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Introduction to Machine Learning:

Machine learning is the practice of programming computers to
learn from data. The program will easily be able to
determine if given are important or spam.

ML is defined as a discipline of AI (Artificial Intelligence) that
provides machines the ability to automatically learn from
data and past experiences to identify patterns and make
predictions with minimal human intervention.

It uses computer algorithms and classifiers that improve their
efficiency automatically through experience.

It is an application of AI that enables systems to learn from vast
volumes of data and solve specific problems.

What is learning?

It is a process by which a system improves performance (P) from
experience (E) at some specific task (T).

Example: A well-defined learning task is given by ⟨P, T, E⟩.

How does ML work?

A machine learning system learns from historical data, builds the
prediction models, and whenever it receives new data, predicts
the output for it.

Flow chart:

Past Data → Process & Analyze Data → Create Models



The below block diagram explains the working of ML algorithm:

Why ML (or Need for Machine Learning):
The need for ML is increasing day by day. The reason behind

the need for ML is that it is capable of doing tasks that are
too complex for a person to implement directly.

As a human, we have some limitations as we cannot access the
huge amount of data manually. So for this, we need some
computer systems and here comes the ML to make things
easy for us.



Evolution of Machine Learning:

1.The birth of ML(1950):
Before 1950, there was a lot of research and theoretical studies
for machine learning, but the year 1950 is marked as the real birth
of machine learning.

“Alan Turing” the famous mathematician,researcher,

Computer genius submitted a paper called “imitation game” and
made the world astonished.

2)1951 - First Neural Network:
The very first neural network was made by "Marvin Minsky with
Dean Edmonds in 1951. Neural networks connect the thinking
process of machines and computers.

3)1974 - Naming of Machine Learning:
It was 1974, the year coined the name for ML from the proposed
words like Informatics, Computational Intelligence, and Artificial
Intelligence.

4)1996 - Game Changer:IBM's Deep Blue computer beat the
world-famous champion Garry Kasparov in chess. This proved that
machines can also think like humans.

5)ML at Present:



It is now responsible for some of the most significant
advancements in technology. It is being used for the new industry
of "self-driving vehicles".

Some of the most trending real-world applications of
ML at present are:

Image Recognition

Speech Recognition

Traffic Prediction

Product Recommendations

Email Spam & Malware Filtering

Self driving cars

Online fraud detection etc.



Paradigms (or) Types of ML Analysis (or) Taxonomy of
ML

1.ML is divided into three primary learning model approaches:
 Supervised
 Unsupervised
 Reinforcement

2. Each model differs in training. Each has its strengths and faces
different tasks or problems.

3. When choosing an ML model to deploy, an organization needs
to understand the available data and the problem to be solved.



1) Supervised Machine Learning:

1)Supervised ML algorithms are the most commonly used for predictive
analytics.
2)It requires human interaction to label data ready for accurate supervised
learning.
3)The model is taught by example using input and output datasets
processed by human experts, usually data scientists.
4)It is commonly used for solving regression and classification problems.

Regression:
1.It involves estimating the mathematical relationship between a
continuous variable and one or more other variables.



2.It is used for the prediction of continuous variables such as
weather forecasting, market trends, etc.

3.Below are some popular regression algorithms:
 Linear Regression
 Non-linear Regression
 Regression Trees
 Polynomial Regression
 Bayesian Linear Regression

Classification:
1. Classification algorithms are used when the output variable is
categorical, which means there are two classes such as Yes-No,
Male-Female, True-False, Pass-Fail, etc.
2.Below are some popular classification algorithms. They are:

 Random Forest
 Decision Trees
 Logistic Regression
 Support Vector Machines



Advantages of supervised learning:
1.It helps us to solve various real-world problems such as "fraud
detection," "spam filtering," etc.
2.It can predict the output on the basis of prior experience.

Disadvantages of supervised learning:
1.It is not suitable for handling complex tasks.
2.It requires lots of computation time.

3.It cannot predict the correct output if the test data is different from
the training dataset.

2) Unsupervised learning:

1.It is a type of ML in which models are trained using unlabeled
datasets and are allowed to act on that data without any supervision.



2.It is to find the underlying structure of datasets, group that data
according to similarities and represent that dataset in a compressed
format.
3.It works on unlabeled and uncategorized data, which makes
unsupervised learning more important.
4.It is commonly used for solving clustering methods and association
methods.

Clustering:
1.It is the grouping of data that have similar characteristics.
2.It helps segment data into groups and analyze each to find patterns.
Example: Clustering algorithms identify groups of users based on
their online purchasing history and then send each member targeted
ads.

Association:
1.It consists of discovering groups of items frequently observed
together.
2.Online retailers use associations to suggest additional purchases
to a user based on the content of their shopping cart.

Unsupervised Learning Algorithms:
Below is the list of some popular unsupervised learning algorithms:

 K-means Clustering
 KNN (K-Nearest Neighbors)



 Neural networks
 Independent component analysis etc.

Advantages of Unsupervised Learning:
1.It is easy to get unlabeled data in comparison to labeled data.
2.It is used for more complex tasks as compared to supervised
learning because, in unsupervised learning, we don't have labeled
input data.

Disadvantages of Unsupervised Learning:
1.It is intrinsically more difficult than supervised learning, as it does
not have corresponding output.
2.The result of the unsupervised learning algorithm may be less
accurate as input data is not labeled.

The main differences between Supervised and Unsupervised
Learning are given below:

Supervised Learning Unsupervised Learning

1) Supervised learning algorithms
are trained using labeled data.

1) Unsupervised learning algorithms
are trained using unlabeled data.

2) It takes direct feedback to check if
it is predicting the correct output or
not.

2) It does not take feedback.

3) Supervised learning models
predict the output.

3) Unsupervised learning models
find the hidden patterns in data.

4) It can be categorized in 4) It can be classified in clustering
Classification and regression problems and Association problems



5) It produces an accurate result 5) It may give less accurate
result as

Compared to supervised learning

3) Reinforcement Learning:
 It works on a feedback-based process, in which an agent (AI)

automatically explores its surroundings by hit & trial, taking action,
learning from experiences, and improving its performances.

 Agent get rewarded for each good action and get punished for each bad
action, hence the goal of these learning agents is to maximize the
rewards.

 Its learning process is similar to a human being.
For example: A child learns various things by experiences in his
day-to-day life.

 Reinforcement learning problems can be formalized using the "Markov
Decision Process (MDP)". In MDP, the agent constantly interacts with
the environment & performs actions. At each action, the environment
responds & generates a new state.

Categories of RL:
It is mainly categorized into two types of methods:

1.Positive RL
2.Negative RL



1)Positive RL:
It enhances the strength of the behavior of the agent and positively
impacts it.

2)Negative RL:
It works exactly opposite to the positive RL.

Real-world use cases of Reinforcement Learning:
1.Video games
2.Resource management
3.Robotics
4.Text mining

Advantages of RL:
1.Versatility: Wide range of applications like robotics, autonomous
vehicles, healthcare, and game playing, etc.
2.Scalability: It can be scaled to handle large and complex
problems.

Disadvantages of RL:
1.High computational cost
2.Overfitting to specific environments

Note:
To overcome the drawbacks of supervised learning & unsupervised
learning algorithms, the concept of supervised learning is introduced.

Learning by Rote:
1)Learning by rote in machine learning refers to the phenomenon where a
model memorizes the training data instead of learning the underlying
patterns or generalizations.

2)It is compared to how students might memorize answers without
understanding concepts.

3)In ML, this behavior often manifests as "overfitting."



4)It is a memorization technique based on repetition.This involves
memorization in an effective manner. It is a form of learning that is popular
in elementary schools where the alphabet and numbers are memorized.

5) Memorizing simple addition and multiplication tables are also examples
of rote learning. In the case of data caching, we store computed values so
that we do not have to recompute them later.

6)Caching is implemented by search engines and it may be viewed as
another popular scheme of rote learning. When computation is more
expensive than recall, this strategy can save a significant amount of time.

Rote Learning vs. Meaningful Learning:
Rote learning:

 Requires the learner to repeat facts and procedures until they are
thoroughly memorized.

Meaningful learning:



 Focuses on understanding rather than just memorizing.
 Requires connecting new information to prior knowledge.

How It Works:

 A machine is programmed to store new information and compare new
input to its history of inputs and outputs.

 If the machine has previously encountered the input, it can retrieve the
stored output.

Benefits of Rote Learning:

It can save time compared to recomputing values. It can also be used to
establish a foundational understanding of basic concepts.

Learning by Deduction:
Deductive learning deals with the exploitation of deductions made earlier.
This type of learning is based on reasoning that is truth-preserving. Given
AAA, and if AAA then BBB (A→BA \rightarrow BA→B), we can deduce
BBB. We can use BBB along with B→CB \rightarrow CB→C (B→CB
\rightarrow CB→C) to deduce CCC. Note that whenever AAA and A→BA
\rightarrow BA→B are True, then BBB is True, ratifying the truth-preserving
nature of learning by deduction.

Consider the following statements:

1.It is raining.
2.If it rains, the roads get wet.
3.If a road is wet, it is slippery.

Learning by Abduction:
Here, we infer A from B and (A→B). Notice that this is not truth-preserving
like in deduction, as both B and (A→B) can be True and A can be False.
Consider the following inference:
1)An aeroplane is a flying object (aeroplane→flying object).

2)A is a flying object.

From (1) and (2), we infer using abduction that A is an aeroplane. This
kind of reasoning can lead to incorrect conclusions. For example, A could
be a bird or a kite.



Learning by Induction:
This is the most popular and effective form of ML. Here, learning is
achieved with the help of examples or observations. It may be categorized
as follows:

 Learning from Examples: Here, it is assumed that a collection of
labeled examples is provided, and the ML system uses these examples
to make a prediction on a new data pattern. In supervised classification
or learning from examples, we deal with two ML problems:
classification and regression.

1.Classification:. The problem is to learn an ML model using such data to
classify a new data pattern. This is also called supervised learning as the
model is trained with the help of such exemplar data. It may be provided by
an expert in several practical situations. For example, a medical doctor may
provide examples of normal patients and patients infected by COVID-19
based on some test results.

2.Regression: Contrary to classification, there are several
prediction applications where labels come from a possibly
infinite set. For example, the share value of a stock could be a
positive real number. The stock may have different values at a
particular time, and each of these values is a real number. This
is a typical regression or curve-fitting problem.

 Learning from Observations: Observations are also instances like
examples but are different because observations need not be labeled.
In this case, we cluster or group observations into a smaller number of
groups. Such grouping is performed with the help of a clustering
algorithm that assigns similar patterns to the same group/cluster.

Challenges in Inductive Learning:

1.Noise in Data: Can lead to incorrect generalizations.
2.Over-generalization: Creating overly broad rules that don't fit well
with specific data points.
3.Computational Complexity: Searching through large hypothesis
spaces can be resource-intensive.

Applications of Learning by Induction:



 Image Classification (e.g., recognizing handwritten digits).
 Natural Language Processing (e.g., spam detection).
 Predictive Analytics (e.g., forecasting sales).
 Robotics (e.g., learning motion patterns).





















































































• Unit-2 
•  

• MODELLING  AND  EVALUATION  & BASICS OF FEATURE 
ENGINEERING 

•                                         
•                                             Part-1        

  INTRODUCTION 
 

The basic learning process, irrespective of the fact that the learner is 

a human or a machine, can be divided into three parts: 

 
• Data Input 

• Abstraction 

• Generalization 

 The detective department of New City Police has got a tip that in 

a campaign gathering for the upcoming election, a criminal is going 

to launch an attack on the main candidate.  

However, it is not known who the person is and quite obviously 

the person might use some disguise. 

 

They have to match the photos from the criminal database with the 

faces in the gathering to spot the potential attacker.  

 

So the main problem here is to spot the face of the criminal based 

on the match with the photos in the criminal database. 

 

This can be done using human learning where a person from the 

detective department can scan through each shortlisted photo and try 

to match that photo with the faces in the gathering. 

  

A person having a strong memory can take a glance at the photos 

of all criminals in one shot and then try to find a face in the gathering 

which closely resembles one of the criminal photos that she has 

viewed.  

 



But that is not possible in reality.  

 

The number of criminals in the database and hence the count of 

photos runs in hundreds, if not thousands. So taking a look at all the 

photos and memorizing them is not possible.  

 

The same thing can be done using machine learning too. 

 

The machine can also use the same input data, i.e. criminal database 

photos, apply computational techniques to abstract feature-based 

concept map from the input data and generalize the same in the form 

of a classification algorithm to decide whether a face in the gathering 

is potentially criminal or not. 

 

When we talk about the learning process, abstraction is a 

significant step as it represents raw input data in a summarized and 

structured format, such that a meaningful insight is obtained from 

the data. 

  

This structured representation of raw input data to the meaningful 

pattern is called a model.  

  

Generalization searches through the huge set of abstracted 

knowledge to come up with a small and manageable set of key 

findings.  

 

It is not possible to do an exhaustive search by reviewing each of 

the abstracted findings one-by-one.  

 

A heuristic search is employed, an approach which is also used 

for human learning (often termed as ‘gut-feel’).  

 



It is quite obvious that the heuristics sometimes result in 

erroneous result. If the outcome is systematically incorrect, the 

learning is said to have a bias. 

 
 

• SELECTING A MODEL 
 

An association between potential causes of disturbance and criminal 

incidents has to be determined.  

 

In other words, the goal or target is to develop a model to infer how 

the criminal incidents change based on the potential influencing 

factors mentioned above. 

 

In machine learning paradigm, the potential causes of disturbance, 

e.g. average income of the local population, weapon sales, the inflow 

of immigrants, etc. are input variables.  

They are also called predictors, attributes, features, independent 

variables, or simply variables.  

 

The number of criminal incidents is an output variable (also called 

response or dependent variable). 

 

 Input variables can be denoted by X, while individual input 

variables are represented as X1, X2, X3,…, Xn and output variable by 

symbol Y. 

 

 The relationship between X and Y is represented in the general 

form: Y = f (X) + e, where ‘f ’ is the target function and ‘e’ is a 

random error term. 

 

Just like a target function with respect to a machine learning 

model, some other functions which are frequently tracked are 
 



A cost function (also called error function) helps to measure the extent to 

which the model is going wrong in estimating the relationship between X and Y. 

 

 In that sense, cost function can tell how bad the model is performing. For 

example, R-squared (to be discussed later in this chapter) is a cost function of 

regression model. 

 

Loss function is almost synonymous to cost function – only difference being 

loss function is usually a function defined on a data point, while cost function is 

for the entire training data set. 

 

Machine learning is an optimization problem. We try to define a model and tune 

the parameters to find the most suitable solution to a problem.  

 

However, we need to have a way to evaluate the quality or optimality of a 

solution. This is done using objective function. Objective means goal. 

 

Objective function takes in data and model (along with parameters) as input and 

returns a value. Target is to find values of model parameter to maximize or 

minimize the return value.  

 

When the objective is to minimize the value, it becomes synonymous to cost 

function.  

 

Examples: 

    maximize the reward function in reinforcement learning, maximize the  

    posterior probability in Naive Bayes, minimize squared error in regression. 

There are three broad categories of machine learning approaches 

used for resolving different types of problems. 

They are 

• 1.Supervised 

• Classification 

• Regression 

•                            

2.Unsupervised 

• Clustering 

Association analysis 

3.Reinforcement 

For each of the cases, the model that has to be created/trained is 

different. 



 Multiple factors play a role when we try to select the model for 

solving a machine learning problem.  

The most important factors are (i) the kind of problem we want 

to solve using machine learning and  

(ii) the nature of the underlying data. 

 The problem may be related to the prediction of a class value like 

whether a tumour is malignant or benign, whether the next day will 

be snowy or rainy, etc. to be selected.  

In other words, there is no one model that works best for every 

machine learning problem. This is what ‘No Free Lunch’ theorem 

also states. 

 

 Machine learning algorithms are broadly of two types: models 

for supervised learning, which primarily focus on solving predictive 

problems and models for unsupervised learning, which solve 

descriptive problems. 

 
• 1.Predictive models 

Models for supervised learning or predictive models, as is 

understandable from the name itself, try to predict certain value 

using the values in an input data set.  

The learning model attempts to establish a relation between the 

target feature, i.e. the feature being predicted, and the predictor 

features. 

 The predictive models have a clear focus on what they want to learn 

and how they want to learn. 
 

Predictive models, in turn, may need to predict the value of a 

category or class to which a data instance belongs to. Below are 

some examples: 



 
• Predicting win/loss in a cricket match 

• Predicting whether a transaction is fraud 

• Predicting whether a customer may move to another product 

 

The models which are used for prediction of target features of 

categorical value are known as classification models.  

 

The target feature is known as a class and the categories to which 

classes are divided into are called levels.  

 

Some of the popular classification models include k-Nearest 

Neighbor (kNN), Naïve Bayes, and Decision Tree. 

 
Predictive models may also be used to predict numerical 

values of the target feature based on the predictor features.  

Below are some examples: 

 
• Prediction of revenue growth in the succeeding year 

• Prediction of rainfall amount in the coming monsoon 

• Prediction of potential flu patients and demand for flu shots next winter 

 

The models which are used for prediction of the numerical value 

of the target feature of a data instance are known as regression 

models.  

Linear Regression and Logistic Regression models are popular 

regression models. 

 

• 2.Descriptive models 

Models for unsupervised learning or descriptive models are used to 

describe a data set or gain insight from a data set. 

 

There is no target feature or single feature of interest in case of 

unsupervised learning.  

Based on the value of all features, interesting patterns or insights are 

derived about the data set. 



 
Descriptive models which group together similar data instances, 

i.e. data instances having a similar value of the different features are 

called clustering models. 

 Examples of clustering include 

 
• Customer grouping or segmentation based on social, demographic, ethnic, etc. 

factors 

• Grouping of music based on different aspects like genre, language, time-period, 

etc. 

• Grouping of commodities in an inventory 

 

The most popular model for clustering is k-Means. 
 

Descriptive models related to pattern discovery is used for market 

basket analysis of transactional data. 

 In market basket analysis, based on the purchase pattern available 

in the transactional data, the possibility of purchasing one product 

based on the purchase of another product is determined.  

                       

                           3. Holdout method 

In case of supervised learning, a model is trained using the labelled 

input data. In general 70%–80% of the input data (which is 

obviously labelled) is used for model training. 

 The remaining 20%–30% is used as test data for validation of the 

performance of the model.  

However, a different proportion of dividing the input data into 

training and test data is also acceptable.  

To make sure that the data in both the buckets are similar in nature, 

the division is done randomly. Random numbers are used to assign 

data items to the partitions.  



This method of partitioning the input data into two parts – training 

and test data (depicted in Figure 3.1), 

 which is by holding back a part of the input data for validating the 

trained model is known as holdout method. 
 

 

FIG. 3.1 Holdout method 

 

Once the model is trained using the training data, the labels of the 

test data are predicted using the model’s target function.  

Then the predicted value is compared with the actual value of the 

label.  

 

In certain cases, the input data is partitioned into three portions – 

a training and a test data, and a third validation data.  

 

The validation data is used in place of test data, for measuring the 

model performance. It is used in iterations and to refine the model in 

each iteration.  

 

The test data is used only for once, after the model is refined and 

finalized, to measure and report the final performance of the model 

as a reference for future learning efforts. 
 

• 4.K-fold Cross-validation method 



Holdout method employing stratified random sampling approach 

still heads into issues in certain specific situations..  

A special variant of holdout method, called repeated holdout, is 

sometimes employed to ensure the randomness of the composed 

data sets.  

In repeated holdout, several random holdouts are used to measure 

the model performance. 

 In the end, the average of all performances is taken. 

 As multiple holdouts have been drawn, the training and test data 

(and also validation data, in case it is drawn) are more likely to 

contain representative data from all classes and resemble the 

original input data closely.  

This process of repeated holdout is the basis of k-fold cross-

validation technique. In k-fold cross-validation, the data set is 

divided into k-completely distinct or non-overlapping random 

partitions called folds. 

 Figure 3.2 depicts an overall approach for k-fold cross-validation. 
 

The value of ‘k’ in k-fold cross-validation can be set to any 

number. However, there are two approaches which are extremely 

popular: 

 
• 10-fold cross-validation (10-fold CV) 

• Leave-one-out cross-validation (LOOCV) 

 

10-fold cross-validation is by far the most popular approach. 

In this approach, for each of the 10-folds, each comprising of 

approximately 10% of the data, one of the folds is used as the test 

data for validating model performance trained based on the 

remaining 9 folds (or 90% of the data).  

 



This is repeated 10 times, once for each of the 10 folds being used 

as the test data and the remaining folds as the training data. 

The average performance across all folds is being reported.  

 

Figure 3.3 depicts the detailed approach of selecting the ‘k’ folds in 

k-fold cross-validation.  

 

As can be observed in the figure, each of the circles resembles a 

record in the input data set whereas the different colors indicate the 

different classes that the records belong to. 

 

The entire data set is broken into ‘k’ folds – out of which one fold is 

selected in each iteration as the test data set.  

 

The fold selected as test data set in each of the ‘k’ iterations is 

different.  

 

Also, note that though in figure 3.3 the circles resemble the records 

in the input data set, the contiguous circles represented as folds do 

not mean that they are subsequent records in the data set.  

 

This is more a virtual representation and not a physical 

representation., the records in a fold are drawn by using random 

sampling technique. 
 



 
 

FIG. 3.2 Overall approach for K-fold cross-validation 

 

FIG. 3.3 Detailed approach for fold selection 

 

Leave-one-out cross-validation (LOOCV) is an extreme case of 

k-fold cross-validation using one record or data instance at a time 

as a test data. This is done to maximize the count of data used to 

train the model.  

 
• 5.Bootstrap sampling 

Bootstrap sampling or simply bootstrapping is a popular way to 

identify training and test data sets from the input data set.  



It uses the technique of Simple Random Sampling with 

Replacement (SRSWR), which is a well-known technique in 

sampling theory for drawing random samples.  

We have seen earlier that k-fold cross-validation divides the data 

into separate partitions – say 10 partitions in case of 10-fold cross-

validation.  

Then it uses data instances from partition as test data and the 

remaining partitions as training data. 

 Unlike this approach adopted in case of k-fold cross- validation, 

bootstrapping randomly picks data instances from the input data set, 

with the possibility of the same data instance to be picked multiple 

times. 

 This essentially means that from the input data set having ‘n’ data 

instances, bootstrapping can create one or more training data sets 

having ‘n’ data instances, some of the data instances being repeated 

multiple times. 

 

Figure 3.4 briefly presents the approach followed in bootstrap 

sampling. 

 
This technique is particularly useful in case of input data sets of 

small size, i.e. having very less number of data instances. 
 



 
 

FIG. 3.4 Bootstrap sampling 
 

 
 

 
 

• Lazy vs. Eager learner 

Eager learning follows the general principles of machine learning – 

it tries to construct a generalized, input-independent target function 

during the model training phase.  

It follows the typical steps of machine learning, i.e. abstraction and 

generalization and comes up with a trained model at the end of the 

learning phase. 



 Hence, when the test data comes in for classification, the eager 

learner is ready with the model and doesn’t need to refer back to the 

training data. 

Eager learners take more time in the learning phase than the lazy 

learners. 

 

Some of the algorithms which adopt eager learning approach include 

Decision Tree, Support Vector Machine, Neural Network, etc. 

 

Lazy learning, on the other hand, completely skips the abstraction 

and generalization processes, strictly speaking, lazy learner doesn’t 

‘learn’ anything.  

 

It uses the training data in exact, and uses the knowledge to 

classify the unlabelled test data.  

 

Since lazy learning uses training data as-is, it is also known as rote 

learning (i.e. memorization technique based on repetition). 

  

Due to its heavy dependency on the given training data instance, 

it is also known as instance learning. They are also called non-

parametric learning.  

 

Lazy learners take very little time in training because not much of 

training actually happens.  

  

One of the most popular algorithm for lazy learning is k-nearest 

neighbor. 

 

 MODEL REPRESENTATION AND INTERPRETABILITY 
 

• 1.Underfitting 



If the target function is kept too simple, it may not be able to capture 

the essential nuances and represent the underlying data well.  

A typical case of underfitting may occur when trying to represent a 

non-linear data with a linear model as demonstrated by both cases 

of underfitting shown in figure 

3.5.  

 

Many times underfitting happens due to unavailability of sufficient 

training data.  

 

Underfitting results in both poor performance with training data as 

well as poor generalization to test data. Underfitting can be avoided 

by 

• using more training data 

• reducing features by effective feature selection 
 

 

 
 

FIG. 3.5 Underfitting and Overfitting of models 

 

 

• 2.Overfitting 



Overfitting refers to a situation where the model has been designed 

in such a way that it emulates the training data too closely.  

In such a case, any specific deviation in the training data, like noise 

or outliers, gets embedded in the model.  

It adversely impacts the performance of the model on the test data.  

Overfitting, in many cases, occur as a result of trying to fit an 

excessively complex model to closely match the training data. This 

is represented with a sample data set in figure 3.5 .  

The target function, in these cases, tries to make sure all training 

data points are correctly partitioned by the decision boundary.  

However, more often than not, this exact nature is not replicated in 

the unknown test data set.  

Hence, the target function results in wrong classification in the test 

data set. 

 

Overfitting results in good performance with training data set, 

but poor generalization and hence poor performance with test data 

set. Overfitting can be avoided by 

 
• using re-sampling techniques like k-fold cross validation 

• hold back of a validation data set 

• remove the nodes which have little or no predictive power for the given machine 

learning problem. 

 

Both underfitting and overfitting result in poor classification 

quality which is reflected by low classification accuracy. 

 
• 3.Bias – variance trade-off 



In supervised learning, the class value assigned by the learning 

model built based on the training data may differ from the actual 

class value.  

This error in learning can be of two types –errors due to ‘bias’ and 

error due to ‘variance’. Let’s try to understand each of them in 

details. 

 
•               1.Errors due to ‘Bias’ 

Errors due to bias arise from simplifying assumptions made by the 

model to make the target function less complex or easier to learn.  

In short, it is due to underfitting of the model. 

 

Parametric models generally have high bias making them easier to 

understand/interpret and faster to learn.  

 

These algorithms have a poor performance on data sets, which are 

complex in nature and do not align with the simplifying assumptions 

made by the algorithm. Underfitting results in high bias. 

 
• 2.Errors due to ‘Variance’ 

Errors due to variance occur from difference in training data sets 

used to train the model. Different training data sets (randomly 

sampled from the input data set) are used to train 

the model.  

 

Ideally the difference in the data sets should not be significant and 

the model trained using different training data sets should not be too 

different. 

 



 However, in case of overfitting, since the model closely matches the 

training data, even a small difference in training data gets magnified 

in 

the model. 

 

 

 

FIG. 3.6 Bias-variance trade-off 

 

So, the problems in training a model can either happen because 

either (a) the model is too simple and hence fails to interpret the data 

grossly or  

(b) the model is extremely complex and magnifies even small 

differences in the training data.i.e., 

 

Increasing the bias will decrease the variance, and Increasing the 

variance will decrease the bias 

 

On one hand, parametric algorithms are generally seen to 

demonstrate high bias but low variance. 

 

 On the other hand, non-parametric algorithms demonstrate 

low bias and high variance. 

 



As can be observed in Figure 3.6 , the best solution is to have a 

model with low bias as well as low variance. However, that may not 

be possible in reality.  

 

Hence, the goal of supervised machine learning is to achieve a 

balance between bias and variance.  

  

For example, in a popular supervised algorithm k-Nearest 

Neighbors or kNN, the user configurable parameter ‘k’ can be used 

to do a trade-off between bias and variance.  

 

In one hand, when the value of ‘k’ is decreased, the model 

becomes simpler to fit and bias increases. On the other hand, when 

the value of ‘k’ is increased, the variance increases. 

 
• EVALUATING PERFORMANCE OF A MODEL 

 

• 1.Supervised learning - classification 

In supervised learning, one major task is classification. The 

responsibility of the classification model is to assign class label to 

the target feature based on the value of the predictor features. 

 For example, in the problem of predicting the win/loss in a cricket 

match, the classifier will assign a class value win/loss to target 

feature.  

To evaluate the performance of the model, the number of correct 

classifications or predictions made by the model has to be recorded.  

A classification is said to be correct if, say for example in the given 

problem, it has been predicted by the model that the team will win 

and it has actually won. 

 



Based on the number of correct and incorrect classifications or 

predictions made by a model, the accuracy of the model is 

calculated. If 99 out of 100 times the model has classified correctly, 

then the model accuracy is said to be 99%.  

 

 So, let’s start with looking at model accuracy more closely. And 

let’s try to understand it with an example. 

 

There are four possibilities with regards to the cricket match 

win/loss prediction: 
 

• the model predicted win and the team won 

• the model predicted win and the team lost 

• the model predicted loss and the team won 

• the model predicted loss and the team lost 

 

In this problem, the obvious class of interest is ‘win’. 

 
The first case, i.e. the model predicted win and the team won is 

a case where the model has correctly classified data instances as 

the class of interest. 

 These cases are referred as True Positive (TP) cases. 

 
The second case, i.e. the model predicted win and the team lost is 

a case where the model incorrectly classified data instances as the 

class of interest. 

 These cases are referred as False Positive (FP) cases. 

 
The third case, i.e. the model predicted loss and the team won is 

a case where the model has incorrectly classified as not the class of 

interest.  

These cases are referred as False Negative (FN) cases. 
 



 
 

FIG. 3.7 Details of model classification 

 

The fourth case, i.e. the model predicted loss and the team lost is 

a case where the model has correctly classified as not the class of 

interest.  

These cases are referred as True Negative (TN) cases. All these 

four cases are depicted in Figure 3.7 . 

 
For any classification model, model accuracy is given by total 

number of correct classifications (either as the class of interest, i.e. 

True Positive or as not the class of interest, i.e. True Negative) 

divided by total number of classifications done. 

 
 
 

A matrix containing correct and incorrect predictions in the form 

of TPs, FPs, FNs and TNs is known as confusion matrix.  

The win/loss prediction of cricket match has two classes of 

interest – win and loss. For that reason it will generate a 2 × 2 

confusion matrix.  

For a classification problem involving three classes, the confusion 

matrix would be 3 × 3, etc. 



 
Let’s assume the confusion matrix of the win/loss prediction of 

cricket match problem to be as below: 
 

 
 
 

In context of the above confusion matrix, total count of TPs 

= 85, count of FPs = 4, count of FNs = 2 and count of TNs = 9. 
 

 

 

 
 

The percentage of misclassifications is indicated using 

error rate which is measured as 
 

 

 

 
 

In context of the above confusion matrix, 
 

 
 
 

Sometimes, correct prediction, both TPs as well as TNs, may 

happen by mere coincidence.  

 Kappa value of a model indicates the adjusted the model 

accuracy. It is calculated using the formula below: 
 

 
 



 
 

 
 
 

In context of the above confusion matrix, total count of TPs 

= 85, count of FPs = 4, count of FNs = 2 and count of TNs = 9. 
 

 
 

 
 

The sensitivity of a model measures the proportion of TP 

examples or positive cases which were correctly classified. It is 

measured as 
 

 
 
 

In the context of the above confusion matrix for the cricket match 

win prediction problem, 
 

 
 
 



 Sensitivity measure gives the proportion of tumours which are 

actually malignant and have been predicted as malignant. A high 

value of sensitivity is more desirable than a high value of accuracy. 

 
Specificity is also another good measure to indicate a good 

balance of a model being excessively conservative or excessively 

aggressive.  

 

Specificity of a model measures the proportion of negative 

examples which have been correctly classified.  
 

 
 

A higher value of specificity will indicate a better model 

performance.  

 
There are two other performance measures of a supervised 

learning model which are similar to sensitivity and specificity. These 

are precision and recall.  

 

While precision gives the proportion of positive predictions 

which are truly positive, recall gives the proportion of TP cases over 

all actually positive cases. 
 

 

Precision indicates the reliability of a model in predicting a class 

of interest. 

 When the model is related to win / loss prediction of cricket, 

precision indicates how often it predicts the win correctly.  

In context of the above confusion matrix for the cricket match win 

prediction problem, 
 

 
 



 

It is quite understandable that a model with higher precision is 

perceived to be more reliable. 

 
Recall indicates the proportion of correct prediction of positives 

to the total number of positives. 

 In case of win/loss prediction of cricket, recall resembles what 

proportion of the total wins were predicted correctly. 

 
 
 

In the context of the above confusion matrix for the cricket match 

win prediction problem, 
 

 

• F-measure 

F-measure is another measure of model performance which 

combines the precision and recall. It takes the harmonic mean of 

precision and recall as calculated as 
 

 
 
 

In context of the above confusion matrix for the cricket match win 

prediction problem, 
 

 
 
 

As a combination of multiple measures into one, F-score gives 

the right measure using which performance of different models can 

be compared.  

 

• Receiver operating characteristic (ROC) curves 
 



Receiver Operating Characteristic (ROC) curve helps in 

visualizing the performance of a classification model.  

 
  

In the ROC curve, the FP rate is plotted (in the horizontal axis) 

against true positive rate (in the vertical axis) at different 

classification thresholds. 

  

The area under curve (AUC) value, as shown in figure 3.8a , is 

the area of the two-dimensional space under the curve extending 

from (0, 0) to (1, 1). AUC value ranges from 0 to 1, with an AUC 

of less than 0.5 indicating that the classifier has no predictive ability. 

 

 Figure 3.8b shows the curves of two classifiers – classifier 1 and 

classifier 2. 

 

Quite obviously, the AUC of classifier 1 is more than the AUC 

of classifier 2. So, we can draw the inference that classifier 1 is better 

than classifier 2. 
 

 
 

FIG. 3.8 ROC curve 

 



 

A quick indicative interpretation of the predictive values from 0.5 

to 1.0 is given below: 
 

0.5 – 0.6 ➔ Almost no predictive ability 

0.6 – 0.7 ➔ Weak predictive ability 

0.7 – 0.8 ➔ Fair predictive ability 

0.8 – 0.9 ➔ Good predictive ability 

0.9 – 1.0 ➔ Excellent predictive ability 

 

• Supervised learning – regression 

A regression model which ensures that the difference between 

predicted and actual values is low can be considered as a good 

model.  

Figure 3.9 represents a very simple problem of real estate value 

prediction solved using linear regression model. 

 If ‘area’ is the predictor variable (say x) and ‘value’ is the target 

variable (say y), the linear regression model can be represented in 

the form: 
 

 
 

 
 

FIG. 3.9 Error – Predicted vs. actual value 

 



For a certain value of x, say x̂, the value of y is predicted as ŷ 

whereas the actual value of y is Y (say).  

The distance between the actual value and the fitted or predicted 

value, i.e. ŷ is known as residual.  

The regression model can be considered to be fitted well if the 

difference between actual and predicted value, i.e. the residual value 

is less. 

 
R-squared is a good measure to evaluate the model fitness. 

It is also known as the coefficient of determination, 

 

 or for multiple regression, the coefficient of multiple determination. 

The R-squared value lies between 0 to 1 (0%–100%) with a larger 

value representing a better fit. It is calculated as: 
 

 
 
 

Sum of Squares Total (SST) = squared differences of each 
 

observation from the overall mean =  where y̅ is the mean. 

Sum of Squared Errors (SSE) (of prediction) = sum of the 

squared residuals =  where is the predicted value of yi 

and Yi is the actual value of yi. 

 

• Unsupervised learning - clustering 

Clustering algorithms try to reveal natural groupings amongst the 

data sets.  



Even if the number of clusters is given, the same number of clusters 

can be formed with different groups of data instances. 
 

A clustering algorithm is successful if the clusters identified 

using the algorithm is able to achieve the right results in the 

overall problem domain. 

 

There are couple of popular approaches which are adopted for 

cluster quality evaluation. 

 
• Internal evaluation 

In this approach, the cluster is assessed based on the underlying data that was clustered. 

The internal evaluation methods generally measure cluster quality based on 

homogeneity of data belonging to the same cluster and heterogeneity of data 

belonging to different clusters. The homogeneity/heterogeneity is decided by some 

similarity measure. For example, silhouette coefficient, which is one of the most 

popular internal evaluation methods, uses distance (Euclidean or Manhattan distances 

most commonly used) between data elements as a similarity measure. The value of 

silhouette width ranges between –1 and +1, with a high value indicating high intra-

cluster homogeneity and inter-cluster heterogeneity. 

For a data set clustered into ‘k’ clusters, silhouette width is calculated as: 

 

 
a(i) is the average distance between the i th data instance and all other data instances 

belonging to the same cluster and b(i) is the lowest average distance between the 

i-the data instance and data instances of all other clusters. 

Let’s try to understand this in context of the example depicted in figure 3.10. There 

are four clusters namely cluster 1, 2, 3, and 4. Let’s consider an arbitrary data element 

‘i’ in cluster 1, resembled by the asterisk. a(i) is the average of the distances ai1, ai2, 

…, ain1 of the different data elements from 

the i th data element in cluster 1, assuming there are n1 data elements in 

cluster 1. Mathematically, 

 

 
 



 
 

FIG. 3.1O Silhouette width calculation 

 

In the same way, let’s calculate the distance of an arbitrary data element ‘i’ in cluster 

1 with the different data elements from another cluster, say cluster 4 and take an 

average of all those distances. Hence, 

 

 
where n4 is the total number of elements in cluster 4. In the same way, we 

can calculate the values of b12  (average) and b13(average). b (i) is theminimum of all these 

values. Hence, we can say that, 

 
b(i) = minimum [b12(average), b13(average), b14(average)] 

 
• External evaluation 

In this approach, class label is known for the data set subjected to clustering. However, 

quite obviously, the known class labels are not a part of the data used in clustering. 

The cluster algorithm is assessed based on how close the 

results are compared to those known class labels. For example, purity is one of the 

most popular measures of cluster algorithms – evaluates the extent to which clusters 

contain a single class. 

For a data set having ‘n’ data instances and ‘c’ known class labels which generates 

‘k’ clusters, purity is measured as: 

 

 

• IMPROVING PERFORMANCE OF A MODEL 
 

Model selection is done one several aspects: 

 
• Type of learning the task in hand, i.e. supervised or unsupervised 



• Type of the data, i.e. categorical or numeric 

• Sometimes on the problem domain 

• Above all, experience in working with different models to solve 

problems of diverse domains 

 

So, assuming that the model selection is done, what are the 

different avenues to improve the performance of models? 

 
One effective way to improve model performance is by tuning 

model parameter. Model parameter tuning is the process of 

adjusting the model fitting options.  

 

For example, in the popular classification model k-Nearest 

Neighbour (kNN), using different values of ‘k’ or the number of 

nearest neighbours to be considered, the model can be tuned. 

 In the same way, a number of hidden layers can be adjusted to 

tune the performance in neural networks model. Most machine 

learning models have at least one parameter which can be tuned. 

 
As an alternate approach of increasing the performance of one 

model, several models may be combined together.  

This approach of combining different models with diverse strengths 

is known as ensemble (depicted in Figure 3.11 ).  

 

Ensemble helps in averaging out biases of the different underlying 

models and also reducing the variance.  

 

Ensemble methods combine weaker learners to create stronger ones. 

A performance boost can be expected even if models are built as 

usual and then ensembled. Following are the typical steps in 

ensemble process: 
 

Build a number of models based on the training data 

For diversifying the models generated, the training data subset can be varied using the 

allocation function. Sampling techniques like bootstrapping may be used to generate 

unique training data sets. 



Alternatively, the same training data may be used but the models combined are quite 

varying, e.g, SVM, neural network, kNN, etc. 

The outputs from the different models are combined using a combination function.  

 

 
 

FIG. 3.11 Ensemble 

 

One of the earliest and most popular ensemble models is 

bootstrap aggregating or bagging.  

Bagging uses bootstrap sampling method to generate multiple 

training data sets. These training data sets are used to generate (or 

train) a set of models using the same learning algorithm. 

 

Then the outcomes of the models are combined by majority voting 

(classification) or by average (regression).  

Bagging is a very simple ensemble technique which can perform 

really well for unstable learners like a decision tree  

 
Just like bagging, boosting is another key ensemble-based 

technique.  

 

In this type of ensemble, weaker learning models are trained on 

resampled data and the outcomes are combined using a weighted 

voting approach based on the performance of different models.  

 

Adaptive boosting or AdaBoost is a special variant of boosting 

algorithm. It is based on the idea of generating weak learners and 

slowly learning 



 
Random forest is another ensemble-based technique. It is an 

ensemble of decision trees – hence the name random forest to 

indicate a forest of decision trees.  

 
•  

                              Part-2 

Basics of Feature Engineering 
 
 

• INTRODUCTION 
 

Modelling alone doesn’t help us to realize the effectiveness of 

machine learning as a problem- solving tool. So we also learnt how 

to measure the effectiveness of machine learning models in solving 

problems.  

 
We need to touch upon another key aspect which plays a critical 

role in solving any machine learning problem – feature engineering.  

   

Feature engineering is a critical preparatory process in machine 

learning.  

 

It is responsible for taking raw input data and converting that to 

well-aligned features which are ready to be used by the machine 

learning models. 

 

• What is a feature? 

A feature is an attribute of a data set that is used in a machine 

learning process.  



The features in a data set are also called its dimensions. So a data 

set having ‘n’ features is called an n-dimensional data set. 

 
Let’s take the example of a famous machine learning data set, Iris, 

introduced by the British statistician and biologist Ronald Fisher, 

partly shown in Figure 4.1.  

 

It has five attributes or features namely Sepal.Length, 

Sepal.Width, Petal.Length, Petal. Width and Species. 

 

 Out of these, the feature ‘Species’ represent the class variable and 

the remaining features are the predictor variables. It is a five-

dimensional data set. 
 

 
 

FIG. 4.1 Data set features 

 

 

• What is feature engineering? 

Feature engineering refers to the process of translating a data set into 

features such that these features are able to represent the data set 

more effectively and result in a better learning performance. 

 
Feature engineering is an important pre-processing step for 

machine learning. It has two major elements: 

 
• feature transformation 

• feature subset selection 



 

Feature transformation transforms the data – structured or 

unstructured, into a new set of features which can represent the 

underlying problem which machine learning is trying to solve.  

There are two variants of feature transformation: 

 
• feature construction 

• feature extraction 

 

Both are sometimes known as feature discovery. 
 

Feature construction process discovers missing information about 

the relationships between features and augments the feature space 

by creating additional features.  

 

Hence, if there are ‘n’ features or dimensions in a data set, after 

feature construction ‘m’ more features or dimensions may get added. 

  

So at the end, the data set will become ‘n + m’ dimensional. 

 
Feature extraction is the process of extracting or creating a new set 

of features from the original set of features using some functional 

mapping. 

 
Unlike feature transformation, in case of feature subset selection 

(or simply feature selection) no new feature is generated.  

The objective of feature selection is to derive a subset of features 

from the full feature set which is most meaningful in the context of 

a specific machine learning problem.  

So, essentially the job of feature selection is to derive a subset Fj 

(F1, F2, …, Fm) of Fi (F1, F2, …, Fn), where m < n, such that Fj is 

most meaningful and gets the best result for a machine learning 

problem.  



 

 
• FEATURE TRANSFORMATION 

 

Engineering a good feature space is a crucial prerequisite for the 

success of any machine learning model.  

 

However, often it is not clear which feature is more important.  

 

 For that reason, all available attributes of the data set are used as 

features and the problem of identifying the important features is left 

to the learning model.  

 

This is definitely not a feasible approach, particularly for certain 

domains e.g. medical image classification, text categorization, etc.  

 

To deal with this problem, feature transformation comes into play. 

 Feature transformation is used as an effective tool for 

dimensionality reduction and hence for boosting learning model 

performance. Broadly, there are two distinct goals of feature 

transformation: 
 

Achieving best reconstruction of the original features in the data set Achieving 

highest efficiency in the learning task 

 

• 1.Feature construction 

Feature construction involves transforming a given set of input 

features to generate a new set of more powerful features.  

let’s take the example of a real estate data set having details of all 

apartments sold in a specific region. 

 
The data set has three features – apartment length, apartment 

breadth, and price of the apartment. If it is used as an input to a 



regression problem, such data can be training data for the regression 

model.  

 

So given the training data, the model should be able to predict the 

price of an apartment whose price is not known or which has just 

come up for sale.  

 

However, instead of using length and breadth of the apartment as 

a predictor, it is much convenient and makes more sense to use the 

area of the apartment, which is not an existing feature of the data set.  

 

So such a feature, namely apartment area, can be added to the data 

set. 

  

In other words, we transform the three-dimensional data set to a 

four-dimensional data set, with the newly ‘discovered’ feature 

apartment area being added to the original data set. This is depicted 

in Figure 4.2. 
 

 
 

FIG. 4.2 Feature construction (example 1) 

 

There are certain situations where feature construction is an 

essential activity before we can start with the machine learning task. 

These situations are 
 

when features have categorical value and machine learning needs numeric value 

inputs 

when features having numeric (continuous) values and need to be converted to 

ordinal values 



when text-specific feature construction needs to be done 

 

• 2.Encoding categorical (nominal) variables 

Let’s take the example of another data set on athletes, as presented 

in Figure 4.3a.  

The data set has features age, city of origin, parents athlete (i.e. 

indicate whether any one of the parents was an athlete) and Chance 

of Win. 

 The feature chance of a win is a class variable while the others are 

predictor variables.  

Any machine learning algorithm, whether it’s a classification 

algorithm (like kNN) or a regression algorithm, requires numerical 

figures to learn from. 

 So there are three features – City of origin, Parents athlete, and 

Chance of win, which are categorical in nature and cannot be used 

by any machine learning task. 

 
In this case, feature construction can be used to create new 

dummy features which are usable by machine learning algorithms.  

Since the feature ‘City of origin’ has three unique values namely 

City A, City B, and City C, three dummy features namely origin_ 

city_A, origin_city_B, and origin_city_C is created.  

In the same way, dummy features parents_athlete_Y and 

parents_athlete_N are created for feature ‘Parents athlete’ and 

win_chance_Y and win_chance_N are created for feature ‘Chance 

of win’.  

The dummy features have value 0 or 1 based on the categorical 

value for the original feature in that row. For example, the second 

row had a categorical value ‘City B’ for the feature ‘City of origin’.  



So, the newly created features in place of ‘City of origin’, i.e. 

origin_city_A, origin_city_B and origin_city_C will have values 0, 

1 and 0, respectively.  

In the same way, parents_athlete_Y and parents_athlete_N will 

have values 0 and 1, respectively in row 2 as the original feature 

‘Parents athlete’ had a categorical value ‘No’ in row 2. The entire 

set of transformation for athletes’ data set is shown in Figure 4.3b. 
 

 
 

FIG. 4.3 Feature construction (encoding nominal variables) 

 



We see that the features ‘Parents athlete’ and ‘Chance of win’ in 

the original data set can have two values only.  

So creating two features from them is a kind of duplication, since 

the value of one feature can be decided from the value of the other. 

 To avoid this duplication, we can just leave one feature and 

eliminate the other, as shown in Figure 4.3c. 
 

• 3.Encoding categorical (ordinal) variables 

Let’s take an example of a student data set. Let’s assume that there 

are three variable – science marks, maths marks and grade as shown 

in Figure 4.4a.  

As we can see, the grade is an ordinal variable with values A, B, C, 

and D.  

To transform this variable to a numeric variable, we can create a 

feature num_grade mapping a numeric value against each ordinal 

value.  

In the context of the current example, grades A, B, C, and D in 

Figure 4.4a is mapped to values 1, 2, 3, and 4 in the transformed 

variable shown in Figure 4.4b. 
 

 
 

FIG. 4.4 Feature construction (encoding ordinal variables) 

 

 



• 4.Transforming numeric (continuous) features 

to categorical features 

Sometimes there is a need of transforming a continuous numerical 

variable into a categorical variable.  

For example, we may want to treat the real estate price prediction 

problem, which is a regression problem, as a real estate price 

category prediction, which is a classification problem. 

 In that case, we can ‘bin’ the numerical data into multiple categories 

based on the data range. The numerical feature apartment_price as 

shown in Figure 4.5a.  

It can be transformed to a categorical variable price-grade either as 

shown in Figure 4.5b or as shown in Figure 4.5c. 

 
• 5.Text-specific feature construction 

In the current world, text is arguably the most predominant medium 

of communication.  

Whether we think about social networks like Facebook or micro-

blogging channels like Twitter or emails or short messaging services 

such as Whatsapp, text plays a major role in the flow of information.  

Hence, text mining is an important area of research – not only for 

technology practitioners but also for industry practitioners.  

 All machine learning models need numerical data as input. So the 

text data in the data sets need to be transformed into numerical 

features. 



 
 

FIG. 4.5 Feature construction (numeric to categorical) 

 

Text data, or corpus which is the more popular keyword, is 

converted to a numerical representation following a process is 

known as vectorization.  

In this process, word occurrences in all documents belonging to 

the corpus are consolidated in the form of bag-of-words. There are 

three major steps that are followed: 

 
• tokenize 

• count 

• normalize 

 

In order to tokenize a corpus, the blank spaces and punctuations 

are used as delimiters to separate out the words, or tokens.  

Then the number of occurrences of each token is counted, for each 

document. Lastly, tokens are weighted with 

reducing importance when they occur in the majority of the 

documents.  



A matrix is then formed with each token representing a column and 

a specific document of the corpus representing each row. 

 Each cell contains the count of occurrence of the token in a specific 

document.  

This matrix is known as a document-term matrix (also known as a 

term-document matrix).  

 

Figure 4.6 represents a typical document-term matrix which forms 

an input to a machine learning model. 
 

 
 

FIG. 4.6 Feature construction (text-specific) 

 

 

• Feature extraction 

In feature extraction, new features are created from a combination 

of original features. Some of the commonly used operators for 

combining the original features include 

 
• For Boolean features: Conjunctions, Disjunctions, Negation, etc. 

• For nominal features: Cartesian product, M of N, etc. 

• For numerical features: Min, Max, Addition, Subtraction, 

Multiplication, Division, Average, Equivalence, Inequality, etc. 

 

Let’s take an example and try to understand. Say, we have a data 

set with a feature set Fi (F1, F2, …, Fn). After feature extraction using 

a mapping function f (F1, F2, …, Fn) say, we 



will have a set of features such that 

and m < n. For example, . This is depicted in Figure 

4.7. 

 
 

FIG. 4.7 Feature extraction 

 

The most popular feature extraction algorithms used in machine 

learning are: 

 
• 1.Principal Component Analysis 

Every data set, has multiple attributes or dimensions – many of 

which might have similarity with each other.  

For example, the height and weight of a person, in general, are quite 

related.  

If the height is more, generally weight is more and vice versa.  

 In general, any machine learning algorithm performs better as the 

number of related attributes or features reduced. 

 In other words, a key to the success of machine learning lies in the 

fact that the features are less in number as well as the similarity 

between each other is very less.  



This is the main guiding philosophy of principal component analysis 

(PCA) technique of feature extraction. 

 
In PCA, a new set of features are extracted from the original 

features which are quite dissimilar in nature.  

So an n-dimensional feature space gets transformed to an m-

dimensional feature space, where the dimensions are orthogonal to 

each other, i.e. completely independent of each other.  

To understand the concept of orthogonality, we have to step back 

and do a bit of dip dive into vector space concept in linear algebra. 

 
We all know that a vector is a quantity having both magnitude and 

direction and hence can determine the position of a point relative to 

another point in the Euclidean space (i.e. a two or three or ‘n’ 

dimensional space).  

A vector space is a set of vectors. Vector spaces have a property 

that they can be represented as a linear combination of a smaller set 

of vectors, called basis vectors. So, any vector ‘v’ in a vector space 

can be represented as 
 

 
 
 

where, ai represents ‘n’ scalars and ui represents the basis vectors. 

Basis vectors are orthogonal to each other. 

Orthogonality of vectors in n-dimensional vector space can be 

thought of an extension of the vectors being perpendicular in a two-

dimensional vector space.  

 

Two orthogonal vectors are completely unrelated or independent of 

each other. So the transformation of a set of vectors to the 

corresponding set of basis vectors such that each vector in the 

original set can be expressed as a linear combination of basis vectors 



helps in decomposing the vectors to a number of independent 

components. 

 
 The feature vector can be transformed to a vector space of the 

basis vectors which are termed as principal components. 

 

These principal components, just like the basis vectors, are 

orthogonal to each other. So a set of feature vectors which may have 

similarity with each other is transformed to a set of principal 

components which are completely unrelated. 

 

However, the principal components capture the variability of the 

original feature space. Also, the number of principal component 

derived, much like the basis vectors, is much smaller than the 

original set of features. 

 
The objective of PCA is to make the transformation in such a way 

that 

 
• The new features are distinct, i.e. the covariance between the new features, 

i.e. the principal components is 0. 

• The principal components are generated in order of the variability in the data that 

it captures. Hence, the first principal component should capture the maximum 

variability, the second principal component should capture the next highest 

variability etc. 

• The sum of variance of the new features or the principal components should 

be equal to the sum of variance of the original features. 

 

PCA works based on a process called eigenvalue decomposition 

of a covariance matrix of a data set. Below are the steps to be 

followed: 

 
• First, calculate the covariance matrix of a data set. 

• Then, calculate the eigenvalues of the covariance matrix. 

• The eigenvector having highest eigenvalue represents the direction in which 

there is the highest variance. So this will help in identifying the 

 



first principal component. 

• The eigenvector having the next highest eigenvalue represents the direction in 

which data has the highest remaining variance and also orthogonal to the first 

direction. So this helps in identifying the second principal component. 

• Like this, identify the top ‘k’ eigenvectors having top ‘k’ eigenvalues so as to get 

the ‘k’ principal components. 

 

• 2.Singular value decomposition 

Singular value decomposition (SVD) is a matrix factorization 

technique commonly used in linear algebra. SVD of a matrix A (m 

× n) is a factorization of the form: 
 

 
 
 

where, U and V are orthonormal matrices, U is an m × m unitary 

matrix, V is an n × n unitary matrix and Σ is an m × n rectangular 

diagonal matrix. The diagonal entries of Σ are known as singular 

values of matrix A. The columns of U and V are called the left-

singular and right-singular vectors of matrix A, respectively. 

 
SVD is generally used in PCA, once the mean of each variable 

has been removed. Since it is not always advisable to remove the 

mean of a data attribute, especially when the data set is sparse (as in 

case of text data), SVD is a good choice for dimensionality reduction 

in those situations. 

 
SVD of a data matrix is expected to have the properties 

highlighted below: 

 
• Patterns in the attributes are captured by the right-singular vectors, i.e. the 

columns of V. 

• Patterns among the instances are captured by the left-singular, i.e. the columns 

of U. 

 

• Larger a singular value, larger is the part of the matrix A that it accounts for and 

its associated vectors. 

• New data matrix with ‘k’ attributes is obtained using the equation 



 

D
’ = D × [v

1, v2, … , vk] 

Thus, the dimensionality gets reduced to k 

SVD is often used in the context of text data. 

 

• 3.Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is another commonly used 

feature extraction technique like PCA or SVD.  

The objective of LDA is similar to the sense that it intends to 

transform a data set into a lower dimensional feature space.  

However, unlike PCA, the focus of LDA is not to capture the data 

set variability.  

Instead, LDA focuses on class separability, i.e. separating the 

features based on class separability so as to avoid over-fitting of the 

machine learning model. 

 
Unlike PCA that calculates eigenvalues of the covariance matrix 

of the data set, LDA calculates eigenvalues and eigenvectors within 

a class and inter-class scatter matrices. Below are the steps to be 

followed: 

 
• Calculate the mean vectors for the individual classes. 

• Calculate intra-class and inter-class scatter matrices. 

• Calculate eigenvalues and eigenvectors for SW 
-1 and S

B, where SW is 

the intra-class scatter matrix and SB is the inter-class scatter matrix 

 

 
where, mi is the mean vector of the i-th class 

 
 



where, mi is the sample mean for each class, m is the overall mean of the data 

set, Ni is the sample size of each class 

• Identify the top ‘k’ eigenvectors having top ‘k’ eigenvalues 

 
 

• FEATURE SUBSET SELECTION 

 

Feature selection is arguably the most critical pre-processing 

activity in any machine learning project. 

  

It intends to select a subset of system attributes or features which 

makes a most meaningful contribution in a machine learning 

activity. 

  

Let’s quickly discuss a practical example to understand the 

philosophy behind feature selection. 

 Say we are trying to predict the weight of students based on past 

information about similar students, which is captured in a ‘student 

weight’ data set.  

The student weight data set has features such as Roll Number, Age, 

Height, and Weight.  

Roll number can have no bearing, whatsoever, in predicting student 

weight. So we can eliminate the feature roll number and build a 

feature subset to be considered in this machine learning problem.  

The subset of features is expected to give better results than the full 

set. The same has been depicted in Figure 4.8. 
 

 
 

FIG. 4.8 Feature selection 



The issues which have made feature selection such a relevant 

problem to be solved are  

 
• 1.Issues in high-dimensional data 

With the rapid innovations in the digital space, the volume of data 

generated has increased to an unbelievable extent. 

 At the same time, breakthroughs in the storage technology area 

have made storage of large quantity of data quite cheap.  

This has further motivated the storage and mining of very large and 

high-dimensionality data sets. 

 
 

Alongside, two new application domains have seen drastic 

development.  

One is that of biomedical research, which includes gene selection 

from microarray data.  

The other one is text categorization which deals with huge 

volumes of text data from social networking sites, emails, etc.  

The first domain, i.e. biomedical research generates data sets 

having a number of features in the range of a few tens of thousands.  

The text data generated from different sources also have 

extremely high dimensions. 

 In a large document corpus having few thousand documents 

embedded, the number of unique word tokens which represent the 

feature of the text data set, can also be in the range of a few tens of 

thousands.  

To get insight from such high-dimensional data may be a big 

challenge for any machine learning algorithm.  

On one hand, very high quantity of computational resources and 

high amount of time will be required.  



On the other hand the performance of the model –both for 

supervised and unsupervised machine learning task, also degrades 

sharply due to unnecessary noise in the data. 

  

    Also, a model built on an extremely high number of features may 

be very difficult to understand.  

For this reason, it is necessary to take a subset of the features instead 

of the full set. 

 
The objective of feature selection is three-fold: 

 

Having faster and more cost-effective (i.e. less need for computational resources) 

learning model 

Improving the efficiency of the learning model 

Having a better understanding of the underlying model that generated the data 

 

• Key drivers of feature selection – feature relevance 

and redundancy 
 

• 1.Feature relevance 

In supervised learning, the input data set which is the training data 

set, has a class label attached.  

A model is inducted based on the training data set – so that the 

inducted model can assign class labels to new, unlabelled data.  

Each of the predictor variables, is expected to contribute 

information to decide the value of the class label. 

 In case a variable is not contributing any information, it is said to 

be irrelevant.  

In case the information contribution for prediction is very little, the 

variable is said to be weakly relevant.  



Remaining variables, which make a significant contribution to the 

prediction task are said to be strongly relevant variables. 
 

In unsupervised learning, there is no training data set or labelled 

data.  

Grouping of similar data instances are done and similarity of data 

instances are evaluated based on the value of different variables.  

Certain variables do not contribute any useful information for 

deciding the similarity of dissimilarity of data instances.  

Hence, those variables make no significant information 

contribution in the grouping process. 

 These variables are marked as irrelevant variables in the context 

of the unsupervised machine learning task. 

 
Let take a simple example of the student data set. Roll number of 

a student doesn’t contribute any significant information in 

predicting what the Weight of a student would be.  

Similarly, if we are trying to group together students with similar 

academic capabilities,  

Roll number can really not contribute any information 

whatsoever.  

So, in context of the supervised task of predicting student Weight 

or the unsupervised task of grouping students with similar academic 

merit, the variable Roll number is quite irrelevant. 

 
Any feature which is irrelevant in the context of a machine 

learning task is a candidate for rejection when we are selecting a 

subset of features.  

 
• 2.Feature redundancy 

A feature may contribute information which is similar to the 

information contributed by one or more other features. 



   For example, in the weight prediction, both the features Age and 

Height contribute similar information. This is because with an 

increase in Age, 
 

Weight is expected to increase. Similarly, with the increase of 

Height also Weight is expected to increase.  

Also, Age and Height increase with each other.  

So, in context of the Weight prediction problem, Age and Height 

contribute similar information.  

 

when one feature is similar to another feature, the feature is said to 

be potentially redundant in the context of the learning problem. 

 
All features having potential redundancy are candidates for 

rejection in the final feature subset. 

 Only a small number of representative features out of a set of 

potentially redundant features are considered for being a part of the 

final feature subset. 

 
The main objective of feature selection is to remove all features 

which are irrelevant and take a representative subset of the features 

which are potentially redundant.  

This leads to a meaningful feature subset in context of a specific 

learning task. 

 
• Measures of feature relevance and redundancy 

 

• 1.Measures of feature relevance 
 

Feature relevance is to be gauged by the amount of information 

contributed by a feature.  

For supervised learning, mutual information is considered as a good 

measure of information contribution of a feature to decide the value 

of the class label.  



That’s why it is a good indicator of the relevance of a feature with 

respect to the class variable. 

 Higher the value of mutual information of a feature, more relevant 

is that feature. Mutual information can be calculated as follows: 

 
MI(C, f ) = H(C) + H( f ) - H(C, f ) 

 

where, marginal entropy of the class, H(C) = 

 

 
 

marginal entropy of the feature ‘x’, H( f ) = 

 

 
 

and K = number of classes, C = class variable, f = feature set that 

take discrete values. 

 
In case of unsupervised learning, there is no class variable.  

 

 In case of unsupervised learning, the entropy of the set of features 

without one feature at a time is calculated for all the features. 

  Then, the features are ranked in a descending order of information gain from 

a feature and top ‘β’ percentage (value of ‘β’ is a design parameter of the 

algorithm) of features are selected as relevant features.  

The entropy of a feature f is calculated using Shannon’s formula below: 

 

 
 

 

 

is used only for features that take discrete values. For 
 



continuous features, it should be replaced by discretization 

performed first to estimate probabilities p(f = x). 

 
• 2.Measures of Feature redundancy 

Feature redundancy, as we have already discussed, is based on 

similar information contribution by multiple features. There are 

multiple measures of similarity of information contribution, salient 

ones being 

 
• Correlation-based measures 

• Distance-based measures, and 

• Other coefficient-based measure 

 
 

• a.Correlation-based similarity measure 
 

Correlation is a measure of linear dependency between two random 

variables. Pearson’s product moment correlation coefficient is one 

of the most popular and accepted measures of correlation between 

two random variables. For two random feature variables F1 and F2, 

Pearson correlation coefficient is defined as: 
 

 
 
 

Correlation values range between +1 and –1. A correlation of 1 (+ 

/ –) indicates perfect correlation, i.e. the two features having a 

perfect linear relationship. In case the correlation is 0, then the 

features seem to have no linear relationship. 



Generally, for all feature selection problems, a threshold value is 

adopted to decide whether two features have adequate similarity or 

not. 

 
• b.Distance-based similarity measure 

 

The most common distance measure is the Euclidean distance, 

which, between two features F1 and F2 are calculated as: 
 

 
 
 

where F1 and F2 are features of an n-dimensional data set. Refer 

to the Figure 4.9.  

The data set has two features, aptitude (F1) and communication 

(F2) under consideration. The Euclidean distance between the 

features has been calculated using the formula provided above. 
 

 
 

FIG. 4.9 Distance calculation between features 

 

A more generalized form of the Euclidean distance is the 

Minkowski distance, measured as 
 

 



 

 
 

Minkowski distance takes the form of Euclidean distance (also 

called L2 norm) when r = 2. 

 
At r = 1, it takes the form of Manhattan distance (also called L1 

norm), as shown below: 
 

 
 
 

A specific example of Manhattan distance, used more frequently 

to calculate the distance between binary vectors is the Hamming 

distance. For example, the Hamming distance 
 

between two vectors 01101011 and 11001001 is 3, as illustrated in 

Figure 4.10a. 

 
• Other similarity measures 

 

     1.  Jaccard index/coefficient is used as a measure of similarity 

between two features. The Jaccard distance, a measure of 

dissimilarity between two features, is complementary of Jaccard 

index. 
 



 
 

FIG. 4.1O Distance measures between features 

 

For two features having binary values, Jaccard index is measured 

as 
 

 
 

where, n11 = number of cases where both the features have value 

1 

 
n01 = number of cases where the feature 1 has value 0 and feature 

2 has value 1 

 
n10 = number of cases where the feature 1 has value 1 and feature 

2 has value 0 

 
Jaccard distance, dJ = 1 - J 

 



Let’s consider two features F1 and F2 having values (0, 1, 1, 0, 1, 

0, 1, 0) and (1, 1, 0, 0, 1, 0, 0, 0). Figure 4.10b shows the 

identification of the values of n11, n01 and n10. As shown, the cases 

where both the values are 0 have been left out without border – as 

an indication of the fact that they will be excluded in the calculation 

of Jaccard coefficient. 

 
Jaccard coefficient of F1 and F2, J = 

 

 

 

∴ Jaccard distance between F1 and F2, dJ = 1 – J =  or 0.6. 

 
2.Simple matching coefficient (SMC) is almost same as Jaccard 

coeficient except the fact that it includes a number of cases where 

both the features have a value of 0. 
 

 
 

where, n11 = number of cases where both the features have value 1 

 
n01 = number of cases where the feature 1 has value 0 and feature 2 

has value 1 

 
n10 = number of cases where the feature 1 has value 1 and feature 2 

has value 0 

n00 = number of cases where both the features have value 0 Quite 

understandably, the total count of rows, n = n00 + n01 



+ n10 + n11. As shown in Figure 4.10c, all values have been 

included in the calculation of SMC. 
 

 

 

 
 

One more measure of similarity using similarity coefficient 

calculation is Cosine Similarity. 

 Let’s take the example of a typical text classification problem. 

The text corpus needs to be first transformed into features with a 

word token being a feature and the number of times the word occurs 

in a document comes as a value in each row.  

There are thousands of features in such a text data set.  

Also, considering the sparsity of the data set, the 0-0 matches 

(which obviously is going to be pretty high) need to be ignored. 

Cosine similarity which is one of the most popular measures in text 

classification is calculated as: 
 

 
 

 

 

where, x.y = vector dot product of x and y = 
 

 

 

 
 
 

Let’s calculate the cosine similarity of x and y, where x = (2, 4, 0, 

0, 2, 1, 3, 0, 0) and y = (2, 1, 0, 0, 3, 2, 1, 0, 1). 

 
In this case, x.y = 2*2 + 4*1 + 0*0 + 0*0 + 2*3 + 1*2 + 3*1 + 0*0 + 

0*1 = 19 
 



 
 
 

Cosine similarity actually measures the angle (refer to Fig. 

• 11) between x and y vectors.  

• Hence, if cosine similarity has a value 1, the angle between x and 

y is 0° which means x and y are same except for the magnitude. 

•  If cosine similarity is 0, the angle between x and y is 90°. Hence, 

they do not share any similarity (in case of text data, no term/word 

is common). In the above example, the angle comes to be 43.2°. 

 

 
 

FIG. 4.11 Cosine similarity 

 

 

• Overall feature selection process 

Feature selection is the process of selecting a subset of features in a 

data set.  

As depicted in Figure 4.12, a typical feature selection process 

consists of four steps: 

 
• generation of possible subsets 

• subset evaluation 

• stop searching based on some stopping criterion 

• validation of the result 
 

 



 
 

FIG. 4.12 Feature selection process 

 

Subset generation, which is the first step of any feature selection 

algorithm, is a search procedure which ideally should produce all 

possible candidate subsets.  

However, for an n-dimensional data set, 2n subsets can be 

generated. So, as the value of ‘n’ becomes high, finding an optimal 

subset from all the 2n candidate subsets becomes intractable. 

 For that reason,different approximate search strategies are 

employed to find candidate subsets for evaluation. 

 On one hand, the search may start with an empty set and keep 

adding features. This search strategy is termed as a sequential 

forward selection.  

On the other hand, a search may start with a full set and 

successively remove features. 

 This strategy is termed as sequential backward elimination. In 

certain cases, search start with both ends and add and remove 

features simultaneously. 

 This strategy is termed as a bi-directional selection. 

 
Each candidate subset is then evaluated and compared with the 

previous best performing subset based on certain evaluation 

criterion. If the new subset performs better, it replaces the previous 

one. 



 
This cycle of subset generation and evaluation continues till a pre-

defined stopping criterion is fulfilled. Some commonly used 

stopping criteria are 

 
• the search completes 

• some given bound (e.g. a specified number of iterations) is reached 

• subsequent addition (or deletion) of the feature is not producing a better subset 

• a sufficiently good subset (e.g. a subset having better classification 

accuracy than the existing benchmark) is selected 

 

Then the selected best subset is validated either against prior 

benchmarks or by experiments using real-life or synthetic but 

authentic data sets.  

In case of supervised learning, the accuracy of the learning model 

may be the performance parameter considered for validation. 

 The accuracy of the model using the subset derived is compared 

against the model accuracy of the subset derived using some other 

benchmark algorithm.  

In case of unsupervised, the cluster quality may be the parameter 

for validation. 
 

• Feature selection approaches 

There are four types of approach for feature selection: 

 
• Filter approach 

• Wrapper approach 

• Hybrid approach 

• Embedded approach 

 

In the filter approach (as depicted in Fig. 4.13), the feature subset 

is selected based on statistical measures done to assess the merits of 

the features from the data perspective. 



 No learning algorithm is employed to evaluate the goodness of 

the feature selected. Some of the common statistical tests conducted 

on features as a part of filter approach are –Pearson’s correlation, 

information gain, Fisher score, analysis of variance (ANOVA), Chi-

Square, etc. 
 

 
 

FIG. 4.13 Filter approach 

 

In the wrapper approach (as depicted in Fig. 4.14), 

identification of best feature subset is done using the induction 

algorithm as a black box. 

 The feature selection algorithm searches for a good feature subset 

using the induction algorithm itself as a part of the evaluation 

function. 

 Since for every candidate subset, the learning model is trained 

and the result is evaluated by running the learning algorithm, 

wrapper approach is computationally very expensive. However, the 

performance is generally superior compared to filter approach. 
 

 
 

FIG. 4.14 Wrapper approach 

 

Hybrid approach takes the advantage of both filter and wrapper 

approaches.  



A typical hybrid algorithm makes use of both the statistical tests 

as used in filter approach to decide the best subsets for a given 

cardinality and a learning algorithm to select the final best subset 

among the best subsets across different cardinalities. 

 
Embedded approach (as depicted in Fig. 4.15) is quite similar to 

wrapper approach as it also uses and inductive algorithm to evaluate 

the generated feature subsets. However, the difference is it performs 

feature selection and classification simultaneously. 
 

 
 

FIG. 4.15 Embedded approach 

 

•  

•  

•  

• Important Points to Remember 
 

A feature is an attribute of a data set that is used in a machine learning process. 

Feature engineering is an important pre-processing step for machine learning, 

having two major elements: 

 
• feature transformation 

• feature subset selection 
 

 

Feature transformation transforms data into a new set of features which can represent the 

underlying machine learning problem 

There are two variants of feature transformation: 

 
• feature construction 

• feature extraction 



 

 

Feature construction process discovers missing information about the relationships 

between features and augments the feature space by creating additional features. 

Feature extraction is the process of extracting or creating a new set of features 

from the original set of features using some functional mapping. Some popular 

feature extraction algorithms used in machine learning: 

 
• Principal Component Analysis (PCA) 

• Singular Value Decomposition (SVD) 

• Linear Discriminant Analysis (LDA) 
 

 

Feature subset selection is intended to derive a subset of features from the full 

feature set. No new feature is generated. 

The objective of feature selection is three-fold: 

 
• Having faster and more cost-effective (i.e. less need for 

computational resources) learning model 

• Improving the efficiency of the learning model 

• Having a better understanding of the underlying model that 

generated the data 

Feature selection intends to remove all features which are irrelevant and 

take a representative subset of the features which are potentially 

redundant. This leads to a meaningful feature subset in context of a 

specific learning task. 

 

Feature relevance is indicated by the information gain from a feature measured 

in terms of relative entropy. 

Feature redundancy is based on similar information contributed by multiple features 

measured by feature-to-feature: 

 
• Correlation 

• Distance (Minkowski distances, e.g. Manhattan, Euclidean, etc. used as 

most popular measures) 

• Other coefficient-based (Jaccard, SMC, Cosine similarity, etc.) 
 

 

Main approaches for feature selection are 

 
• Filter 

• Wrapper 

• Hybrid 

• Embedded 

 



 

• Jaccard coefficient vs. SMC 
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