transactional data, the possibility of purchasing one product
based on the purchase of another product is determined.

3. Holdout method

In case of supervised learning, a model is trained using the labelled
input data. In general 70%-80% of the input data (which is
obviously labelled) is used for model training.

The remaining 20%-30% is used as test data for validation of the
performance of the model.

However, a different proportion of dividing the input data into
training and test data is also acceptable.

To make sure that the data in both the buckets are similar in nature,
the division is done randomly. Random numbers are used to assign
data items to the partitions.



This method of partitioning the input data into two parts — training

which is by holding back a part of the input data for validating the
trained model is known as holdout method.

70%-80% [T

| 1 1 |
Igf::; Trained Maodel

Test
20%-30% Data @ )

' u
Model Performance

FIG. 3.1 Holdout method

Once the model is trained using the training data, the labels of the
test data are predicted using the model’s target function.

Then the predicted value is compared with the actual value of the
label.

In certain cases, the input data is partitioned into three portions —
a training and a test data, and a third validation data.

The validation data is used in place of test data, for measuring the
model performance. It is used in iterations and to refine the model in
each iteration.

The test data is used only for once, after the model is refined and
finalized, to measure and report the final performance of the model
as a reference for future learning efforts.

. 4 K-fold Cross-validation method



Holdout method employing stratified random sampling approach
still heads into issues in certain specific situations..

A special variant of holdout method, called repeated holdout, is
sometimes employed to ensure the randomness of the composed
data sets.

In repeated holdout, several random holdouts are used to measure
the model performance.

In the end, the average of all performances is taken.

As multiple holdouts have been drawn, the training and test data
(and also validation data, in case it is drawn) are more likely to
contain representative data from all classes and resemble the
original input data closely.

This process of repeated holdout is the basis of k-fold cross-
validation technique. In k-fold cross-validation, the data set is
divided into k-completely distinct or non-overlapping random
partitions called folds.

The value of k> in k-fold cross-validation can be set to any
number. However, there are two approaches which are extremely
popular:

» 10-fold cross-validation (10-fold CV)
 Leave-one-out cross-validation (LOOCV)

10-fold cross-validation is by far the most popular approach.
In this approach, for each of the 10-folds, each comprising of
approximately 10% of the data, one of the folds is used as the test
data for validating model performance trained based on the
remaining 9 folds (or 90% of the data).



This is repeated 10 times, once for each of the 10 folds being used
as the test data and the remaining folds as the training data.

The average performance across all folds is being reported.

k-fold cross-validation.

As can be observed in the figure, each of the circles resembles a
record in the input data set whereas the different colors indicate the
different classes that the records belong to.

The entire data set is broken into ‘k’ folds — out of which one fold is
selected in each iteration as the test data set.

The fold selected as test data set in each of the ‘k’ iterations is
different.

in the input data set, the contiguous circles represented as folds do
not mean that they are subsequent records in the data set.

This is more a virtual representation and not a physical
representation., the records in a fold are drawn by using random
sampling technique.
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Leave-one-out cross-validation (LOOCYV) is an extreme case of
k-fold cross-validation using one record or data instance at a time
as a test data. This is done to maximize the count of data used to
train the model.

. 5.Bootstrap sampling

Bootstrap sampling or simply bootstrapping is a popular way to
identify training and test data sets from the input data set.



It uses the techniqgue of Simple Random Sampling with
Replacement (SRSWR), which is a well-known technique in
sampling theory for drawing random samples.

We have seen earlier that k-fold cross-validation divides the data
into separate partitions — say 10 partitions in case of 10-fold cross-
validation.

Then it uses data instances from partition as test data and the
remaining partitions as training data.

Unlike this approach adopted in case of k-fold cross- validation,
bootstrapping randomly picks data instances from the input data set,
with the possibility of the same data instance to be picked multiple
times.

This essentially means that from the input data set having ‘n’ data
Instances, bootstrapping can create one or more training data sets
having ‘n’ data instances, some of the data instances being repeated
multiple times.

sampling.

This technique is particularly useful in case of input data sets of
small size, i.e. having very less number of data instances.



Input data set
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FIG. 3.4 Bootstrap sampling

CROSS-VALIDATION BOOTSTRAPPING

[tis a special variant of holdout method, called [t uses the technique of Simple Random
repeated holdout. Hence uses stratificd random — Sampling with Replacement (SRSWR), So the
sampling approach (without replacement). same data instance may be picked up multiple

Data setis divided into *k" random partitions, times in a sample.
n

with cach partition confaining approximately P

number of unique data elements, where " is the
total number of data elements and & is the total
number of folds,

The number of possible training/test data samples ~ [n this technique, since elements can be repeated
that can be drawn using this technique is finite. ~ in the sample, possible number of training/test
data samples is unlimited.

. Lazy vs. Eager learner

Eager learning follows the general principles of machine learning —
it tries to construct a generalized, input-independent target function
during the model training phase.

It follows the typical steps of machine learning, i.e. abstraction and
generalization and comes up with a trained model at the end of the

learning phase.



Hence, when the test data comes in for classification, the eager
learner is ready with the model and doesn’t need to refer back to the
training data.

Eager learners take more time in the learning phase than the lazy
learners.

Some of the algorithms which adopt eager learning approach include
Decision Tree, Support Vector Machine, Neural Network, etc.

Lazy learning, on the other hand, completely skips the abstraction
and generalization processes, strictly speaking, lazy learner doesn’t
‘learn’ anything.

It uses the training data in exact, and uses the knowledge to
classify the unlabelled test data.

Since lazy learning uses training data as-is, it is also known as rote
learning (i.e. memorization technique based on repetition).

Due to its heavy dependency on the given training data instance,
it is also known as instance learning. They are also called non-
parametric learning.

Lazy learners take very little time in training because not much of
training actually happens.

One of the most popular algorithm for lazy learning is k-nearest
neighbor.

MODEL REPRESENTATION AND INTERPRETABILITY

. 1.Underfitting



If the target function is kept too simple, it may not be able to capture
the essential nuances and represent the underlying data well.

A typical case of underfitting may occur when trying to represent a
non-linear data with a linear model as demonstrated by both cases

Many times underfitting happens due to unavailability of sufficient
training data.

Underfitting results in both poor performance with training data as
well as poor generalization to test data. Underfitting can be avoided

by

* using more training data
« reducing features by effective feature selection

Over fit
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FIG. 3.5 Underfitting and Overfitting of models

. 2.0verfitting



Overfitting refers to a situation where the model has been designed
in such a way that it emulates the training data too closely.

In such a case, any specific deviation in the training data, like noise
or outliers, gets embedded in the model.

It adversely impacts the performance of the model on the test data.

Overfitting, in many cases, occur as a result of trying to fit an
excessively complex model to closely match the training data. This

The target function, in these cases, tries to make sure all training
data points are correctly partitioned by the decision boundary.

However, more often than not, this exact nature is not replicated in
the unknown test data set.

Hence, the target function results in wrong classification in the test
data set.

Overfitting results in good performance with training data set,

but poor generalization and hence poor performance with test data
set. Overfitting can be avoided by

« using re-sampling techniques like k-fold cross validation

+ hold back of a validation data set

» remove the nodes which have little or no predictive power for the given machine
learning problem.

Both underfitting and overfitting result in poor classification
quality which is reflected by low classification accuracy.

. 3.Bias — variance trade-off



In supervised learning, the class value assigned by the learning
model built based on the training data may differ from the actual
class value.

This error in learning can be of two types —errors due to ‘bias’ and
error due to ‘variance’. Let’s try to understand each of them in
details.

. 1.Errors due to ‘Bias’

Errors due to bias arise from simplifying assumptions made by the
model to make the target function less complex or easier to learn.

In short, it is due to underfitting of the model.

Parametric models generally have high bias making them easier to
understand/interpret and faster to learn.

These algorithms have a poor performance on data sets, which are
complex in nature and do not align with the simplifying assumptions
made by the algorithm. Underfitting results in high bias.

. 2.Errors due to ‘Variance’

Errors due to variance occur from difference in training data sets
used to train the model. Different training data sets (randomly
sampled from the input data set) are used to train

the model.

Ideally the difference in the data sets should not be significant and
the model trained using different training data sets should not be too
different.



However, in case of overfitting, since the model closely matches the
training data, even a small difference in training data gets magnified

in
the model.

High varinnee

Low varinance

High bias

Low bias

FIG. 3.6 Bias-variance trade-off

So, the problems in training a model can either happen because
either (a) the model is too simple and hence fails to interpret the data

grossly or
(b) the model is extremely complex and magnifies even small
differences in the training data.i.e.,
Increasing the bias will decrease the variance, and Increasing the
variance will decrease the bias
On one hand, parametric algorithms are generally seen to
demonstrate high bias but low variance.

On the other hand, non-parametric algorithms demonstrate
low bias and high variance.



model with low bias as well as low variance. However, that may not
be possible in reality.

Hence, the goal of supervised machine learning is to achieve a
balance between bias and variance.

For example, in a popular supervised algorithm k-Nearest
Neighbors or KNN, the user configurable parameter ‘k’ can be used
to do a trade-off between bias and variance.

In one hand, when the value of ‘k’ is decreased, the model
becomes simpler to fit and bias increases. On the other hand, when
the value of ‘k’ is increased, the variance increases.

« EVALUATING PERFORMANCE OF A MODEL

. 1.Supervised learning - classification

In supervised learning, one major task is classification. The
responsibility of the classification model is to assign class label to
the target feature based on the value of the predictor features.

For example, in the problem of predicting the win/loss in a cricket
match, the classifier will assign a class value win/loss to target
feature.

To evaluate the performance of the model, the number of correct
classifications or predictions made by the model has to be recorded.

A classification is said to be correct if, say for example in the given
problem, it has been predicted by the model that the team will win
and it has actually won.



Based on the number of correct and incorrect classifications or
predictions made by a model, the accuracy of the model is
calculated. If 99 out of 100 times the model has classified correctly,
then the model accuracy is said to be 99%.

So, let’s start with looking at model accuracy more closely. And
let’s try to understand it with an example.

There are four possibilities with regards to the cricket match
win/loss prediction:

« the model predicted win and the team won
+ the model predicted win and the team lost
« the model predicted loss and the team won
+ the model predicted loss and the team lost

In this problem, the obvious class of interest is ‘win’.

The first case, i.e. the model predicted win and the team won is
a case where the model has correctly classified data instances as
the class of interest.

These cases are referred as True Positive (TP) cases.

The second case, i.e. the model predicted win and the team lost is
a case where the model incorrectly classified data instances as the
class of interest.

These cases are referred as False Positive (FP) cases.

The third case, i.e. the model predicted loss and the team won is
a case where the model has incorrectly classified as not the class of
interest.

These cases are referred as False Negative (FN) cases.



Actual Outcome

Win

Predicated Outcome

Truec Negative (TN)

False Negative (FN)

FIG. 3.7 Details of model classification

The fourth case, i.e. the model predicted loss and the team lost is
a case where the model has correctly classified as not the class of

interest.

These cases are referred as True Negative (TN) cases. All these

For any classification model, model accuracy is given by total
number of correct classifications (either as the class of interest, i.e.
True Positive or as not the class of interest, i.e. True Negative)

divided by total number of classifications done.
TP + TN

TPF4+FP+FN'+ TN

Model accuracy =

A matrix containing correct and incorrect predictions in the form
of TPs, FPs, FNs and TNs is known as confusion matrix.

The win/loss prediction of cricket match has two classes of
interest — win and loss. For that reason it will generate a 2 x 2
confusion matrix.

For a classification problem involving three classes, the confusion
matrix would be 3 x 3, etc.



Let’s assume the confusion matrix of the win/loss prediction of
cricket match problem to be as below:

ACTUAL WIN ACTUAL LOSS

Predicted Win 85 4
Predicted Loss 2 0

In context of the above confusion matrix, total count of TPs
= 85, count of FPs = 4, count of FNs = 2 and count of TNs = 9.

TP + TN 85+ 9 94

= = = 94y
TP+FP+FN+TN 85+4+2+9 100 ’

- Model accuracy =

The percentage of misclassifications is indicated using
error rate which is measured as

FP + FN
TP + FP + FN + TN

Error rate =

In context of the above confusion matrix,

Error rate = FP+ FN — = 4+2 _.—__ff’.__ﬁcy
“TTP+FP+FN+TN 85+4+2+9 100

= |-Model accuracy

Sometimes, correct prediction, both TPs as well as TNs, may
happen by mere coincidence.

Kappa value of a model indicates the adjusted the model
accuracy. It is calculated using the formula below:

P(a) — P(p,)
I = P(p,)

Kappa value (k) =



P(a) = Proportion of observed agreement between actual and predicted in
overall data set

B TP + TN
TP+ FP + FN + TN

P(p,) = Proportion of expected agreement between actual and predicted data
both in case of class of interest as well as the other classes

B TP + FP ” TP + FN i FN + TN
"TP+FP+FN+TN ~TP+FP+FN+TN ' TP+ FP+FN+ TN
FP + TN

TP+ PP+ FN 4 TN

In context of the above confusion matrix, total count of TPs
= 85, count of FPs = 4, count of FNs = 2 and count of TNs = 9.

TP + TN 85+ 9 04
- Pa) = = = = (94
@ = P rFPrENSIN ®ed+249 100 "
85 +4 85 +2 249 4+9

= X + X
B = v 030 Brd+2+0 44240 Hed+2+0

89 8 1 13 "
= 100 ¥ 1_()6+ I_OT) X T 0.89 x 0.87 + 0.11 X 0.13 = ().7886

0.94 - 07886
k= S =0T

The sensitivity of a model measures the proportion of TP
examples or positive cases which were correctly classified. It is
measured as

TP
TP + FN

Sensitivity =
In the context of the above confusion matrix for the cricket match
win prediction problem,

TP 85 85 .
TP+FN 85+2 &7 =JhT%

Sensitivity =



Sensitivity measure gives the proportion of tumours which are
actually malignant and have been predicted as malignant. A high
value of sensitivity is more desirable than a high value of accuracy.

Specificity is also another good measure to indicate a good
balance of a model being excessively conservative or excessively
aggressive.

Specificity of a model measures the proportion of negative
examples which have been correctly classified.
TN 9 9

Specificity = = = = = 6929
PR "IN+ FP ~9+4 13 :

A higher value of specificity will indicate a better model
performance.

There are two other performance measures of a supervised
learning model which are similar to sensitivity and specificity. These
are precision and recall.

While precision gives the proportion of positive predictions
which are truly positive, recall gives the proportion of TP cases over
all actually positive cases.

TP
TP + FP

Precision indicates the reliability of a model in predicting a class
of interest.

When the model is related to win / loss prediction of cricket,
precision indicates how often it predicts the win correctly.

In context of the above confusion matrix for the cricket match win
prediction problem,

Precision =

TP 8 85
TP+FP 8 +4 89

Precision = = 95.5%



It is quite understandable that a model with higher precision is
perceived to be more reliable.

Recall indicates the proportion of correct prediction of positives
to the total number of positives.
In case of win/loss prediction of cricket, recall resembles what

proportion of the total wins were predicted correctly.
TP

Recall = 5 FN

In the context of the above confusion matrix for the cricket match
win prediction problem,

TP 85 85
Recall = - =2 _ 9779
= TP rEN 85 +2 87 g
. F-measure

F-measure is another measure of model performance which
combines the precision and recall. It takes the harmonic mean of
precision and recall as calculated as

2 X precision X recall
precision + recall

F-measure =

In context of the above confusion matrix for the cricket match win
prediction problem,

2 X 0,955 x 0,977 _ 1.866

= 96.¢
(L.955 + 0.977 1.932 Bk

F-measure =

As a combination of multiple measures into one, F-score gives
the right measure using which performance of different models can
be compared.

* Receiver operating characteristic (ROC) curves



Receiver Operating Characteristic (ROC) curve helps in
visualizing the performance of a classification model.

TP
T Positive Rate TPR = —
rue Fositive ate TP + FN
1 FP
aleps Poae i e —
False Positive Rate FPR FP + TN

In the ROC curve, the FP rate is plotted (in the horizontal axis)
against true positive rate (in the vertical axis) at different
classification thresholds.

the area of the two-dimensional space under the curve extending
from (0, 0) to (1, 1). AUC value ranges from 0 to 1, with an AUC
of less than 0.5 indicating that the classifier has no predictive ability.

classifier 2.

Quite obviously, the AUC of classifier 1 is more than the AUC

of classifier 2. So, we can draw the inference that classifier 1 is better
than classifier 2.
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FIG. 3.8 ROC curve



A quick indicative interpretation of the predictive values from 0.5

to 1.0 is given below:

0.5-0.6 = Almost no predictive ability
0.6 — 0.7 = Weak predictive ability

0.7 — 0.8 = Fair predictive ability

0.8 — 0.9 = Good predictive ability

0.9 — 1.0 = Excellent predictive ability

. Supervised learning —regression

A regression model which ensures that the difference between

prediction solved using linear regression model.

predicted and actual values is low can be considered as a good
model.

If ‘area’ is the predictor variable (say x) and ‘value’ is the target

variable (say y), the linear regression model can be represented in

Vilue of the apartment unit ==

the form:

y=a+pr

Predicted valuce

Auoren (in square Feet) —e

FIG. 3.9 Error — Predicted vs. actual value



For a certain value of x, say X, the value of y is predicted as y
whereas the actual value of y is Y (say).

The distance between the actual value and the fitted or predicted
value, i.e. y is known as residual.

The regression model can be considered to be fitted well if the
difference between actual and predicted value, i.e. the residual value
is less.

R-squared is a good measure to evaluate the model fitness.
It is also known as the coefficient of determination,

or for multiple regression, the coefficient of multiple determination.
The R-squared value lies between 0 to 1 (0%—-100%) with a larger
value representing a better fit. It is calculated as:

58T — SSE

R =
SST

Sum of Squares Total (SST) = squared differences of each

. h— ¥ g _ .
observation from the overall mean :21 =7 where y is the mean.

Sum of Squared Err}?rs (SSE) (of prediction) = sum of the

Yo=ali)t : :
$isquared residuals = ;gu( J) where is the predicted value of yi

and Y; is the actual value of y;

. Unsupervised learning - clustering

Clustering algorithms try to reveal natural groupings amongst the
data sets.



Even if the number of clusters is given, the same number of clusters
can be formed with different groups of data instances.

A clustering algorithm is successful if the clusters identified
using the algorithm is able to achieve the right results in the
overall problem domain.

There are couple of popular approaches which are adopted for
cluster quality evaluation.

* Internal evaluation

In this approach, the cluster is assessed based on the underlying data that was clustered.
The internal evaluation methods generally measure cluster quality based on
homogeneity of data belonging to the same cluster and heterogeneity of data
belonging to different clusters. The homogeneity/heterogeneity is decided by some
similarity measure. For example, silhouette coefficient, which is one of the most
popular internal evaluation methods, uses distance (Euclidean or Manhattan distances
most commonly used) between data elements as a similarity measure. The value of
silhouette width ranges between —1 and +1, with a high value indicating high intra-
cluster homogeneity and inter-cluster heterogeneity.

For a data set clustered into ‘k’ clusters, silhouette width is calculated as:

b(i) — ali)
max {a(i), b(i)}

Silhouette width =

a(i) is the average distance between the i th data instance and all other data instances
belonging to the same cluster and b(i) is the lowest average distance between the
i-the data instance and data instances of all other clusters.

are four clusters namely cluster 1, 2, 3, and 4. Let’s consider an arbitrary data element
‘I’ in cluster 1, resembled by the asterisk. a(i) is the average of the distances ajq, aip,
..., ain1 of the different data elements from

the i th data element in cluster 1, assuming there are n; data elements in
cluster 1. Mathematically,

ay +ap+  + Win,

a(i) = ;
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FIG. 3.10 Silhouette width calculation

In the same way, let’s calculate the distance of an arbitrary data element ‘i’ in cluster
1 with the different data elements from another cluster, say cluster 4 and take an
average of all those distances. Hence,

b(l) + bua(2) + ... + bu(ng)
(ny)

byy(average) =

where ns is the total number of elements in cluster 4. In the same way, we
can calculate the values of by, (average) and bis(average). b (i) is theminimum of all these
values. Hence, we can say that,

b(i) = minimum [b2(average), bi3(average), bis(average)]

« External evaluation
In this approach, class label is known for the data set subjected to clustering. However,
quite obviously, the known class labels are not a part of the data used in clustering.
The cluster algorithm is assessed based on how close the

results are compared to those known class labels. For example, purity is one of the
most popular measures of cluster algorithms — evaluates the extent to which clusters
contain a single class.

For a data set having ‘n’ data instances and ‘c’ known class labels which generates
k> clusters, purity is measured as:

Purity = iz max(k MN¢)
k

* IMPROVING PERFORMANCE OF A MODEL
Model selection is done one several aspects:

» Type of learning the task in hand, i.e. supervised or unsupervised



» Type of the data, i.e. categorical or numeric

» Sometimes on the problem domain

» Above all, experience in working with different models to solve
problems of diverse domains

So, assuming that the model selection is done, what are the
different avenues to improve the performance of models?

One effective way to improve model performance is by tuning
model parameter. Model parameter tuning is the process of
adjusting the model fitting options.

For example, in the popular classification model k-Nearest
Neighbour (KNN), using different values of ‘k’ or the number of
nearest neighbours to be considered, the model can be tuned.

In the same way, a number of hidden layers can be adjusted to
tune the performance in neural networks model. Most machine
learning models have at least one parameter which can be tuned.

As an alternate approach of increasing the performance of one
model, several models may be combined together.
This approach of combining different models with diverse strengths

Ensemble helps in averaging out biases of the different underlying
models and also reducing the variance.

Ensemble methods combine weaker learners to create stronger ones.
A performance boost can be expected even if models are built as
usual and then ensembled. Following are the typical steps in
ensemble process:

Build a number of models based on the training data

For diversifying the models generated, the training data subset can be varied using the
allocation function. Sampling techniques like bootstrapping may be used to generate
unique training data sets.




Alternatively, the same training data may be used but the models combined are quite
varying, e.g, SVM, neural network, kNN, etc.
The outputs from the different models are combined using a combination function.
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FIG. 3.11 Ensemble

One of the earliest and most popular ensemble models is
bootstrap aggregating or bagging.

Bagging uses bootstrap sampling method to generate multiple
training data sets. These training data sets are used to generate (or
train) a set of models using the same learning algorithm.

Then the outcomes of the models are combined by majority voting
(classification) or by average (regression).

Bagging is a very simple ensemble technique which can perform
really well for unstable learners like a decision tree

Just like bagging, boosting is another key ensemble-based
technique.

In this type of ensemble, weaker learning models are trained on
resampled data and the outcomes are combined using a weighted
voting approach based on the performance of different models.

Adaptive boosting or AdaBoost is a special variant of boosting
algorithm. It is based on the idea of generating weak learners and
slowly learning



Random forest is another ensemble-based technique. It is an
ensemble of decision trees — hence the name random forest to
indicate a forest of decision trees.

Part-2

Basics of Feature Engineering

* INTRODUCTION

Modelling alone doesn’t help us to realize the effectiveness of
machine learning as a problem- solving tool. So we also learnt how
to measure the effectiveness of machine learning models in solving
problems.

We need to touch upon another key aspect which plays a critical
role in solving any machine learning problem — feature engineering.

Feature engineering is a critical preparatory process in machine
learning.

It is responsible for taking raw input data and converting that to
well-aligned features which are ready to be used by the machine
learning models.

. What is a feature?

A feature is an attribute of a data set that is used in a machine
learning process.



The features in a data set are also called its dimensions. So a data
set having ‘n’ features is called an n-dimensional data set.

Let’s take the example of a famous machine learning data set, Iris,
introduced by the British statistician and biologist Ronald Fisher,

It has five attributes or features namely Sepal.Length,
Sepal.Width, Petal.Length, Petal. Width and Species.

Out of these, the feature ‘Species’ represent the class variable and
the remaining features are the predictor variables. It is a five-
dimensional data set.

Sepal.length  Sepal.Width  Petal.length  Petal Width Species

6.7 33 57 25 Virginica
49 3 14 0.2 Setosa

55 26 44 1.2 Versicolor
0.8 32 59 23 Virginica
55 235 4 1.3 Versicolor
3l 33 14 0.2 Selosa

6.1 3 46 1.4 versicolor

FIG. 4.1 Data set features

. What is feature engineering?

Feature engineering refers to the process of translating a data set into
features such that these features are able to represent the data set
more effectively and result in a better learning performance.

Feature engineering is an important pre-processing step for
machine learning. It has two major elements:

» feature transformation
» feature subset selection



Feature transformation transforms the data — structured or
unstructured, into a new set of features which can represent the
underlying problem which machine learning is trying to solve.

There are two variants of feature transformation:

» feature construction
» feature extraction

Both are sometimes known as feature discovery.

Feature construction process discovers missing information about
the relationships between features and augments the feature space
by creating additional features.

Hence, if there are ‘n’ features or dimensions in a data set, after
feature construction ‘m’ more features or dimensions may get added.

So at the end, the data set will become ‘n + m’ dimensional.

Feature extraction is the process of extracting or creating a new set
of features from the original set of features using some functional

mapping.

Unlike feature transformation, in case of feature subset selection
(or simply feature selection) no new feature is generated.

The objective of feature selection is to derive a subset of features
from the full feature set which is most meaningful in the context of
a specific machine learning problem.

So, essentially the job of feature selection is to derive a subset F;
(F1, Fo, ..., Fm) of Fi (F1, Fo, ..., Fn), where m < n, such that Fj is
most meaningful and gets the best result for a machine learning
problem.



FEATURE TRANSFORMATION

Engineering a good feature space is a crucial prerequisite for the
success of any machine learning model.

However, often it is not clear which feature is more important.

For that reason, all available attributes of the data set are used as
features and the problem of identifying the important features is left
to the learning model.

This is definitely not a feasible approach, particularly for certain
domains e.g. medical image classification, text categorization, etc.

To deal with this problem, feature transformation comes into play.

Feature transformation is used as an effective tool for
dimensionality reduction and hence for boosting learning model
performance. Broadly, there are two distinct goals of feature
transformation:

Achieving best reconstruction of the original features in the data set Achieving
highest efficiency in the learning task

. 1.Feature construction

Feature construction involves transforming a given set of input
features to generate a new set of more powerful features.

let’s take the example of a real estate data set having details of all
apartments sold in a specific region.

The data set has three features — apartment length, apartment
breadth, and price of the apartment. If it is used as an input to a



regression problem, such data can be training data for the regression
model.

So given the training data, the model should be able to predict the
price of an apartment whose price is not known or which has just
come up for sale.

However, instead of using length and breadth of the apartment as
a predictor, it is much convenient and makes more sense to use the
area of the apartment, which is not an existing feature of the data set.

So such a feature, namely apartment area, can be added to the data
set.

In other words, we transform the three-dimensional data set to a
four-dimensional data set, with the newly ‘discovered’ feature
apartment area being added to the original data set. This is depicted

apartment_ apartment_ apartment_ apartment_ apartment_ apartment_ apartment_
length breadth price length breadth area price
§i 3 23.60.000 sl 50 4,720 23,60,000
34 45 12,135,000 54 43 2430 12,15.000
78 56 21,84,000 _) 7 56 4368 2184000
03 h3 19,54, (M0 (%] H3 3069 19,584,500
83 it 30,71.000 83 b 6,142 30,71.000
92 86 39,356,000 9 86 1912 39,56,000

FIG. 4.2 Feature construction (example 1)

There are certain situations where feature construction is an
essential activity before we can start with the machine learning task.
These situations are

when features have categorical value and machine learning needs numeric value
inputs

when features having numeric (continuous) values and need to be converted to
ordinal values



when text-specific feature construction needs to be done

. 2.Encoding categorical (nominal) variables

Let’s take the example of another data set on athletes, as presented

The data set has features age, city of origin, parents athlete (i.e.
indicate whether any one of the parents was an athlete) and Chance
of Win.

The feature chance of a win is a class variable while the others are
predictor variables.

Any machine learning algorithm, whether it’s a classification
algorithm (like KNN) or a regression algorithm, requires numerical
figures to learn from.

So there are three features — City of origin, Parents athlete, and
Chance of win, which are categorical in nature and cannot be used
by any machine learning task.

In this case, feature construction can be used to create new
dummy features which are usable by machine learning algorithms.

Since the feature ‘City of origin’ has three unique values namely
City A, City B, and City C, three dummy features namely origin_
city A, origin_city B, and origin_city C is created.

In the same way, dummy features parents_athlete Y and
parents athlete N are created for feature ‘Parents athlete’ and
win_chance Y and win_chance N are created for feature ‘Chance
of win’.

The dummy features have value 0 or 1 based on the categorical
value for the original feature in that row. For example, the second
row had a categorical value ‘City B’ for the feature ‘City of origin’.



So, the newly created features in place of ‘City of origin’, i.e.
origin_city A, origin_city B and origin_city C will have values 0,
1 and 0, respectively.

In the same way, parents_athlete Y and parents_athlete N will
have values 0 and 1, respectively in row 2 as the original feature
‘Parents athlete’ had a categorical value ‘No’ in row 2. The entire

Age (Years) City of origin Parentsathlete ~ Chance of win

I8 City A Yes Y

0 CiyB No Y

i City B Yes Y

9 CiyA No N

8 Ciy C Yes N

n City B Yes Y

(@)
origin,  origin_  origin_  parents_  parents_ win_ win_
Age (Years)  city A city B ¢ty € athlete Y athlete N chance Y chance N

1§ | 0 0 I f) | ]
N ] ] 0 ] | | (
3 0 | ) | ] | (
19 I 0 0 0 | fl |
18 0 0 | l 0 0 I
n 0 | () | f) I {l

(b)

Age (Years) origin_city A origin_city_B origin_city C  parents_athlete Y  win_chance_Y

I8 l 0 0 | |
gl 0 I 0 0 I

il

FIG. 4.3 Feature construction (encoding nominal variables)



We see that the features ‘Parents athlete’ and ‘Chance of win’ in
the original data set can have two values only.

So creating two features from them is a kind of duplication, since
the value of one feature can be decided from the value of the other.

To avoid this duplication, we can just leave one feature and

. 3.Encoding categorical (ordinal) variables

Let’s take an example of a student data set. Let’s assume that there
are three variable — science marks, maths marks and grade as shown

As we can see, the grade is an ordinal variable with values A, B, C,
and D.

To transform this variable to a numeric variable, we can create a
feature num_grade mapping a numeric value against each ordinal
value.

In the context of the current example, grades A, B, C, and D in

marks_science marks_maths Grade marks_science marks_maths num_grade
78 75 B Ih] 73 2
36 62 C 36 62 3
87 a() A 87 ) 1
9l 03 A 91 03 1
45 42 D 45 42 4
(2 57 B 2 57 2

(a) (b)

FIG. 4.4 Feature construction (encoding ordinal variables)



. 4. Transforming numeric (continuous) features
to categorical features

Sometimes there is a need of transforming a continuous numerical
variable into a categorical variable.

For example, we may want to treat the real estate price prediction
problem, which is a regression problem, as a real estate price
category prediction, which is a classification problem.

In that case, we can ‘bin’ the numerical data into multiple categories
based on the data range. The numerical feature apartment_price as

. 5.Text-specific feature construction

In the current world, text is arguably the most predominant medium
of communication.

Whether we think about social networks like Facebook or micro-
blogging channels like Twitter or emails or short messaging services
such as Whatsapp, text plays a major role in the flow of information.

Hence, text mining is an important area of research — not only for
technology practitioners but also for industry practitioners.

All machine learning models need numerical data as input. So the
text data in the data sets need to be transformed into numerical
features.



apartment_area apartment_price apartment_area apartment_grade

4720 23,60,000 4,720 Medium
2430 12.15,000 2,430 Low
4,368 21.84.000 4,368 Medium
3.909 19.84.500 3.969 Low
6,142 30,71,000 6,142 High
T2 39.56,000 7912 High

(a) (b)

apartment_area apartment_grade

4,720 2
2430 1
4,368 2
3,969 |
6,142 3
7912 3

(e}

FIG. 4.5 Feature construction (numeric to categorical)

Text data, or corpus which is the more popular keyword, is
converted to a numerical representation following a process is
known as vectorization.

In this process, word occurrences in all documents belonging to
the corpus are consolidated in the form of bag-of-words. There are
three major steps that are followed:

» tokenize
» count
* normalize

In order to tokenize a corpus, the blank spaces and punctuations
are used as delimiters to separate out the words, or tokens.

Then the number of occurrences of each token is counted, for each
document. Lastly, tokens are weighted with

reducing importance when they occur in the majority of the
documents.



A matrix is then formed with each token representing a column and
a specific document of the corpus representing each row.

Each cell contains the count of occurrence of the token in a specific
document.

This matrix is known as a document-term matrix (also known as a
term-document matrix).

an input to a machine learning model.

This House Build Feeling Well Theatre Movie Good Lonely

2 1 1 0 0 1 1 | 0
0 0 0 I I 0 0 {} ]
l 0 0 2 | I 0 0 |
0 0 0 0 | 0 1 | 0

FIG. 4.6 Feature construction (text-specific)

. Feature extraction

In feature extraction, new features are created from a combination
of original features. Some of the commonly used operators for
combining the original features include

» For Boolean features: Conjunctions, Disjunctions, Negation, etc.

» For nominal features: Cartesian product, M of N, etc.

 For numerical features: Min, Max, Addition, Subtraction,
Multiplication, Division, Average, Equivalence, Inequality, etc.

Let’s take an example and try to understand. Say, we have a data
set with a feature set Fi (F1, Fo, ..., Fn). After feature extraction using
a mapping function f (Fy, Fo, ..., Fn) say, we



Fi(Fy, By, ..., F )Fi = fiF)will have a set of features  such that

4.7
Feat, Featy Feat, Feat, Feat, Feat,
34 34.5 23 233 41.25 185.80
44 45.56 1 344 54.20 53.12
78 22.59 21 4.5 _) 4373 35.79
22 65.22 1 3223 65.30 264.10
22 338 355 45.2 3702 238.42

11 122,32 63 23.2 113.39 16774

Feat; = 0.3 % Featy, + 0.9 X Featy
Feat, = Feat, + 0.5 Featg + 0.6 X Feate

FIG. 4.7 Feature extraction

The most popular feature extraction algorithms used in machine
learning are:

. 1.Principal Component Analysis

Every data set, has multiple attributes or dimensions — many of
which might have similarity with each other.

For example, the height and weight of a person, in general, are quite
related.

If the height is more, generally weight is more and vice versa.

In general, any machine learning algorithm performs better as the
number of related attributes or features reduced.

In other words, a key to the success of machine learning lies in the
fact that the features are less in number as well as the similarity
between each other is very less.



This is the main guiding philosophy of principal component analysis
(PCA) technique of feature extraction.

In PCA, a new set of features are extracted from the original
features which are quite dissimilar in nature.

So an n-dimensional feature space gets transformed to an m-
dimensional feature space, where the dimensions are orthogonal to
each other, i.e. completely independent of each other.

To understand the concept of orthogonality, we have to step back
and do a bit of dip dive into vector space concept in linear algebra.

We all know that a vector is a quantity having both magnitude and
direction and hence can determine the position of a point relative to
another point in the Euclidean space (i.e. a two or three or ‘n’
dimensional space).

A vector space is a set of vectors. Vector spaces have a property
that they can be represented as a linear combination of a smaller set
of vectors, called basis vectors. So, any vector ‘v’ in a vector space
can be represented as

where, aj represents ‘n’ scalars and u; represents the basis vectors.
Basis vectors are orthogonal to each other.
Orthogonality of vectors in n-dimensional vector space can be
thought of an extension of the vectors being perpendicular in a two-
dimensional vector space.

Two orthogonal vectors are completely unrelated or independent of
each other. So the transformation of a set of vectors to the
corresponding set of basis vectors such that each vector in the
original set can be expressed as a linear combination of basis vectors



helps in decomposing the vectors to a number of independent
components.

The feature vector can be transformed to a vector space of the
basis vectors which are termed as principal components.

These principal components, just like the basis vectors, are
orthogonal to each other. So a set of feature vectors which may have
similarity with each other is transformed to a set of principal
components which are completely unrelated.

However, the principal components capture the variability of the
original feature space. Also, the number of principal component
derived, much like the basis vectors, is much smaller than the
original set of features.

The objective of PCA is to make the transformation in such a way
that

» The new features are distinct, i.e. the covariance between the new features,
i.e. the principal components is 0.

 The principal components are generated in order of the variability in the data that
it captures. Hence, the first principal component should capture the maximum
variability, the second principal component should capture the next highest
variability etc.

» The sum of variance of the new features or the principal components should
be equal to the sum of variance of the original features.

PCA works based on a process called eigenvalue decomposition
of a covariance matrix of a data set. Below are the steps to be
followed:

» First, calculate the covariance matrix of a data set.

» Then, calculate the eigenvalues of the covariance matrix.

» The eigenvector having highest eigenvalue represents the direction in which
there is the highest variance. So this will help in identifying the



first principal component.

» The eigenvector having the next highest eigenvalue represents the direction in
which data has the highest remaining variance and also orthogonal to the first
direction. So this helps in identifying the second principal component.

* Like this, identify the top ‘k’ eigenvectors having top ‘k’ eigenvalues so as to get
the ‘K’ principal components.

. 2.Singular value decomposition

Singular value decomposition (SVD) is a matrix factorization
technique commonly used in linear algebra. SVD of a matrix A (m
x n) is a factorization of the form:

A=USV

where, U and V are orthonormal matrices, U isan m X m unitary
matrix, V is an n x n unitary matrix and X is an m x n rectangular
diagonal matrix. The diagonal entries of £ are known as singular
values of matrix A. The columns of U and V are called the left-
singular and right-singular vectors of matrix A, respectively.

SVD is generally used in PCA, once the mean of each variable
has been removed. Since it is not always advisable to remove the
mean of a data attribute, especially when the data set is sparse (as in
case of text data), SVD is agood choice for dimensionality reduction
in those situations.

SVD of a data matrix is expected to have the properties
highlighted below:

« Patterns in the attributes are captured by the right-singular vectors, i.e. the
columns of V.

+ Patterns among the instances are captured by the left-singular, i.e. the columns
of U.

« Larger a singular value, larger is the part of the matrix A that it accounts for and
its associated vectors.
» New data matrix with ‘k’ attributes is obtained using the equation



"=Dx|[v
D [1,V2,...,Vk]

Thus, the dimensionality gets reduced to k
SVD is often used in the context of text data.

. 3.Linear Discriminant Analysis

Linear discriminant analysis (LDA) is another commonly used
feature extraction technique like PCA or SVD.

The objective of LDA is similar to the sense that it intends to
transform a data set into a lower dimensional feature space.

However, unlike PCA, the focus of LDA is not to capture the data
set variability.

Instead, LDA focuses on class separability, i.e. separating the
features based on class separability so as to avoid over-fitting of the
machine learning model.

Unlike PCA that calculates eigenvalues of the covariance matrix
of the data set, LDA calculates eigenvalues and eigenvectors within
a class and inter-class scatter matrices. Below are the steps to be
followed:

» Calculate the mean vectors for the individual classes.

» Calculate intra-class and inter-class scatter matrices.
. . -1and S
. Calculate eigenvalues and eigenvectors for Sy B, where Sw is

the intra-class scatter matrix and Sg js the inter-class scatter matrix

Sw= 2:= |S4i:

] T
Si= > (x—=m)(x—m)

YEN

where, mj js the mean vector of the i-th class
£ &
Sg = 2 N; (m;—m) (m;— m)

=1



where, mi is the sample mean for each class, m is the overall mean of the data
set, Ni is the sample size of each class
+ ldentify the top ‘k’ eigenvectors having top ‘k’ eigenvalues

FEATURE SUBSET SELECTION

Feature selection is arguably the most critical pre-processing
activity in any machine learning project.

It intends to select a subset of system attributes or features which
makes a most meaningful contribution in a machine learning
activity.

Let’s quickly discuss a practical example to understand the
philosophy behind feature selection.

Say we are trying to predict the weight of students based on past
information about similar students, which is captured in a ‘student
weight’ data set.

The student weight data set has features such as Roll Number, Age,
Height, and Weight.

Roll number can have no bearing, whatsoever, in predicting student
weight. So we can eliminate the feature roll number and build a
feature subset to be considered in this machine learning problem.
The subset of features is expected to give better results than the full

Roll Number Age Height Weight Age Height Weight
12 12 1.1 23 12 L1 23
14 I 103 216 I 105 21,6
19 13 1.2 247 13 12 4.7
32 1 107 213 ﬁ 1 LO7 21.3
38 14 1.24 232 14 1.24 25.2
45 12 1.12 234 12 112 234

FIG. 4.8 Feature selection



The issues which have made feature selection such a relevant
problem to be solved are

. 1.Issues in high-dimensional data

With the rapid innovations in the digital space, the volume of data
generated has increased to an unbelievable extent.

At the same time, breakthroughs in the storage technology area
have made storage of large quantity of data quite cheap.

This has further motivated the storage and mining of very large and
high-dimensionality data sets.

Alongside, two new application domains have seen drastic
development.

One is that of biomedical research, which includes gene selection
from microarray data.

The other one is text categorization which deals with huge
volumes of text data from social networking sites, emails, etc.

The first domain, i.e. biomedical research generates data sets
having a number of features in the range of a few tens of thousands.

The text data generated from different sources also have
extremely high dimensions.

In a large document corpus having few thousand documents
embedded, the number of unique word tokens which represent the
feature of the text data set, can also be in the range of a few tens of
thousands.

To get insight from such high-dimensional data may be a big
challenge for any machine learning algorithm.

On one hand, very high quantity of computational resources and
high amount of time will be required.



On the other hand the performance of the model —both for
supervised and unsupervised machine learning task, also degrades
sharply due to unnecessary noise in the data.

Also, a model built on an extremely high number of features may
be very difficult to understand.
For this reason, it is necessary to take a subset of the features instead

of the full set.

The objective of feature selection is three-fold:

Having faster and more cost-effective (i.e. less need for computational resources)
learning model

Improving the efficiency of the learning model

Having a better understanding of the underlying model that generated the data

. Key drivers of feature selection — feature relevance
and redundancy

. 1.Feature relevance

In supervised learning, the input data set which is the training data
set, has a class label attached.

A model is inducted based on the training data set — so that the
inducted model can assign class labels to new, unlabelled data.

Each of the predictor variables, is expected to contribute
information to decide the value of the class label.

In case a variable is not contributing any information, it is said to
be irrelevant.

In case the information contribution for prediction is very little, the
variable is said to be weakly relevant.



Remaining variables, which make a significant contribution to the
prediction task are said to be strongly relevant variables.

In unsupervised learning, there is no training data set or labelled
data.

Grouping of similar data instances are done and similarity of data
instances are evaluated based on the value of different variables.

Certain variables do not contribute any useful information for
deciding the similarity of dissimilarity of data instances.

Hence, those variables make no significant information
contribution in the grouping process.

These variables are marked as irrelevant variables in the context
of the unsupervised machine learning task.

Let take a simple example of the student data set. Roll number of
a student doesn’t contribute any significant information in
predicting what the Weight of a student would be.

Similarly, if we are trying to group together students with similar
academic capabilities,

Roll number can really not contribute any information
whatsoever.

So, in context of the supervised task of predicting student Weight
or the unsupervised task of grouping students with similar academic
merit, the variable Roll number is quite irrelevant.

Any feature which is irrelevant in the context of a machine
learning task is a candidate for rejection when we are selecting a
subset of features.

. 2.Feature redundancy

A feature may contribute information which is similar to the
information contributed by one or more other features.



For example, in the weight prediction, both the features Age and
Height contribute similar information. This is because with an
increase in Age,

Weight is expected to increase. Similarly, with the increase of
Height also Weight is expected to increase.

Also, Age and Height increase with each other.

So, in context of the Weight prediction problem, Age and Height
contribute similar information.

when one feature is similar to another feature, the feature is said to
be potentially redundant in the context of the learning problem.

All features having potential redundancy are candidates for
rejection in the final feature subset.

Only a small number of representative features out of a set of
potentially redundant features are considered for being a part of the
final feature subset.

The main objective of feature selection is to remove all features
which are irrelevant and take a representative subset of the features
which are potentially redundant.

This leads to a meaningful feature subset in context of a specific
learning task.

. Measures of feature relevance and redundancy

. 1.Measures of feature relevance

Feature relevance is to be gauged by the amount of information
contributed by a feature.

For supervised learning, mutual information is considered as a good
measure of information contribution of a feature to decide the value
of the class label.



That’s why it is a good indicator of the relevance of a feature with
respect to the class variable.

Higher the value of mutual information of a feature, more relevant
Is that feature. Mutual information can be calculated as follows:

MI(C, f) = H(C) + H(f) - H(C, f)

where, marginal entropy of the class, H(C) =
- Z;‘u 1 p(Ci)log 2 p(Cy)

marginal entropy of the feature ‘x’, H(f) =
=2 p(f = x)logp(f = x)

and K = number of classes, C = class variable, f = feature set that
take discrete values.

In case of unsupervised learning, there is no class variable.

In case of unsupervised learning, the entropy of the set of features
without one feature at a time is calculated for all the features.
Then, the features are ranked in a descending order of information gain from

a feature and top ‘B’ percentage (value of ‘B’ is a design parameter of the
algorithm) of features are selected as relevant features.

The entropy of a feature fis calculated using Shannon’s formula below:

H(f) = =3 _p(f = 0)log,p(f = x)

>

~1s used only for features that take discrete values. For



continuous features, it should be replaced by discretization
performed first to estimate probabilities p(f = x).

. 2.Measures of Feature redundancy

Feature redundancy, as we have already discussed, is based on
similar information contribution by multiple features. There are
multiple measures of similarity of information contribution, salient
ones being

» Correlation-based measures
» Distance-based measures, and
» Other coefficient-based measure

» a.Correlation-based similarity measure

Correlation is a measure of linear dependency between two random
variables. Pearson’s product moment correlation coefficient is one
of the most popular and accepted measures of correlation between
two random variables. For two random feature variables F1 and F,
Pearson correlation coefficient is defined as:

cov(F,, )
a po—dg
Vvar(F,).var(F,)

cov(Fi, B) = D (F, = F).(B, — F)

== = ]
var(F;) = > (F, — F})’, where F; = ;‘EFL

— - |
var(F) = D (F, — F5 )’ where F; = ;-E&

Correlation values range between +1 and —1. A correlation of 1 (+
/ —) indicates perfect correlation, i.e. the two features having a
perfect linear relationship. In case the correlation is 0, then the
features seem to have no linear relationship.



Generally, for all feature selection problems, a threshold value is
adopted to decide whether two features have adequate similarity or
not.

» b.Distance-based similarity measure

The most common distance measure is the Euclidean distance,
which, between two features F1 and F» are calculated as:

d(Fy, F) =

z] (F-F)

where F1 and F, are features of an n-dimensional data set. Refer
to the Figure 4.9.

The data set has two features, aptitude (F1) and communication
(F2) under consideration. The Euclidean distance between the
features has been calculated using the formula provided above.

Aptitude (F,) Communication (F,) (h-F) (F, - K)"2
? 6 4 16
3 55 25 6.25
6 4 2 4
7 25 45 2025
8 3 5 %
6 55 05 025
6 7 _ 1
7 6 | 1
8 ' 2 4
9 2 4

8LT5

FIG. 4.9 Distance calculation between features

A more generalized form of the Euclidean distance is the
Minkowski distance, measured as



M r
diF.B) =\ > (F, - B)
i=1

Minkowski distance takes the form of Euclidean distance (also
called L, norm) whenr = 2,

At r =1, it takes the form of Manhattan distance (also called L;
norm), as shown below:

"
d(F, B) = S|F, - B)
i=1

A specific example of Manhattan distance, used more frequently
to calculate the distance between binary vectors is the Hamming
distance. For example, the Hamming distance

between two vectors 01101011 and 11001001 is 3, as illustrated in
Figure 4.10a.

« Other similarity measures

1. Jaccard index/coefficient is used as a measure of similarity
between two features. The Jaccard distance, a measure of
dissimilarity between two features, is complementary of Jaccard
index.



0 1 1 0 1 V] 1 1

(¢} SMC measurement

FIG. 4.10 Distance measures between features

For two features having binary values, Jaccard index is measured
as

L

Ay + Mg + Ay

where, n11 = number of cases where both the features have value
1

No1 = number of cases where the feature 1 has value 0 and feature
2 has value 1

Nnio = number of cases where the feature 1 has value 1 and feature
2 has value 0

Jaccard distance, d;=1-J



Let’s consider two features F1 and F> having values (0, 1, 1, 0, 1,
identification of the values of ni1, no1 and nloAsshown the cases
where both the values are 0 have been left out without border — as
an indication of the fact that they will be excluded in the calculation
of Jaccard coefficient.

Jaccard coefficient of F; and Fy, J =

AR 2 2
= = —or (4.
gy + R + My 1+2+2 5

]
- Jaccard distance between F1and Fo, d;=1-J =2 or 0.6.

2.Simple matching coefficient (SMC) is almost same as Jaccard
coeficient except the fact that it includes a number of cases where
both the features have a value of 0.

.”]] - H"u.
Nopg + Ay + Mgy + 1y

SMC =

where, ni11 = number of cases where both the features have value 1

noz = number of cases where the feature 1 has value 0 and feature 2
has value 1

nio = number of cases where the feature 1 has value 1 and feature 2
has value 0

Noo = number of cases where both the features have value 0 Quite

understandably, the total count of rows, n = noo + Noz



included in the calculation of SMC.

nyy + Ay 2 +3 =£[‘.-rﬂ‘3

SSMCof Fyand F; = =
PG e Id“d : Hog + R + My + My 31424 2 2

One more measure of similarity using similarity coefficient
calculation is Cosine Similarity.

Let’s take the example of a typical text classification problem.
The text corpus needs to be first transformed into features with a
word token being a feature and the number of times the word occurs
in a document comes as a value in each row.

There are thousands of features in such a text data set.

Also, considering the sparsity of the data set, the 0-0 matches
(which obviously is going to be pretty high) need to be ignored.
Cosine similarity which is one of the most popular measures in text
classification is calculated as:

Xy

x-1y1

cos (x, y) =

H

> i-*¥avhere, x.y = vector dot product of x and y =

2. _dand [yl =\ Xy

Let’s calculate the cosine similarity of x and y, where x = (2, 4, 0,
0,2,1,30,0andy=(2,1,0,0,3,2,1,0,1).

In this case, X.y =2*2 + 4*1 + 0*0 + 0*0 + 2*3 + 1*2 + 3*1 + 0*0 +
0*1=19



2

Il = VE+£+ 0+ 0%+ 22 + 1

-3

+3+ 07+ 07 = V34 = 583

[B¥]

l=VZ+ P+ 02 +02+37+ 2+ 12+ 0P+ 12 =V =447

19
scos(x,y) = S8344T 0.729

 Hence, if cosine similarity has a value 1, the angle between x and
y is 0° which means x and y are same except for the magnitude.

« If cosine similarity is O, the angle between x and y is 90°. Hence,
they do not share any similarity (in case of text data, no term/word
is common). In the above example, the angle comes to be 43.2°.

x

FIG. 4.11 Cosine similarity

. Overall feature selection process

Feature selection is the process of selecting a subset of features in a
data set.

consists of four steps:

 generation of possible subsets

* subset evaluation

« stop searching based on some stopping criterion
+ validation of the result



Full feature set Subset Subset Subsei
e e -
Generation Evaluation

[ :
Gioodness

of subset

No Result

Validation

Stopping
criterion

FIG. 4.12 Feature selection process

Subset generation, which is the first step of any feature selection
algorithm, is a search procedure which ideally should produce all
possible candidate subsets.

However, for an n-dimensional data set, 2" subsets can be
generated. So, as the value of ‘n’ becomes high, finding an optimal
subset from all the 2" candidate subsets becomes intractable.

For that reason,different approximate search strategies are
employed to find candidate subsets for evaluation.

On one hand, the search may start with an empty set and keep
adding features. This search strategy is termed as a sequential
forward selection.

On the other hand, a search may start with a full set and
successively remove features.

This strategy is termed as sequential backward elimination. In
certain cases, search start with both ends and add and remove
features simultaneously.

This strategy is termed as a bi-directional selection.

Each candidate subset is then evaluated and compared with the
previous best performing subset based on certain evaluation
criterion. If the new subset performs better, it replaces the previous
one.



This cycle of subset generation and evaluation continues till a pre-
defined stopping criterion is fulfilled. Some commonly used
stopping criteria are

the search completes

» some given bound (e.g. a specified number of iterations) is reached
subsequent addition (or deletion) of the feature is not producing a better subset
+ a sufficiently good subset (e.g. a subset having better classification
accuracy than the existing benchmark) is selected

Then the selected best subset is validated either against prior
benchmarks or by experiments using real-life or synthetic but
authentic data sets.

In case of supervised learning, the accuracy of the learning model
may be the performance parameter considered for validation.

The accuracy of the model using the subset derived is compared
against the model accuracy of the subset derived using some other
benchmark algorithm.

In case of unsupervised, the cluster quality may be the parameter
for validation.

. Feature selection approaches

There are four types of approach for feature selection:

Filter approach

« Worapper approach
Hybrid approach
Embedded approach

Is selected based on statistical measures done to assess the merits of
the features from the data perspective.



No learning algorithm is employed to evaluate the goodness of
the feature selected. Some of the common statistical tests conducted
on features as a part of filter approach are —Pearson’s correlation,
information gain, Fisher score, analysis of variance (ANOVA), Chi-
Square, etc.

Full feature set

Select best Optimal feature | Learning Performance .

subset siibsat | Algorithm I

FIG. 4.13 Filter approach

In the wrapper approach (as depicted in Fig. 4.14),

identification of best feature subset is done using the induction
algorithm as a black box.

The feature selection algorithm searches for a good feature subset
using the induction algorithm itself as a part of the evaluation
function.

Since for every candidate subset, the learning model is trained
and the result is evaluated by running the learning algorithm,
wrapper approach is computationally very expensive. However, the
performance is generally superior compared to filter approach.

Selecting the best subset OPIE"""‘“ feature
' subset
; Generate a Feature suhsel___ Learning ' Performance
Full feature set | subset Algorithm : -

FIG. 4.14 Wrapper approach

Hybrid approach takes the advantage of both filter and wrapper
approaches.



A typical hybrid algorithm makes use of both the statistical tests
as used in filter approach to decide the best subsets for a given
cardinality and a learning algorithm to select the final best subset
among the best subsets across different cardinalities.

wrapper approach as it also uses and inductive algorithm to evaluate
the generated feature subsets. However, the difference is it performs
feature selection and classification simultaneously.

Selecting the best subset

Generate 2 Feature subset Le“':“'“ﬂ
: : subset = Alporithm +
Full feature set ool

FIG. 4.15 Embedded approach

* Important Points to Remember

A feature is an attribute of a data set that is used in a machine learning process.
Feature engineering is an important pre-processing step for machine learning,
having two major elements:

« feature transformation
» feature subset selection

Feature transformation transforms data into a new set of features which can represent the
underlying machine learning problem
There are two variants of feature transformation:

» feature construction
» feature extraction



Feature construction process discovers missing information about the relationships
between features and augments the feature space by creating additional features.
Feature extraction is the process of extracting or creating a new set of features

from the original set of features using some functional mapping. Some popular
feature extraction algorithms used in machine learning:

* Principal Component Analysis (PCA)
« Singular Value Decomposition (SVD)
 Linear Discriminant Analysis (LDA)

Feature subset selection is intended to derive a subset of features from the full
feature set. No new feature is generated.
The objective of feature selection is three-fold:

» Having faster and more cost-effective (i.e. less need for
computational resources) learning model

* Improving the efficiency of the learning model

» Having a better understanding of the underlying model that
generated the data
Feature selection intends to remove all features which are irrelevant and
take a representative subset of the features which are potentially
redundant. This leads to a meaningful feature subset in context of a
specific learning task.

Feature relevance is indicated by the information gain from a feature measured

in terms of relative entropy.

Feature redundancy is based on similar information contributed by multiple features
measured by feature-to-feature:

 Correlation

+ Distance (Minkowski distances, e.g. Manhattan, Euclidean, etc. used as
most popular measures)

+ Other coefficient-based (Jaccard, SMC, Cosine similarity, etc.)

Main approaches for feature selection are

* Filter
» Wrapper
* Hybrid
Embedded



» Jaccard coefficient vs. SMC
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