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LINEAR ALGEBRA & CALCULUS
(Common to All Branches of Engineering)

Course Objectives:

To equip the students with standard concepts and tools at an intermediate to
advanced level mathematics to develop the confidence and ability among the
students to handle various real-world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

COL1: Develop and use of matrix algebra techniques that are needed by engineers for
practicalapplications.

CO2: Utilize mean value theorems to real life problems.

COa3: Familiarize with functions of several variables which is useful in
optimization.CO4: Learn important tools of calculus in higher

dimensions.

CO5: Familiarize with double and triple integrals of functions of several
variables in two dimensions using Cartesian and polar coordinates and in

three dimensions using cylindricaland spherical coordinates.

UNIT I Matrices

Rank of a matrix by echelon form, normal form. Solving system of
Homogeneous and Non-Homogeneous equations. Solutions of simultaneous
linear equations by Gauss elimination method and Gauss-Jordan method.
Iterative Methods: Jacobi’s Iteration method and Gauss Seidel Iteration
Method.

UNIT Il Linear Transformation and Orthogonal Transformation

Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix,
Cayley- Hamilton Theorem (without proof), finding inverse and powers of a
matrix by Cayley- Hamilton Theorem, Quadratic forms and Nature of the
Quadratic Forms, Reduction of Quadratic formto canonicalforms by
Orthogonal Transformation.

UNIT Il Calculus

Mean Value Theorems: Rolle’s Theorem, Lagrange’s mean value theorem
with their geometrical interpretation, Cauchy’s mean value theorem, Taylor’s
and Maclaurin’s theorems with remainders (without proof), Problems and
applications on the above theorems.

UNIT IV Partial differentiation and Applications (Multi variable calculus)
Partial derivatives, total derivatives, chain rule, change of variables, Taylor’s



and Maclaurin’s series expansion of functions of two variables. Jacobian,
maxima and minima of functionsof two variables, method of Lagrange
multipliers.

UNITV Multiple Integrals (Multi variable Calculus)
Double integrals, triple integrals, change of order of integration, change of
variables to polar, cylindrical and spherical coordinates. Finding areas (by
double integrals) and volumes (by double integrals and triple integrals).
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Subject: Linear Algebra & Calculus
Unit-1: Matrices:

Syllabus: Rank of a matrix by echelon form, normal form. Solving system of
homogeneous and non-homogeneous equations linear equations.

Matrix: A set of mn numbers (Real or Complex) can be arranged in the form of m rows and n
columns ( each column containing m elements) is called as Matrix. The Numbers of the matrix
elements. Matrices are denoted by Capital letters A, B, ..etc.

Order of the Matrix: The number of rows and columns represents the order of the matrix. It
is denoted by mxn , where mis number of rows and nis number of columns.

Square Matrix: A matrix in which the number of rows and number of columns are equal is
said to be square matrix. It is of order nxn or a square matrix n.

1 2 -3
Ex:| 1 5 4 | isan upper triangular matrix of order 3.
-1 4 3

3x3
Rectangular matrix: A matrix in which the number of rows and number of columns are not
equal is said to be rectangular matrix. It is of order mxn.

2 3 4 ) :

Ex: is a rectangular matrix of order 2x3.
4 -5 6],

Row Matrix: A matrix is said to be row matrix, if it contains only one row. It is denoted by It

is of order 1xn.

Ex:[1 -2 3], isarow matrix.

Column Matrix: A matrix is said to be column matrix, if it contains only one column. It is
denoted by It is of order nx1.

1
Ex: | -3| isacolumn matrix.
6 3x1
Diagonal Matrix: A square matrix A is said to be diagonal matrix if a; =0, Vi # ]

(On)
A Square matrix is said to be diagonal matrix, if all the elements except principal diagonal
elements are zero.

1 0 O
Ex:|{0 -2 0| adiagonal matrix.
0 0 3],

[0 The elements on the diagonal are known as principle diagonal elements.

[0 The diagonal matrix is represented by A=Diag (@, 8y, ......, @y, )-

. . . |3 =0,Vi=]
Scalar Matrix: A Square matrix A, is said to be a Scalar matrix if a =k Vi |
ij — V=

(On)



A diagonal matrix is said to be a Scalar matrix, if all the elements of the principle diagonal are
equal. i.e. a; =k, Vi=j
2 00
30 .
Ex: 0 3 and |0 2 0| ascalar matrices.
0 0 2
(10 Trace of a Scalar matrix is nk

Unit Matrix (or) Identity Matrix: A Square matrix A of order is said to be a Unit (or) Identity

o a; =0,Vi# ]
matrix if A= o
a; =LVi=]
(or)
A Scalar matrix is said to be a Unit matrix if the scalar k =1
1 00
10 . ]
Ex: |2={0 J, I,=|0 1 O] areunit matrices.
0 01

Zero or null matrix: A matrix in which all the elements are zero is called a zero or null matrix.
It is of order mxn and is denoted by O, ,

00 0 0O :
EX: O= 0= are zero matrices
00 0 0O

Trace of a Matrix: Suppose is a square matrix, then the trace of is defined as the sum
of its diagonal elements. It is denoted by TrA
leTr(A)=a,+a, +....+a

Properties:
(1) Tr(A+B)=TrA+TrB,

(2) Tr(KA)=KTrA
(3) Tr(AB)=Tr(BA)

Transpose of a Matrix: The transpose of the given matrix is obtained by interchanging rows
and columns. Then it is denoted by AT or Al

1 2 3 1 1 -1
Ex:If A=|1 5 4 |,then AT=[2 5 4
-1 4 3 -3 4 3

Properties: If A" andB" are the transpose of A and B respectively, then
(1) If A'is of Order mxnthen AT is of order nxm.
(2) If A is a square matrix, then TrA=TrA"
@ (A7) =A
(4) (A+B)" = A"+ B"Where A& B are of same order
(5) (AB)" =B'A', where A& B being conformable multiplication
(6) (kA)" =k AT, k being a constant

@ (1) =1



Triangular Matrix: A square matrix in which each element either above or below the principal
diagonal is zero is called a Triangular Matrix

Upper Triangular Matrix: A square matrix in which all the elements below the principal
diagonal are zero is called a Upper triangular matrix
Thus A square matrix is said to be an Upper Triangular matrix, if a; =0,Vi> j

1 2 -3
Ex: |0 2 4 |isan upper triangular matrix
0 0 3

Lower Triangular Matrix: A square matrix in which all the elements above the principal
diagonal are zero is called a lower triangular matrix
Thus A matrix is said to be an Upper Triangular matrix, if a; =0, Vi< j

1 00
Ex: | -2 2 0 [isan lower triangular matrix
5 8 3

Singular Matrix: A square matrix is said to be singular if |[A|=0.

1 11
Ex: | -2 2 1 |aresingular matrices
2 2 2

Non-singular Matrix: A square matrix is said to be non-singular if|A| #0 .

1 11
Ex: | -2 2 1]isanon-singular matrix
2 -1 2

Inverse of a Matrix: Let A square matrix of order n, then there exist another matrix B such
that AB=BA=1 is said to be inverse of A, and it is denoted by A™ . ThusB=A".
Note: (i) A square matrix A is said to be Invertible <>|A|0 i.e. Ais non singular

adiA
A
Symmetric Matrix: A Square matrix A is said to be symmetric matrix if a; =a
ie. AT=A
a h g -1 2 3
Ex:|h b f|,|2 5 4|aresymmetric matrices of order 3.
g f c 3 46
()] 1dentity matrix is a symmetric matrix.

(i) At =

Vi, j

i’

[J[]1Zero square matrix is symmetric. i.e. .

[1CJNumber of Independent elements in a symmetric matrix are , is order.



Anti-Symmetric Matrix: A Square matrix A is said to be symmetric matrix if
a; =—a;,Vi,jie AT=—-A
Note: The diagonal elements of a skew-symmetric matrix are zero
0 h -g 0 2 -5
Ex:|-h 0 f [,|-2 0 4 |areskew-symmetric matrices
g -f 0 3 4 0

Minor of an Element: Let A=(a be a matrix, then minor of an element a; is denoted by

)
ij /nxn
M, and is defined as the determinant of the sub-matrix obtained by Omitting i” row and i"
column of the matrix.

Cofactor of an element: Let A= (a;),,,,be a matrix, then cofactor of an element a; is denoted

ij /nxm

by A,and is defined as A, =(-1)""' M.

Cofactor Matrix: If we find the cofactor of an element for every element in the matrix, then
the resultant matrix is called as Cofactor Matrix.

Adjoint of a matrix: If A is square matrix of order n, then the transpose of the cofactor matrix
of A is said to be the adjoint of a matrix A. It is denoted by adj A.

a; &, a5
Thus, if A=|a,, a, a,|,then
a; 8y Ay
Ar A As
the cofactor matrix of A | A,, A, A,
Ay Ay Ay
Ay A Ay
. adjA =[The cofactor matrixof A]' =| A, A, A,
Ay Ay Ay

Note: If A is a square matrix of order n, then A.(adjA) = (adjA). A =|Al.1

Where I is a unit matrix of order n

Minor of order r: The determinant of a square sub matrix of the given matrix is called its
minor. If the order of the square sub matrix is r, then the corresponding minor is said to be a
minor of order r.

Rank of a matrix: A matrix A is said to be rank r , if

Q) It has atleast one minor of order r non zero.
(i) Every minor of order higher than r vanishes.
Then the rank of A is denoted by p(A) or r(A)

Properties:-

I The rank of a matrix is always unique.
ii. If Ais anon-zero matrix, then p(A)>1.

iii. The rank of a null matrix is zero i.e, p(0)=0
iv. If A is singular matrix of order n, then p(A) <n



V. If A is nonsingular matrix of order n, then p(A) =n

Vi, If 1, is the unit matrix of order n, then p(A)=n
Vii. If A is a matrix of order mxn, then p(A) < min(m,n)
viii.  The rank of the matrix is same as that of its transpose i.e., p(A) = p(A")
1 2 1
Problem 1: Find the rank of the matrix A=|-1 0 2
2 1 -3
1 2
Solution: Given A=|-1 0 2
2 1 3
1 2 1
Then |A|=|-1 0 2|=1(0-2)-2(3-4)+1(-1-0)=-2+2-1=-1%0
2 1 -3

i.e. minor of order 3 is non-zero.

. Therank of Ais 3 ie. p(A) =3

2 3 4 1
Problem 2: Find the rank of the matrix A= 5 2 0 -1
-4 5 12 -1
2 3 4 1
Solution: Given A= 5 2 0 -1
-4 5 12 -1

Applying C, <> C, , we get

-1 3 4 2
A~-1 2 0 5
-1 5 12 4

Applying R, - R, -R,R; > R, —R,, we get

-1 3 4 2
A~l0 -1 -4 3
0 2 8 -6

Applying R, —> R, + 2R, , we get



-1 3 4 2
A~ 0 -1 4 3
0 0 0 O

We note that all the third minors are zero but the second order minor

-1 3
:‘ J:l¢0
0

Hence rank of A'is 2, i.e.p(A) =2

Reduction of matrix A to Echelon Form:

The Echelon form of matrix A is an equivalent matrix, obtained by a finite sequence of
elementary operations on A which has the following properties.

(i). The zeros, if any, are below a nonzero row.

(if). The first non-zero element in each non-zero row is one.

(iii). The number of zeros before the first nonzero entry in a row less than the no number
such zeros in the next row immediately below it.

Note (1): Condition (ii) is optimal (not compulsory)

Note 2: The rank of A is equal to the number of nonzero rows in its echelon form.

Problems:
-1 2 1 8

Problem 1: Reduce the matrix A=| 2 1 -1 0| to Echelon form and hence find its rank
3 2 1 7

[ Intu(A) June, 2009].

-1 2 1 8
Solution: Given A= 2 1 -1 0
3 2 1 7

Applying R, — —R,, we get



1 -2 -1 -8
A~2 1 -1 O
3 2 1 7

Applying R, > R, -2R,R, > R, —3R,, we get

1 -2 -1 -8
A~0 5 1 16
0 8 4 31

Applying R, — 5R, -8R, , we get

1 -2 -1 -8
A~10 5 1 16
0 0 12 27

Thus the matrix is in the Echelon form. The number of non zero rows is 3.

Hence the rank of A = 3.

1 2 3 4
) 2 3 45 .
Problem 2: Reduce the matrix A = Ml g to Echelon form and hence find its rank
4 5 6 7

[ Intu(A) June, 2018].

1 2 3 4

] ] 2 3 4 5
Solution: Given A =

3 45 6

4 5 6 7

Applying R, >R, -R,R, > R,—R,,R, > R, —R;, we get
1 4

A~

e )

3
1 11
1 11
1 11

Applying R, >R, -R,R, > R,—R,,R, > R, —R,, we get

1 2 3 4
0 -1 -2 3
0 0 0 O

0 0 0 O



This is in the Echelon form. The number of non zero rows is 2.
Hence the rank of A = 2.

Normal form: Every mxn matrix of rank r can be reduced by a finite number of elementary

I, 0 I
transformations to the form | " | or [Ir }or[lr O] or| ' |, wherel, is the unit matrix of
00 0

order r and 0is the null matrix
The reduced form is known as normal form or canonical form

01 2 =2
Problem 1: Reducethematrix (4 0 2 6
21 31

to the normal form and hence find its rank.

-2
Solution: Let the matrix be A = 6
1

N b O
=
w NN

Applying C, <> C,, we get

>

!
=
N A O
W NN
o

Applying R, > R, —R;, we get

>
!
o o

Applying R, - R; —R,, we get

10 2 =2
A~|0 4 2 6
0 21 3
. R,
Applying R, — > we get
10 -2
A~|0 2 3
0 2 3

Applying C, - C,-2C,,C, »>C, +2C,, we get

0 00
2 13
2 13



1 000
A~|0 2 13
0 00O
. C,
Applying C, — > we get
1 000
A~0 1 13
0 00O

Applying C, -»C,-C,,C, > C,-3C,, we get

1000
A~|0 1 00
0000
A |t O
0 O

Hence rank of A=2 i.e. p(A)=2.

Problem 2: Reduce the matrix A to the normal form and hence find its rank. Where

2 1 3 4
0 3 41
A=
2 3 75
2 511 6
2 1 3 4
. ) 0 3 41
Solution: Given A=
2 3 75
2 511 6

Applying R, >R, —R,R, >R, —R,,, we get

2 1 3 4

0 3 41
A~

0 2 4 1

0 4 8 2

Applying C, »C,-2C,,C, »C,-3C,,C, - C, -4C,,, we get



©® ~ ~ O

0
1
1
2

o O O N
A DD w O

{

Applying R, > 3R, -2R,,R, &> R, —2R;,, we get

it

Applying C, <> C,, we get

{

Applying R, > R, —R,, we get

{

Applying C, - C,-4C,,C, »C, -3C,, we get

0
1
1
0

O O O N
o O w

4
4
0

o oo N
O B L, O
O N NN O
© o w o

O O O N
o O +— O
o
do

2 0 0 O
010 O
o 00 -3
0000
Applying C, <> C,, we get
2 0 0O
A- 01 0 O
0 0 -30
00 0O

Applying C, — %,C3 - C—; , We get



1 0 0O
01 0O
A ~
0010
00 00
A~_ I O3><1j|
_Ol><3 lel

Hence the rank of A = 3.

Normal form or canonical form:

1.0 I
(i) A matrix of the form| " | or [Ir ]or[lr O]or " |, wherel, is the unit matrix
00 0
of order r and 0is the null matrix is called the normal form or canonical form.
N : I, 0 :
(i) Every mxn matrix can be reduced to the form b o by a series of elementary

Transformations, where r is the rank of the matrix.

1 -1 1
Problem 1: Determine the rank of the matrix A= |1 1 1 | by reduced it to the normal
3 1 1
form.
1 -1 1
Solution: Given A=|1 1 1
31 1

Applying R, > R, —R,R; = R, —3R,,we get

1 -1 -1
A~I0 2 2
0 4 4

Applying C, - C, +C,,C, - C, +C,, we get

>
!
o ok
5N O
5N O

Applying R, - R, —2R,, we get



>

!
o o
o N o
o N o

Applying C, - C,-C,, we get

>

!
o o
o N o
o o o

Applying C, —» % we get

1 0O
A~{0 1 O
0 0 0
)
This is of the form | 2
0 O
Rank of A = 2.

Problem 2: Find the rank of the matrix A by reduced it to the normal form where
1 1 1 1

1 2 3 -4
2 3 5 -5
3 4 -5 8
1 1 1 1
) ) 1 2 3 -4
Solution: Given A =
2 3 5 -5
3 4 5 8

Applying R, > R, -R,,R, > R, -2R,,R, = R, —3R,we get

1 1 1 1

01 2 -5
A~

o 1 3 -7

0 -7 8 5

Applying C, »C,-C,,C, —»C,-C,,C, ->C, —C we get



o —» O O o B O O S N O

O O O

Applying C, —» C18 we get

o O O B+
o O +— O
o — O O

Rank of A = 4.



Problem 3: Find the rank of the matrix A by reduced it to the normal form where
3 -2 0 -1

0o 2 2 1
1 -2 -3 2
0o 1 2 1
3 -2 0 -1
) ) 2 2 1
Solution: Given A =
-2 -3 2
o 1 2 1

Applying R, > R, <> R,, we get

1 -2 -3 2

0 2 2 1
A~

3 2 0 -1

01 2 1

Applying R, > R, —3R, we get

1 -2 -3 2

0 2 2 1
A~

0 4 9 7

01 2 1

Applying C, - C, +2C,,C, »C,+3C,,C, »C,-2C,, we get

1 00

02 2 1
A~

0 49 7

012 1

Applying R, <> R, we get

1 00

012 1
A...

0 4 9 7

022 1

Applying R, > R, -4R,,R, > R, —2R,, we get



10 0 O

01 2 1
A ~

0 0 1 -11

0 0 -2 -1

10 0 O

01 0 O
A ~

0 0 1 -11

0 0 -2 -1

Applying R, > R, +2R;, we get

1 00 O

010 O
A~

0 01 -11

0 0 0 -23

Applying C, - C, +11C,, we get

100 O
010 O
A~
001 O
0 00 -23
. C,
Applying C, > ——=, we get
-23
1000
0100
A~
0010
0 001

A ~1,, which is the canonical form of the matrix A

Rank of A = 4.
Normal form of the type PAQ:-

(0]
Every mxn matrix of rank rcan be transformed to the form {Or O}: PAQ by elementary

transformations.



Working rule:-
1. Write A, =1,.Al.,

2. Now apply row and column transformations on the LHS matrix A to transform its normal
form carrying out every row transformation on the pre-factor 1 . and every column

m

transformation on the post factor I

IrO—F>AQ
00|

Problem 1: Find the nonsingular matrices P and Q such that the normal form of A is PAQ
13 6 -1

where A= |1 4 5 1 |.Hence find its rank.
154 3

reduces to non-singular matrices P and Q such that

n

Solution: Since A is a matrix of 3x4

We write A=A = |,Al,

1000
136 -1 {1 00
0100
145 1(=010]A
0010
154 3 0 01
0 001
Applying R, > R, —-R,R; &> R, —R,, we get
1000
13 6 -1 1 00
0100
01—12:—110A0010
02 -2 4] |-101
0 001

Applying C, - C,-3C,,C, »C,-6C,C, »C, +C,, we get

1 -3 61
10 0 O 1 0O
1 0 0
01—12=—110AOO 0
0 2 -2 4 -1 0 1
0 0 1
Applying R, —» R, —2R,, we get
1 -3 61
0 0 O 1 0 O
0 1 0
—12=—110A00 0
0 0 O 1 -2 1
0 0 1



Applying C, - C,+C,,C, »C, -2C,, we get

1 -3 9 7
1 000 1 0 0
1 1 =2
01 00|=-1 1 0|A
0 0 1 O
0 00O 1 -2 1
0 0 0 1
1 -3 9 7
1 0 0
.|, O 0 1 1 -2
ie. =PAQ,where P=|-1 1 O0|and Q=
O O 0O 0 1 O
1 21
0O 0 0 1

1, O
Since A=| 2 ,therefore, rank of A is 2
O O

Problem 2: Find the nonsingular matrices P and Q such that the normal form of A is PAQ
1 2 3 =2

where A= |2 -2 1 3 |.Hence find its rank.

13 0 4 1

Solution: Since A is a matrix of 3x4

We write A=A = |,Al,

1000
1 2 3 2 1 00
0100
-2 1 =0 1 0JA
0 010
3 0 4 1 0 01
0 001
Applying R, > R, —2R,R; > R, —3R,, we get
1 000
1 2 3 -2 1 00
0100
0 6 5 7|=[-2 1 0|A
0010
0 6 5 7 -3 01
0 001

Applying C, »C,-2C,,C, - C,-3C,,C, ->C, +2C,, we get

1 -2 3 2
1 0 0 O 1 00

01 0 O
0 6 5 7|=-2 1 0|A

0 0 1 O
0 6 57 -3 01

0O 0 0 1

Applying R, - R, —R,, we get



1 -2 -3 2
1 0 0 O 1 0 0
01 0 O
0 6 -5 7|={-2 1 0|A
0O 0 1 0
0O 0 0 O -1 -1 1
0 0 1
Applying C, > —%, we get
1 1/3 -3 2
0 O 1 0 0 Y
0 /6 0 O
5 7|=|-2 1 0]A
0O 0 1 O
0 O -1 11
0O 0 0 1
Applying C, - C,+5C,,C, »C, -7C,, we get
1 1/3 -4/3 -1/3
1000 1000565/13 71§6
01 00|=(-2 1 0|A
0 0 1 0
0 00O -1 -1 1
0 O 0 1
1 1/3 -4/3 -1/3
_ - 1 0 O Y / Y
.|, O 0 1/6 5/6 -7/6
ie. =PAQ,where P=|-2 1 O0O|and Q=
O O 0 O 1 0
- - -1 -1 1
0 O 0 1
. 1, O] :
Since A= , therefore, rank of A'is 2
_O O_




Linear system of equations:

Consider the system of ‘ m ’linear equations in ‘ N ’unknowns say as given below.

A X +a,X, + +a,, n:bl

By X +8pX, o+ 8, X, =D,

2n"n
----------------------- 1)
A X 8%, e+ A, X, =D
The above equations can be written in the matrix form as
Ay Ay, %] [ ]
Byy Bppereenne a, || X b,
=|. |- 2
| @y Bppeeees Ay || X0 | [ Ba ]
=AX=B e 3)

where A is called coefficient matrix

and B is called constant matrix

The matrix [ A|B ]is called Augumented matrix and is given by

By Agpeneee a, b
8y Apperrennn a,, b,
Ay Appeeenens a,,. b,

The given system is said to be consistent, if the system equations posses one or more solutions.
Otherwise the system is said to be inconsistent.

Gauss-elimination method:

This method is simple and general. It consists of two steps
Step 1: Reduction of the Augumented matrix to upper triangular or echelon form.
Step 2: Finding the values of the unknown variables by back substitution.

Problem 1: Solve the following system of equations by Gauss elimination method.



X+y+z2=3;

3X—y+3z =16;
X+y—-2=-3;

Solution: Given system of system of equations can be written in the matrix form AX=B

1 1 1 X 3
With A=|2 -1 3|, X=|y|,B=|16
3 1 -1 Z -3

Consider the augumented matrix [A/B] is

11 113
[A/B]=|2 -1 316
3 1 -1-3

Applying R, > R, —2R,, R, — R, —3R, we get

1 1 1|3
[A/B]~[0 -3 110
0 -2 -4/-12

Applying R, — 3R, —2R,we get

1 1 13
[A/B]~[0 -3 1|10
0 0 -14/-56

Applying R; — %we get

1 1 1|3
[A/B]~ 0 -3 1j10
0 0 14
This is in the Echelon form.

This is equivalent to

1 1 1fx 3
0 -3 1|jy|=|10
0 0 1|z 4

Which implies



X+y+z2=3;

-3y+2=10
z=4

By back substitution, we have
x=1ly=-2,2=4.
Problem 2: Solve the following system of equations
X+2y+3z=1

2X+3y+8z2=2
X+y+z2=3

Solution: Given system of system of equations can be written in the matrix form AX=B

Consider the augumented matrix [A/B] is

1 2 31
[A/B]=|2 3 8|2
11 13

Applying R, - R, -2R,R;, = R, — R, we get

1 2 3
[A/B]~|0 -1 2|0
0 -1 -2

Applying R, - R, —R,we get

1 2 31
[A/B]~|0 -1 20
0 0 -4f2

This is in the Echelon form.

This is equivalent to



1 2 3|l x 1
0 -1 2| y|=|0
2

0 0 4|z
Which implies
X+2y+3z=1
-y+2z=0
—47=2

Solving these equations,

By back substitution, we have

9 -1
CX=—,y=-172=—.
2 y 2

Gauss-Jordan Elimination method:

Consider the system of m linear non-homogeneous equations with n unknowns.

Let the matrix form for the linear equations be AX=B.

To find the rank of A and [A/B], reduce the augmented matrix [A/B] to echelon form by
elementary row operations then the matrix A automatically reduces to echelon form.

Note:

Q) The system is consistent and it has unique solution, If p(A)= p(A/B)=n, where

n is the no. of unknowns.
(i)  The system is consistent and it has infinite solution, If p(A)=p(A/B)<n.

Note: In this case, we have to give arbitrary values to n—r variables and the remaining
variables can be expressed in terms of these arbitrary variables.

(iii)  The system is inconsistent and it has no solution, If p(A) = p(A/B).
Problem 1: Discuss for what values of the simultaneous equations

X+Y+2=6; Xx+2y+32=10; X+2y+Az=y;

have (i) no solution (ii) a unique Solution (iii) an infinite number of solutions
Problem 2: Find whether the following set of equations are consistent if so, solve them
X+Y+22=4,2X-y+32=9,3x-y—-2=2

Solution: The given system of equations can be written in the matrix form as



1 1 2 ||x 4
2-1 3 |ly|=|9
3-1-1 |z 2
i.e., AX=B

The augmented matrix [ A/ B]is

[

2
[A/B]= 3

w NP
|

P

H

N oo b

Applying R, > R,-2R,R, > R, —-3R,

11 2 4
[A/B]~|0 -3 -1 1
0-4 -7 -10

Applying R, - 3R, -4R,,

1 1 2 4
[A/B]~|0-3 -1 1
0 0 -17 -34
Rank of A=3 and Rank of [A/B]=3
Rank of A= Rank of [A/B]=3= no of unknowns

The given system has a unique solution.

11 2 x] [4
0-3 -1{yl=|1
0 0 -17|z| |-34

This is equivalentto x+y+2z=4
-3y-z=1
-172=-34
From (3), we have z=2
Substituting z=2in(2) -3y-2=1= y=-1
Substituting y=-1, z=2in (1) x+-1+4=4=x=1

S Xx=1y=-1z=2 isthe solution.



Problem 2: Test for consistency in the set of equations and solve them if they are consistent
X+2y+22=2,3Xx—2y—-2=53X-5y+3z=-4,X+4y+62=0

Solution: The augmented matrix [A/B] is given by

1 2 2|2
3 2 -1|5
[A/B]=
2 5 3|4
1 4 6|0

Applying R, > R,-3R,, R, > R,-2R and R, > R, —R,,we get

1 2 22
0 -8 -7|-1
[A/B]~
0 -9 -1(-8
0 2 42

. R
Applying R, > R—21 R, > —?i and R, > % ,we get

[A/B]~

= O 00N
o L N

2
7
1
2

o O O -

-1

Applying R, <> R,, we get

N

[A/B]~

~N P NN
|
= 00 N

2
1
9
8

o O O -

Applying R, > R, -9R,,R, > R, -8R, , we get

12 2|2
01 2 |1
[A/B]~
0 0 -17 (17
00 -9|9

Applying R, — % and R, > R—;,we get



212
2 |-
Al B]~
[A/B] )
1

2
1
0
0

O O o
(S SN

Applying R, - R, —R; ,we get

12 2|2
01 2]
[A/B]~
00 1|1
0 0 0|0

Rank of A= number of non-zero rows = 3

Rank of [A/ B]= number of non-zero rows = 3 and n=number of variables=3

" p[A] = p[A/ B]=n=3. So the system is consistent and has unique solution.

1 2 2 y 2
01 2 -1
We have y|=

0 01 , -1

00 O 0
X+2y+2z=2 L. (1)
y+2z=-1 ... (2)
z=-1 e (3)

Solving these equations, we get
- X=2,y=1z=-11is the solution.
Linear system of Homogeneous equations:
Consider the system of ‘ n’ Homogeneous linear equations AX=0
Here the coefficient matrix A and augmented matrix [A/O] are same
Therefore p(A)=p(A/O)
The system of equations is consistent always.
Let r be the rank of the matrix A
Nature of the solution:

) If r=n, then the system of equations have only trivial solutions
i) If r<n, then the system of equations have infinite no of non-trivial solutions



iii) If no. egations < no. of unknowns, then the system of equations have infinite no of
non-trivial solutions
Trivial solution: Zero solution is called trivial solution

Non-Trivial solution: Non-Zero solution is called non-trivial solution
Note: For the system of equations AX=0

Q) A is singular = X is non-trivial solution

(i) Aisnon-singular = X is trivial solution.
Problem 1: Solve the system of equations x+y+w=0, y+z=0, x+y+z+w=0,
X+y+2z2=0
Solution: The system of equations in matrix form given by

1 0

-

1
1
1
1

S N < X

0 1
1 1
1 2

o +— O
o O O

The coefficient matrix A=

e =
e T
N R RO
o L O K

Applying R, > R,-R,,R, > R, —R,, we get

110 1

011 0
A~

0 01 O

0 0 2 -1

Applying R, - R, —2R,, we get

110 1

0110
A~

0010

0 00 -1

Rank of A = r =4 and number of variables n=4
Since r=n
There is no non trivial solution

- X=0,y=0,z=0,w=0 is the solution.



Problem 2: Solve the system of equations x, +2x, —2x, =0, 2x, —X, —X, =0

X +2X% =X, =0, 4X =X, +3%, =X, =0.

Solution: The system of equations in matrix form given by

1 2 0 2| x 0
2 -1 0 -1} x, B 0
1 0 2 -1{x| |0
4 -1 3 -1||x, 0
2 0 -2
-1 0 -1
The coefficient matrix A=
0 2 -1
-1 3 -1

1 1 01

0 5 0 3
A~

0 -2 21

0 9 37

Applying R, »5R, -2R,,R, &> 5R, —9R,, we get

1 1 0 1
0 5 0 3
0 0 10 -1
0 0 15 8

Applying R, = 2R, —3R,, we get

11 0 1
0 -5 0 3
“lo 0 10 -1
0 0 0 19

Rank of A = r =4 and number of variables n=4
Since r =n, there is no non trivial solution
=% =0,%x,=0,%=0,x, =0 is the solution.

Problem 3: Solve the system of equations  X+Yy-3z+2w=0,2Xx-y+2z-3w=0,
3X-2y+z7-4w=0,-4x+y-3z+w=0.



Solution: The system of equations can be in matrix form as

1 1 -3 2|x 0
2 -1 2 -3|y 0] .
= i.e.AX=0
3 -2 1 -4}z 0
-4 1 -3 1|w 0

1 1 -3 2

. . i -1 2 -3
Consider the coefficient matrix A=

3 -2 1 -4

-4 1 -3 1

Applying R, > R,-2R,R, > R, -3R,,R, »> R, +4R,, we get

1 1 -3 2
0 -3 8 —7
A ~
0 -5 10 -10
0 5 -15 9
] R,
Applying R; —» " we get
1 1 -3 2
0 -3 8 -7
A 9
o 1 -2 2
0 5 -15 9
Applying R, <> R,, we get
1 1 -3
0o 1 =2
A ~
0O -3 8 -7
0 5 15 9

Applying R, - R, +3R,,R, - R, —5R, , we get

1 -3 2
1 -2 2
0 2 -1
0 5 -1

o O O -

Applying R, = 2R, +5R;, we get



o O O -
O O - -

This is in the Echelon form
Rank of A = Number of non zero rows =4
Since r =n, there is no non-zero solution.

- X=0,y=0,z=0,w=0 is the solution.

-3 2
-2 2



Sub: Linear Algebra & Calculus
Unit-11
Syllabus: Eigen values & Eigen vectors: Eigen values and Eigenvectors and their
properties, Cayley Hamilton theorem (without proof), finding inverse and power of a
matrix by Cayley-Hamilton theorem, diagonalisation of a matrix.

Consider the system of ‘ n’linear equations in ‘N "'unknowns

(a, —A)x +a, X, +......+a,X, =0
A% +(a,, —A)X, +....+a, X, =0

....................... (1)

Then these equations can be written in the form of matrix as (A—A1)X =0, where isa A
parameter.

These equations will have a non-trivial solution iff the matrix (A—Al) is singular ie.,

|A—/1I | =0. This equation is known as characteristic equation.

The roots of the characteristic equation are the characteristic roots or latent values or Eigen
values.

If A is a characteristic root of a matrix A, then a non zero vector X such that AX =AX ia
called a characteristic vector or eigen vector of A corresponding to the characteristic root A .

OR

Let A be a square matrix of order n. A nonzero vector X is said to be a characteristic vector or
eigen vector of A, if there exists a scalar A such that AX =AX .

Note: Eigen vector must be a non zero vector

Problem 1: Find the Eigen values and the corresponding Eigen vectors of

w P
R
R koW

Sol: If X'is an Eigen vector of A corresponding to the Eigen value A of A,

We have (A-A1)X =0



0
X, |[=]0] e (1)
0

The Characteristic equation of A is

|A-21|=0
1-2 1
ie,| 1 5-1 1 |=0
1 1-2

On simplying,

= A -74%+36=0
— (1 +2)(A-3)(1-6)=0

.. The Eigen values of Aare A= -2, 3, 6.
To find Eigen Vectors:-

The eigen vectors X

Il
x
N

of A corresponding to the eigen values A are given by
(A-21)X =0

1-4 1 3 || X 0
=1 5-4 1 |X
3 1 1-A]x 0

Il
o
1
1
1
i
i
—~
=
~

Case(i): For A=-2 from (1), we get

3 1 3][x] [o
=1 7 1{x,|=|0
31 3|x| [0

3
Reducing the coefficient matrix to the echelon form

Applying R2— 3R2—Ri, Rs—R3-R1



3 1 3||x 0
=0 20 0O x,|=|0 Since r=1,n=3 (n-r=3-1=2)
0 0 Ofx 0
Hence we have
X +2X, —3%, =0
20x, =0

For one variables, we have to give one arbitrary constant.
X, =0,

We taking x, =k = x, =K

For A =-2, the corresponding eigen vector .. | x, |=k| O

Case(ii): 4 =3, the eigen vector X is given by

=<

>
I

3 13 0
=1 7 1 =0
3 13 0

x

3
Reducing the coefficient matrix to the echelon form

Applying R2— 3R2—Ri, R3—>R3-R1

3 1 3jx 0
=0 20 0 x,|=|0 Since r=1,n=3 (n-r=3-1=2)
0 0 Oflx| |O

Hence we have

X, +2X,—=3%, =0
20x, =0

For one variables, we have to give one arbitrary constant.
X, =0,

We taking x; =k = x, =—k



-2 3
Hence the Eigen vectors of A corresponding to Eigen value A =-3are | 1 |and | 0
0 1

Case(ii): A =5, the eigen vector from (1) is given by

-7 2 -3|x 0
2 4 -6||%x|=|0
-1 -2 -5||x 0

Reducing the coefficient matrix to Echelon form, we get

Applying R1<> Rs3, and R1 —»>-R1

1 2 5 |x 0
=0 1 2 (|x,|=|0
0 0 0| x 0

p(A)<n(ie2<3)
This implies that
X, +2X,+5% =0
X, +2X%, =0
For one variable (3-2=1), we have to give one arbitrary constant

Taking x, =k, we getx, =—k ;x, =-2k



X -1
- X =| X, |=k| =2 | is the eigen vector of A correspondingto A=5.
X 0

w

Hence the Eigen values of A are A =-3,-3,5and the corresponding Eigen vectors of A are
-2 13| |-1

14(,/0],|-2
0 1 0
2 2 0
Problem 2: Find the Eigen values and the corresponding Eigen vectorsof | 2 1 1
-7 2 -3
2 2 0
Solution: LetA=|2 1 1
-7 2 -3
If X is an Eigen vector of A corresponding to the Eigen value A of A,
We have (A—A1)X =0
2-1 2 0 X, 0
ie,| 2 1-2 1 |20 N - @
-7 2 3= X% 0

The Characteristic equation of Ais |A—A1|=0

2-1 2 0
2 1-4 1 |=0
7 2 -3-2
= (2= 2)[A-2)(-3-12)-2]-2[2(-3-2)+7] =0
= (A-1)(A-3)(A+4)=0
—1=13-4

. The Eigen values of Aare 1=1,3,-4

To find Eigen Vectors:

=<

The eigen vector X =

x

, | of A corresponding to the eigen values A are given by

<
%1

(A—AX =0



0
= 2 1-2 1 |x%|=[o] (1)
0

Case(i): A=1from (1), we get

1 2 0}x 0
=12 0 1]|x|=|0
-7 2 4|l x 0

3
Reducing the coefficient matrix to the echelon form

Applying R2— R2 — 2R1, Rs—R3 +7R1, We get

Applying R3—R3 +4R2, We get

1 2 0% 0
=0 -4 1|/x|=|0
0 0 Ofx 0

Since n—r=3-2=1
For one variable, we have to give one arbitrary constant

Hence we have x, +2x, =0
—4X, + X%, =0

Let x, =k, then x, =4k and x, =-2k

X, -2
X=X, [=k| 1
X, 4
-2
In particular k=1, X, =| 1 |is the eigen vector of A corresponding to eigen value A =1.
4

Case(ii): A=3 from (1), we get



-1 2 0| x
=2 -2 1]|/x
-7 2 -6|x

N

0
=|0
. 0
Reducing the coefficient matrix to the echelon form

Applying R2— Rz + 2R1, Rs—R3 — 7R1, We get

-1 2 0 |x 0
=0 2 1]|x|=/0
0 -12 -6 x, 0

Applying R3—R3 +6R2, We get

-1 2 0[x] [o
=10 2 1| x|=]0
0 0 0fx| [0

Since n—r=3-2=1
For one variable, we have to give one arbitrary constant

Hence we have —x, +2x, =0
2%, +%; =0

Let x, =k, then x, =—2k and x, =2k

X, 2
X, =%, | =k 1
X, -2
2
In particular k=1, X, =| 1 |is the eigen vector of A corresponding to eigen value 1 =3.
-2

Case(iii): A=—4 from (1), we get

6 2 0| X 0
=|2 5 1% |=|0
-7 2 1||x 0

Reducing the coefficient matrix to the echelon form

Applying R2— 3R2—R1, Rs—6R3 + 7R1, We get



6 2 0][x] [0
=10 13 3| x, [=|0
0 26 6||x,| |0

Applying R3—R3 —2R2, We get

6 2 0][x] [0
=10 13 3| x,|=|0
0 0 Oflx,| [0

Since n—r=3-2=1
For one variable, we have to give one arbitrary constant

Hence we have 6x +2x, =0

13x, +3%, =0
Let x. =k, then x, = —k and X, = —k
Y 213 " 13
X, /13
X =[x, |=k| -3/13
X, 1
1
In particular k=13, X, =| -3 |is the eigen vector of A corresponding to eigen value A =1.
13

-2
Hence the Eigen values of A are 4 =1,3,—4and the corresponding Eigen vectorsof Aare | 1

1
1] =3,
-2 13

Cayley Hamilton Theorem:

State: Every square matrix satisfies its characteristic equation.
Proof: Let A be a square matrix of order n.

Then A-—Al isalso square matrix of order n.



Let A be aeigen value of A, then |A—A1|=0
Let |A-Al|=(-1)"(A"+a,A"" +8,A" " +.....+a,,A+a,) be a polynomial of order n.
Then Adj|A—41|=B, A" +B, ,A" " +....+BA+B,, whereB;, B,....B, _are n-rowed
matrices.
Now (A—21)Adj|A—A1|=|A- Al ~.|Al= AAdjA
= (A-A1)(B_ A" +B ,A"* +....+ BA+B)) = (-1)" (A" +a A" +a,A" " +....+3a, A +4,)
—-B_A"+(AB,_, —B,,)A" +(AB,_,~B_,)A" % +........+ (AB, - B,)1 + AB,

=-D"(A"+aA"t +a,A" " +.....+a, _A+a)
Comparing the coefficients of like powers of A, we get

_Bn—l = (_1)n I
ABn—l - Bn—2 = (_l)n ai'
AB,,—-B, ;=(-1"a,l

AB, -B, =(-1"a_,I

AB, = (-1)"a,I .

Premultiplying the above equations successively, by A", A" A" ... , A 1 and then adding,
we get

~A"B_,+A"B,_,—A"'B _,+A"B _,+-A"?B_,+A"?B_,+....+ A’B,— AB, + AB,
=(-)"(A"+a A" +a, A" +.....+a _,A+a)

s ED"(A+a AT+, A" P e, A+a )=0 L 1)

Thus the matrix A satisfies its characteristic equation.

Hence the theorem.

To find Inverse matrix:
Determination of A™* by Cayley Hamilton theorem

Pre-multiplying equation (1) by A~ on both sides, we get



AMA"+a A" +a,A"? +......+a _A+a)=0
=A""+a A" +a, A" +.....+a 1 +a A" =0

=A™ :;—1(A”1+ a A" +a, A" +.....+a )

n

3 2
Problem 1: Verify Cayley Hamilton theorem for the matrix L 5} .

. 3 2
Solution: Let A=
15

Then the Characteristic equation of A is |[A—A1|=0
3-4 2
1 5-2
= (3-1)(5-1)-2=0
= 1°-81+13=0

-

C.H.T states that every square matrix A satisfies its characteristic equation

We have to verify that A>—8A+131 =0

Now
, |3 2|3 2 11 16
A = =
1 5|1 5 8 27
11 16 3 2 10
—-8A+13Il = +13
e R

111-24+13 16-16+0
|8-8+0 27-40+13

oo/

Hence Cayley Hamilton theorem is verified.

2 -1 1
Problem 2: Find the characteristic equation for the matrix | -1 2 —1|and verify that it is
1 -1 2

satisfied by A and hence obtain A™.

2 -1 1
Solution: Let A=|-1 2 -1
1 -1 2



Then the Characteristic equation of A is |[A—A1|=0

2-12 -1 1
ie] -1 2-4 -11|=0
1 -1 2-2

Expanding, A*—~61*+91-4=0
To verify Cayley Hamilton theorem:
We have to show that A*>~6A*+9A-41=0

2 -1 1][2 -1 1| [6 -5 5
Now A’=/-1 2 -1f-1 2 -1|=|-5 6 -5
1 -1 21 -1 2 5 5 6

2 -1 16 5 5] [22 21 21
And A*=|-1 2 -1|-5 6 -5 {21 22 21
1 -1 2|5 5 6| |21 21 22
22 21 21 6 5 5 2 -1 1] [L 00
A-6AZ+9A-4=|-21 22 -21 —{—5 6 —5[+9/-1 2 -1|-4{0 1 0
21 21 22 5 5 6 1 -1 2] |[001

[22-36 -21+30 21-30| [18-4 -9-0 9-0
=|-21+430 22-36 -21+30|+[-9-0 18-4 -9-0
| 21-30 —21+30 22-36 | | 9-0 -9-0 18-4
14 9 971 [14 -9 9
=l 9 -14 9 |+|-9 14 -9
9 9 -14| |9 -9 14

S A—BA’+9A-4=0

Hence CHT is verified.

To find A™

Pre-multiplying equation (1) by A™", we have



4A" =A*—6A+9I

6 5 5 2 -1 1 1 00
=-5 6 -5|-6/-1 2 -1|+9/0 1 O
5 5 6 1 -1 2 0 01

[6-12+9 -5+6+0 5-6+0
=|-5+6+0 6-12+9 -5+6+0
| 5-6+0 -5+6+0 6-12+9
3 1 -1
=1 3 1
-1 1 3

3 -1
1

Nl
R W

1
-1 3

2
Problem 3: Verify Cayley Hamilton theorem for the matrix A = 1 |and find its A™*
3

N O -
o N O

Solution: Given A=

N O
o N O
w kDN

The Characteristic equation of A is |[A—A1|=0

Expanding, A*~64*+71+2=0
To verify Cayley Hamilton theorem:

We have to show that A>*~6A%+7A+21=0

1 0 21 0 2 5 0 8
Now A’=/0 2 1|0 2 1|=(2 4 5
2 0 3|2 0 3 8 0 13



5 0 81 0 2 21 0 34
And A°=A’A=|2 4 5|0 2 1|=|12 8 23
8 0 13||2 0 3 34 0 55

21 0 34 5 0 8 1 0 2 1 00
Now A°~6A*+7A+21=|12 8 23|-6|2 4 5|+7/0 2 1|+2/0 1 0
34 0 55 8 0 13 2 0 3 0 01

[21-30+7-2 0+0+0+0 34-48+14+0
=| 12-1240+0 8-24+14+2 23-30+7+0
134-48+14+40 0+40+0+40 55-78+21+2
0 0 0
=0 00
000

L A—BA’+TA+21=0

Hence CHT is verified.

To find A™

Pre-multiplying equation (1) by A™", we have

2A =-A*+6A-TI
5 0 8 1 0 2 1 00
=—|2 4 5|+6/0 2 1|-7/0 1 O
8 0 13 2 0 3 0 01
-5+6-7 0-0-0 12-8-0
=| -2+0-7 -4+12-7 -5+6+0
-8+12-0 0+0-0 -13+18-7

-6 0 4
-2 1 1
4 0 -2

AT =

N |-

Calculation of powers of a matrix:-

Diagonalization of the matrix is useful for finding power of a matrix.

Let A be the given square matrix of ordern.
Then D=P'AP
. D2= (PAP) (P1AP)

=PIA(P PVAP



= PTAIAP
= pla%Pp
Similarly, D3= P1A%P
In general, D"= PTAP------emmmo-- (1)
To obtain A" Premultiplying by P and post multiplying by P,
=A"=p A" P!
Hence the power of the matrix can be obtained by A" =P A" P!
Problems:-

1 0-1
Problem 1: Find a matrix P which transform the matrix A=|1 2 1
2 2 3

Solution: The Characteristic equation of A is |A—A1|=0

1-1 0 -1
e, =1 2-1 1|=0
2 2 3-1

ie, >A°-61°+111-6=0
ie, =>(A-D(1-2)(1-3)=0
The characteristic roots are 4=1,2,3.
The eigen values are distinct. So A is diagonalizable.
To find eigen vectors for the corresponding eigen values 4 =1,2,3.
Case (1):- When A =1

X
Let X, =| x, |be the eigen vector corresponding A =1.

X3

Then we have [A-1.1]X =0

0 0 -1x] [0
=1 1 1]x|=|0
2 2 2| x| |0

This is reduce to echelon form

Applying R, <> R, we get



11 17x] [o
=0 0 -1|lx,|=|0
2 2 2|x| |0

Applying R, > R, —2R,, we get

11 170[x] [o
=10 0 -1{/x,[=|0
00 0fx| |0

Which implies
+X,+X% =0
Xt } .................. 1)
—X, =0
The solution of the system (1) is
X, =K, X, ==K, %, =0,
1
- X, =k| =11 is the eigen vector of A corresponding to 4 =1
0

Case (2):- When 4 =2,

X
Let X, =| x, | be the eigen vector corresponding A =2.

X3

Then we have [A-2.1]X =0

-1 0 -1||x 0
=1 0 1]|x|=|0
2 2 1]|/«x 0

3

This is reduce to echelon form

Applying R, > R, +R,, R, = R, + 2R, we get
-1 0 -1||x 0

=0 0 0|x|=|0
0 2 -1fx| |0

Applying R, <> R,, we get



-1 0 -1||x 0
=0 2 -1||x|=|0
0 0 O]fx 0
Which implies

x1+x3=0}

2X,— %X, =0
Let x, =k, then we have x, =2k, x, =-2k

X -2
- X, =|x%, |=k| 1 | isthe eigen vector of A corresponding to A=3
X, 2

Case (iii): When 41=3

X
Let X, =] x, | be the eigen vector corresponding A =3.

X3

Then we have [A-3.1]1X =0

-2 0 -1|x 0
=1 -1 1]|x|=|0
2 2 0|/x 0

This is reduce to echelon form

Applying R, > R, +2R,R, &> R, + R, we get

-2 0 -1||x 0
=0 -2 1]|x|=|0
0 2 -1]|x 0

ApplyingR, —» R, + R, , we get

2 0 -1][x] [o

=0 -2 1]|x|=|0
0 0 0|[x 0
The solution of the system (3) is since Nn—r=3-2=1

Let x, =k, then we have x, =2k, x, =—k



X -1
X, =|X, |[=k| 1 | isthe eigen vector of A corresponding to A4 =3.
X, 2

Writing the three eigen vectors of a matrix A as the three columns, the required transformation

-1 -2
matrixPis| 1 1 1
o 2 2

This is called the modal matrix of A.

To find P*:
0 -2 2
The cofactorsof P=| 2 -2 2
-1 0 1
0o 2 -1
Adjp=|-2 -2 0
2 2 1

and |P| =-12-2)+2(2-0)-1(2-0)=0+4-2=2

_ 0 2 -1
pr AP _L1 5,
Pl 2
2 2 1]
[0 2 -1]f1 0-1][-1 -2 -1
Now PAP=2|2 2 0ll12 1|[1 1 1
“l2 2 122 3]0 2 2
100
-0 2 0|=D
003

Hence A* = PD*P™

1 2 1|1 0 0o 2 -1
1 1 100 220|=2 =2 o0
0 2 21loo 3|2 2 1

N~



49 —50 — 40

=| 65 66 40
130 130 81
3 -1 1
Problem 2: Determine the modal matrix P for A=| -1 5 -1
1 -1 3
3 -1 1
Solution: Given A=|-1 5 -1
1 -1 3

The Characteristic equation of A is |[A—21|=0

3-4 -1 1
ie, =>| -1 5-12 -1|=0
1 -1 3-4

ie., =>A°-111°+364-36=0
ie, >(1-2)(1-3)(1-6)=0
The characteristic roots are 4 =2,3,6.
The eigen values are distinct. So A is diagonalizable.
To find eigen vectors for the corresponding eigen values4=1,2,3.
The eigen vector X to the corresponding eigen value A is given by [A- A4 1]X=0
Case (1):- When 4 =2

X
Let X, =| x, |be the eigen vector corresponding A =2.

X3

Then we have [A-21]1X =0

1 -1 17[x] [o
=|-1 3 -1|/x |=|0
1 -1 1|x]| |0

3
This is reduce to echelon form

Applying R, > R, +R,R, > R, =R, we get



1 -1 1% 0
=10 2 0|/x,|=(0
0 0 Ofx 0
Which implies
X, +X,=0
s o)
2%, =0
The solution of the system (1) is
Let x, =k, then we have x, =0, x, =—k.
-1
- X, =k| 0 | isthe eigen vector of A correspondingto A =2
1

Case (2):- When 41=3,

X
Let X, =| x, | be the eigen vector corresponding A =3.

X3
Then we have [A-3I1]X =0

0 -1 1jx 0
=>-1 2 -1
1 -1 0

Il
o o

This is reduce to echelon form

Applying R, <> R;, we get

1 -1 0|(x 0
=|-1 2 -1|x (=|0
0 -1 1]x 0

Applying R, > R, +R,, we get

1 -1 0% 0
=0 1 -1||x,|=|0
0 -1 1|x 0

Applying R, > R, —R,, we get



Which implies
-X, =0
o TR } .................. @)
X, =X, =0
The solution of the system (2) is since n—-r=3-2=1
Let x, =k, then we have x, =k, x, =K.
1
- X, =k| 1| is the eigen vector of A corresponding to 4 =3
1

Case (3):-When 4 =6

X
Let X, =| x, | be the eigen vector corresponding A =6.

X3
Then we have [A-61]1X =0

-3 -1 1]|x 0
=|-1 -1 -1{|x,|=|0
1 -1 3% 0
This is reduce to echelon form

Applying R, <> R;, we get

1 -1 =3][x ] [0
—|-1 -1 -1|x,|=|0
3 -1 1 0

o<

Applying R, > R, +R,,R; &> R, + 3R, we get

1 -1 3% 0
=|0 -2 4| x|=|0
0 -4 -8|lx 0

Applying R, - R, - 2R, , we get



Which implies

—X,—3%,=0
0T } .................. (3) since n—r=3-2=1

2X, +4%,=0
The solution of the system (2) is
Let x, =k, then we have x, =Kk, x, =2k,
1

- Xy =k| -2 is the eigen vector of A correspondingto A=3
1

Writing the three eigen vectors of a matrix A as the three columns, the required transformation
matrix is

-11 1
P=0 1 -2
1 11

This matrix P is called the modal matrix.

Now to find P*:

3 2 1
Cofactorsof P=| 0 2 =2
-3 2 1
3 0 -3
Then AdjP=|2 2 2 |and |P|=6
1 -2 1
AdiP 1 N
pr_"AT_21r 5
detP 6
1 -2 1
13 0 -3][3 -1 1-11 1
Now P’lAP:EZ 2 21|-1 5 -1l0 1 -2
1 -2 1|1 -1 3|1 1 1



Il
o onN
o w o
o o o

Il

O

Hence the given matrix A is diagonalizable.



Subject: Linear Algebra & Calculus
Unit-111
Mean Value Theorems: Rolle’s Theorem, Lagrange’s mean value theorem, Cauchy’s
mean value theorem, Taylor’s and Maclaurin theorems with remainders (without
proof) related problems.

INTRODUCTION

Continuity: A function f(x) is said to be continuous at x = a,
if lim £(x)= lim f(x) = f (a)
Let f(x) be a continuous function in the closed interval [a,b]. This means that if a<x<b,
lim f(x)= f(c)and lim f(x)=f(a), lim f(x)= f(b)
Differentiation: A function f (x)is said to be differentiable at x =c,

if tim L= 1@ g im FX=T()
X—a+ X—a X—a- X—a

exists

Let f(x) be adifferentiable in the closed interval [a,b]. This means that if a<x<b,

i F00— (@)

X—a X_a

exists

Further, lim () @) _ = f(a) and Ilm f(x)- ;(b)_f(b)exwt.

x—a+0 —a X—b—

Rolle ’s Theorem:

Statement:  If f(x) isa function such that
(i) continuous in a closed interval [a,b]
(ii) derivable in the open interval (a,b) and
(i) f(a)=f(b)
Then, there exits at least one value of x, say cin (a,b)so that f'(c)=0

Physical Interpretation: If y= f(X) is continuous curve defined in [a, b] and derivable in
the open interval (a,b) and f(a) = f(b) , then there exits at least one value of clie in

(a,b) at which tangent to the curve is parallel to x—axis

Problem. 1: Verify Rolle’s theorem for the following functions f (X) = (x+2)*(x—3)*in
[-2.3]



Solution: We have f(x)=(x+2)*(x-3)*
Q) since every polynomial is continuous for all values of x

f(x) is also continuous in [-2,3]
(i)  Now f'(x)=3(x+2)*(x=3)" +4(x+2)*(x-3)*

= (x+2)*(x=3)°[3(x—=3) +4(x+2)]
=(x+2)*(x-3)*(7x-1)

which exists on (-2, 3)

f(~2)=0, f(3)=0

L (-2) = £ (3)

Thus, all the three conditions of Rolle’s theorem are satisfied.

~. There exists ¢ e(—2,3)such that f'(c) =0

=(c+2)*(c-3)*(7c-1)=0
=c=-20rc=30rc=1/7

Clearly c=1/7 € (-2,3)
(ie)-2<1/7<3
Hence Rolle’s Theorem is verified.
Problem 2:  Verify Rolle’s theorem for the following functions f (x) = 2x® + x* —4x—2 in

. ]

Solution:

Q) Since every polynomial is continuous for all values of x,

f(x) is also continuous in [—\/5, \/E]

(i) Now f'(x)=6x"+2x—4, which exists on (2, 2



{(~2) -2 ~2) (] ~4(2)-2
=—42+2+42-2

=0

) 1(2)-22) +(2) ~+(42)-2
=4J2+2-42-2
=0

1(2)= ()
Thus three conditions of Rolle’s Theorem are satisfied.
. There exists ¢ e (—\/5, \/f)such that f'(c)=0

—=6c2+2c-4=0
=c=-1lorc=2/3

.. ¢=-1andc =2/3are in between (—\/5, \/5)
Hence Rolle’s Theorem is verified.

Problem 3:  Verify Rolle’s theorem for the following functions f (x) = 2x* +x* —4x—2 in

(5. ]

Solution: (i) Since every polynomial is continuous for all values of x,

f(x) is also continuous in | —/3, V3 |

(i)  Now f(x)=6x?+2x—4, which exists for every xG(—J§, Jé)
= f(x)is differentiable in (—J§, Jé)

(iif) f(-ﬁ):l—zﬁ and f(\/§)=1+2\/§

(<) 1()

Thus, the condition (3) of the Rolle’s theorem is not satisfied.

.. Rolle’s theorem is not applicable

Problem 4:  Verify Roll’s theorem for the function
2
f (x) =log X_+ab in [a, b],a>0,b>0.
x(a+b)



x*+ab

x(a+b)

Solution: Given f(x) = Iog{ } =log(x* +ab) —log x —log(a +b)

(i) Since f(x)isacomposite function of continuous functions in [a, b],
So f(x)is continuous in [a, b]

2x 1 _ x*-ab
x*+ab x x(x*+ab)

(i) f'(x)=

- T'(x) exists for all xe(a, b)

2
(i) f(a)=|og[a2+ab}:doglzo
a“+ab
b +ab
d f(b)=I =logl=0
and (b) Og{b2+ab} %
- f(a)=f(b)

Thus three conditions of Rolle’s theorem are satisfied.

~. There exists c e(a, b)such that f'(c)=0

c’—ab
c(c? +ab)
=c’=ab=>c=+/ab

. c=+abe(a, b)

Hence Rolle’s Theorem is verified.

Lagrange’s mean value theorem:

Statement: If f(x)is a function defined on [a,b]such that
(i) Continuous in a closed interval [a,b]
(if) Derivable in the open interval (a,b)

Then, there exits atleast one value of x, say cin (a, b)such that
f’(C) — f (b)_ f (a)
b-a
Physical Interpretation: If y= f(x)is continuous curve defined in [a, b] and derivable in
the open interval (a,b) and f(a)=f(b) , then there exits at least one value of clie in

(a,b) at which tangent to the curve is parallel to chord joining A(a, f(a)andB(b, f (b)



Problem 1:  Verify Lagrange’s mean value theorem for the following functions in the
intervals indicated

(i) f(x)=2x*-7x+10;a=2,b=5
(i) f(x)=x(x-1)(x-2)in [0,1/2]

(i) FO)=x-2x%in [-1 1]

Solution: (i) Given f(x)=2x*-7x+10

(i)

We note that f(x) is a polynomial in x

So it is continuous on [2, 5] and differentiable on (2, 5)
Thus, all the conditions of Lagrange’s mean value theorem are satisfied.
By Lagrange’s mean value theorem, we have

5-2
—gc-7-2"4
3
=4c=14

C=%:3.5€(2, 5)

Hence Lagrange’s mean value theorem is verified.
Given f(x)=x(x—1)(x—2) is defined on [0, 1/ 2]
f (x) is continuous in closed interval [0, 1/2]
We have f(x)=x®-3x*+2x
f'(x) =3x* —6x+2
Which exits on (0, 1/ 2)
. T(x)is differentiable on (0, 1/ 2)
Thus, all the conditions of Lagrange’s mean value theorem are satisfied in [O, 1/ 2]_

By Lagrange’s mean value theorem, we have

f(1/2) - f(0)

f'(c)=
© 1/2-0
—3c2—6c+2= 3/8-0
1/2-0
3

—=3c’-6c+2==
4

=12¢>—-24c-5=0

51

nc=1+t & 1+0.764 =1.764;0.236

But only the value of ¢ =0.236 lies between 0 and 1/2.
Hence Lagrange’s mean value theorem is verified.
(iii) Given f(x)=x*-2x

We note that f(X) is a polynomial in X

So itis continuous on [-1, 1]



and f'(x) =3x*—4xwhich exists on (-1, 1)

it is differentiable on (-1, 1)

Thus, all the conditions of Lagrange’s mean value theorem are satisfied.
By Lagrange’s mean value theorem, we have

f ’(C) — f (1)5__1:2(_1)
-1+7

= 4c® —4c = =3

= 4¢*—4c-3=0

C_4J_r\/16+48 448

8 8
c=li1=§,_—=1.5,—05
2 2

Hence Lagrange’s mean value theorem is verified.
But only the value of ¢ =-0.5lies between -1 and 1.
Hence Lagrange’s mean value theorem is verified.

Problem 2:  Verify Lagrange’s mean value theorem for f (X)=Ilogxin [1, €]

Solution: Given f(x)=Ilogx
Since f(x)is continuous and derivable for all x> 0.

Also, f'(x) :1
X

Taking a=1b=e
f(1)=logl=0and f (e) =loge =1
Thus, all the conditions of Lagrange’s mean value theorem are satisfied.

By Lagrange’s mean value theorem, we have

1 1-

—:—O:c:e—le(l, e)

c e-1

Hence Lagrange’s mean value theorem is verified.

Problem 3:  Verify Lagrange’s mean value theorem for f(x)=e*in [0, 1]

Solution: Given function is f (x) =e*

(i) Since e*is continuous for all x.
o f(x)=¢" is continuous in [0, 1]

(i) f'(x)=¢", which exists for all in (0, 1)
o f(x)=¢€" is derivable in (0, 1)
Taking a=0,b=1

(iii) f(0)=e’=1land f(})=e

Thus, all the conditions of Lagrange’s mean value theorem are satisfied.
By Lagrange’s mean value theorem, we have

f’(C) — f(bt)):;(a)



e = % =c=Ilog(e-1) .. [log(e)=1]

Since 2<e<3=1<e-1<2=0<log(e-1) <1
~.c=log(e-1)liesin (0, 1)
Hence Lagrange’s mean value theorem is verified.
Problem 4: Calculate approximately 5245 by using Lagrange’s mean value theorem

Solution: Let f(x)=3x =x*°, x e (243, 245)
Taking a =243, b=245

1 1
f'(x)==x¥=f'(c)==c
(=2 (©)=¢

By Lagrange’s mean value theorem, we have
1 o5 _ f (245) - f (243)

5 245243
i.e., C lies between (243, 245)

= éc‘”s = f(245) - f(243)

= %c“”s = §/245 — (243)"°

= Y245 =3+ % (244)™° [putc = 244]

= /245 :3+E.L:3.OO49
5 81.26

Cauchy Mean Value Theorem:

Statement: If f and g be continuous on [a,b] and differentiable on (a,b). Suppose that
f(b)—f(a) _f'(c)
gb)-g(@) g

g'(x) =0 for all xe(a,b). Then there exists x € (a,b) such that

Problem 1:  Apply Cauchy’s mean value theorem for f(x)=x*+9 and g(x)=x>-2in
[ 2].

Solution: Given f(x)=x*+9 and g(x)=x>-2
0] Since f(x)and g(x)are continuous and derivable for all x
f (x) and g(x) are continuous on [1, 2].
(i)  Wehave f'(x)=2xandg’(x)=23x*which are exists on (1, 2).
Thus, all the conditions of Cauchy’s mean value theorem are satisfied.
By Cauchy’s mean value theorem € € (1, 2)such that

f2)-f@ _ 1)
9(2)-g9@ d'(c)
13-10 _ 2c
6+1 3c?

:Cz%e(l, 2)

This means that Cauchy’s mean value theorem is verified.



Problem 2: If f(x)=¢" and g(x)=¢e* forin[a, b], 0<a<b, show that ¢ is the average

of aand b by Cauchy’s mean value theorem

Solution: Given f(x)=e* and g(x)=¢""
Since f(x)and g(x)are continuous and derivable for all x
f (x) and g(x)are continuous on [a, b].
Also, we have f'(x) =e*and g'(x) = —e *which are exists on (a, b).
Thus, all the conditions of Cauchy’s mean value theorem are satisfied.
By Cauchy’s mean value theorem ¢ € (a, b)such that
fb)—f(a) _f'(c)
gb)-g(@) g'(c)
g’ —e? e _aib

2c

=2c=a+b(or)c= a+h €(a, b) (.. Itisthe arithmetic mean between aand b)

This verifies Cauchy’s mean value theorem.
1.
In

Problem 3:  Verify Cauchy’s mean value theorem for f(x)=~/x and g(X)=T
X

[a, b], 0<ax<h.

Solution: Given f(x)=+/x and g(x):%
X

Since f(x)and g(x)are continuous and derivable for all x > 0.
f (x) and g(x) are continuous on [a, b]
andg’'(x) = -1 ———which are exists on (a, b).

2xx
Thus, all the conditions of Cauchy’s mean value theorem are satisfied.
By Cauchy’s mean value theorem € € (a, b)such that

fb)-f(a)_ ')

g(b)-9(a) g’(c)

\/5—\/5_ 2\/_ \/_ \/_:_C:_\/%

11 -

FR "

=c=+abe(a, b)

Hence Cauchy’s mean value theorem is verified.
Taylor’s and Maclaurin’s theorem

1
Also, we have f'(x)=
(X) = PN

(.. Itis the geometric mean between aand b)

Definition: A series of the form

f(x)_f(a)+(xl 2 f(a )+(X2a) f'(a )+(X3a)3 t"(a )+(X4a) () + X2 a)sf ‘(@) + e

Is called as Taylor’s series expansion of f(x) about x=a.



Definition: A series of the form

5

f(X) = f(0)+xf (0)+ f”(O)+ f’"(O)+ f'V(O)+ 1O

Is called as Maclaurin’s series expansion of f(x).

Problem 1: Show that sin x =

Solution: Maclaurin’s series expansion of f (X) is given by

5

f(x)=f(0)+xf (O)+ f”(O)+ f”’(O) f'V(O) — f [(0) BTN
Let f(x)=sinx At x=0, f(0)=sin0=0
Then we have
f’(x) = cos x f'(0)=cos0=1
f"(x) =—sinx f"(0)=-sin0=0
f"(x) =—cos x f"(0)=—-cos0=-1
fV(x) =sinx f¥(0)=sin0=0
f'(x) =cosx f'(0)=cos0=1
Substituting these values in (1)
3 X5 X7
SINX=X——+———+.ruen.
31 51 71
X2 4 X6
Problem 2:  Show that coshx =1+ —+—+—+........
2! 41 6!
Solution: Maclaurin’s series expansion of f(X) is given by
5
f(x)= f(0)+xf (0)+ f”(O)+ f”’(O)+ f'V(O)+ f [(0) SRR

Let f(x)=coshx At x=0, f(0)=cosh0=1

Then we have

f’(x) =sinh x f'(0)=sinh0=0
f"(x) = cosh x f"(0)=cosh0=1
f"(x) =sinh x f"(0)=sinh0=0
f"(x) = cosh x f¥(0)=cosh0 =1
f'(x) =sinh x f'(0)=sinh0=0

Substituting these values in (1)



2 4 6
X

coshx:1+x—+—+—+ .........
2! 41 6!

3 5
Problem 3: Expand tanlx:x—€+xg— .........

Solution: Maclaurin’s series expansion of f (X) is given by

5

f(x)=f(0)+xf (O)+ f"(O)+ f”’(O)+ f'V(O)+ f(0)+ .................

Let f(x)=tan™"x At x=0, f(0)=tan™"0=0

Then we have

f(X)_l+X f'(O)Zl

" —2X

f (X)_(l+x ) f"(0)=0

)
() = £7(0) = —2
0= (1+x )3 ©

f‘V(X):24x_—24f3 £V (0) =0
(1+ xz)

£9(x) = 24(1-10x° —526x3) f'(0) =24

(l+ xz)

Substituting these values in (1)

3 X5

tantx=x— X
3 5

Problem 4: Obtain the Maclaurins series expansion for log(1+ x)

Solution: Maclaurin’s series expansion of f(X) is given by
f(x)= f(0)+xf'(0) + f "(0) + f "(0) + f Y(0)+= f [(0) SRR

Let f(x)=log(l+x) At x=0, f(0)=Ilog(1+0)=0

Then we have



f’(x):% f’(0):ﬁ=1

f”(X)=ﬁ f”(O):ﬁ:—
f’”(x)=ﬁ f'"(O):ﬁ )
f”(x)=ﬁ 0 o =
fV(x):ﬁ fV(O):ﬁzm

Substituting these values in (1)

2 3 4 5
Iog(1+x)=x—x?+x—————+ .........



Subject: Linear Algebra & Calculus
Unit-1V
Multivariable Calculus: Partial derivatives, total derivatives, chain rule, change of
variables, Jacobians, maxima and minima of functions of two variables, method of
Lagrange multipliers.

PARTIAL DERIVATIVES,

Let z= f(X,y)be the function of two variables xand y. If we keep y constant and
varies then z becomes a function of a variable xonly. The derivative of z with respect to X,
keeping y as constant is called partial derivative with respect to X and is denoted by the

symbols a_z, ﬂ f, (X, y) etc.
OX  OX

Then & = lim 1X*0% )= T(x.Y)
OX  6x—>0 OX

Similarly, the partial derivative of *Z* with respect to * Y * keeping X as constant is

oz of
denoted by —, —, f (X, y)etc.
y Yy , (% Y)

A _ i S y+8Yy)— T (%)

oy o0 5y
Standard notation:
p=g=z q=gz r=8—22=z S= o'z =7 =822=
8x X ay y! 8x2 Xx 1 axay Xy 1 ayz yy

Problem 1: Find the first and second order partial derivatives of f (x,y) = x* + y® —3axy
o*f  of

dyox  dxay

Solution: We have f(x,y)=x>+y®—3axy

and verify

a_ 3x* —3ay, a =3y? —3ax
oy

OX
2 2 2 2
g z =6X, of =-3a, ot =—3aa z =6y
OX 0yoX oxoy OX
2 2
We observe that of = ot
OX  OXoy
Problem 2: Find the first and second order partial derivatives of X2 + y2 + 2hxy
2 2
and verify of = of
OX  Oxoy

Solution: Let f(x,y)=x*+y*+2hxy



i:2x+2hy, i:2y+2hx,
OX oy
2 2 2 2
aI:Z, of =2h, of :2h,aZ:2.
OX 0yoX oxoy OX
2 2
Thus of = of is verified.
OyoxX  OXoy
Problem 3: Evaluate 2> and 22 if 7 - log (x* +y?)
OX OX
Solution: Given f(x,y)= Iog(x2 + y2)
Then we have a_ 22X ~and a_ 22y >
oX X°+vy oy X +y
2 2
Problem 4: If u=tan*| X |, Prove that or _of
y OXoy  Oyox

Solution: Given that u :tanl(ij,
y

2
Now U __ 1 2(5} y: 1y
y

Oy ox (x2 + y2)2 (x2 + y2)2
o° f =_x2+y2.1—x2x= x> —y?
oxoy (x2+y2)2 (x2+y2)2

o*f  Of
Hence - ,
oyox  oxdy
2 2
Problem 5: If u=sin| 2 +tan_1(XjProve that o f _ o’ f
y X oxoy  oyox
Solution: Given that u=sin™ (ljﬂanl(lj
y X
Now Zi:;zaﬁ(i}' 1 zgﬁij
X X X\ X
1_(Xj Y 1+(yj
y X
y 1 x> -y 1 Ly

y2—x2§ X +y? X yo—x* X +y



—+ —= +— ... 2
V2 —x? y° X+y x oy fy?-x? X4y @
Multiplying (1) by x and (2) by y and then on adding, we have
ou ou
X—+y—=0
OX oy
EULER’S THEOREM ON HOMOGENEOUS FUNCTION:
Definition 1: A function f(x,y)is said to be homogeneous function of degree n, if the degree
or power of each term in f(Xx,y)is n, where n is the real number
Problem 1: f(x,y) =a,x" +a X"y ++a,X"?y* +.......... +a y".
Note: A function f (X, y)is said to be homogeneous function of degree or power n in x,y can

be expressed in the form as y" f (ij or x"f (lj
y X

Problem 1: Let f(x,y)=x>+2x’y+Yy®
Then f(x,y)=x’ [1+ 2X+y—:] =x°f [lj
X X X

. T(x,y) is a homogeneous function of degree 3.

Definition 2: A function f(x,y)is said to be homogeneous function of degree n, if
f (kx,ky) =k" f (x,y) where n is the real number
x'+y!

X+Y

Problem 1: Let f(X,y)=

4 4 4 4 4
Then f (ke ky) =L 00 _ KX +y7
kx -+ ky K x+y
= WM
X+Yy
=k*f(x,y)
. T(x,y) is a homogeneous function of degree 3.

2 2
Problem 2: Let f(X,Y) :tan‘l(uj
2Xy

o () + (ky)?
Then f(kx, ky) =tan —kaky ]
k*(x + y)J

=tan™| —
k<2xy

X* +y?
2Xy

—tan

J=k°f(X,Y)



. T(X,y) is a homogeneous function of degree zero.
CHAIN RULE OF PARTIAL DIFFERENTIATION:
(1) Let z=f(x,y)where x=g(t)and y=g,(t) are functions of t. Then z is called a
composite function of a variable t.
(2) Let z=f(u,v)where u=¢(x,y)and v=4¢,(x,y) are functions of x,y. Then z is
called a composite function of a variable x and .
Theorem: Let z = f (u,v)where u=d(x,y)and v=g,(x,Yy) are functions of x,y.
0z 0z0u 0OLov o0z _ oz ou 6zav
Then —=——+—— and
OX OuoX oV oX ay auay avay
These equations referred to as the chain rule of partial differentiation. The above rule can be
extended to functions of more than two independent variables.
TOTAL DERIVATIVE (or) TOTAL DEFFERENTIAL COEFFICIENT:
Let z= f(x,y) where x=g(t)and y=¢,(t) are functions of t. Then the derivative

of zw.r.to t. i.e., 3—iis called the total differential coefficient or total derivative of z.

gz _ozox ozdy
dt oxdt oy dt
Similarly, if u= f(x,y,z)where X, yand z are functions of t. Then the chain rule is
Ldz oz dx oz dy ou dz
Cdt oxdt ay dt oz dt

Problem 1: If z=u?+V?, where u=at?and v=2at, find j—i

Solution: Given z =u®+Vv?, where u=at*and v=_2at
dz oz du az dv
dt oudt  ovdt

=2u.2at +2v.2a

= 4at®.2at + 4at.2a

We have =,

d
d—i — 43’ (t2 + 2)

Problem 2: If z=y?—4ax,where x=at’and y = 2at, find ?j—i

Solution: Given z = y* —4ax, where x =at*and y = 2at
dz _ oz dx dx oz oz dy
dt  ox dt oy dt
=—4a.2at+2y.2a
=-8a’t+8a’t=0
. dz —
s

We have —;



Problem 3: If z =sin(§j, where x=¢'and y=t?, find (;—ias a function of t. Verify your
result by direct substitution.

: : [ x
Solution: Given z :sm[—J, where x=¢e'and y=t?

y
dz _ oz dx dx oz oz dy
Wehave ‘5 =5t "oy dt

= C0S lj.le%cos[f}_—?.m
Y,y Y,y

e') e e') —¢'
e') e 2
=cos| = [.=|1-=
t? tz( tj
e') e
= cos| -7 .t—g(t—z)

dz et ) t%' —e'2t e e
—=cos| = || ———=|=cos| = |=(t—2) as before.

CHANGE OF VARIABLES:
Change of two independent variables xand y by any other variable t.
Let z= f(X,y), where x=g¢(t)and y=¢,(t) are functions of single variable t.
Then oz _ L X —+— o is called the total differential coefficient of z.
ot ox ot oy ot
Change of two independent variables xandy by other two variables u andv.
Let z= f(X,y),where x=¢(s, t)and y=¢,(s, t)
Then we have z is composite function of t.
Then 0z _ 0z ox azay d_z QQ+Q@
s Ox s 6yas ot oxot oyot
Corollary: Let u= f(X,y,z),where x=¢(s,t),y=¢,(s,t) and z=¢,(s, t)
Here uis composite function of t.
Qu_ouox audy oud
0S OX0S o0y os OL0s
ou ouox ou 6y+au 0z

and 2 =2, &
ot oxot oyt ar ot

Then

Problem 1: If u=F(x-y, y-z,z— x)Provethata—u+a—u+a—u:O.
ox oy
Solution: Given u=F(x-y, y—z, z—x)
Put r=x-y,s=y-z,t=z-X

=F(r,s,t)



u_ouér duds oudt
OX Or OX 0S oX ot ox
g B Ny
or 05 or ot
6u au ar au as au at
ay aray asay 8t8y
N (e By 2
ot or os
8u ou or au 0S ou ot

and —=——+——+——
az or az 0S 0z at 0z
6u+6u

( )+ ( )+ ="
8u ou 8u ou 8u ou ou ou ou

Therefore, —+ —+—=—-—-— el Wiy
8x8yazaratarasésat

Hence the results.
Problem 2: If u=f(xy) where x=e'cosd and y=e'sing,

ou ou , ou ou ou (8uj2 ( ou jz
X—+y—=e"— and—+—=¢e — |+ = |
or 00 oy oxX oy or 06

Solution: Given u= f(x,y) where x=e"cos# and y=e'sin@
au _du 8x aou gy _ou
a  oxor ay or  ox

=g (a—ucoséwa—usin HJ ......
oy

—e' cos6’+a e'sing

OX
ou _duox oudy adu

ou
—t— —e'sin@+—e"cos@
80 ax 00 oy 00 ax oy

=e' —a—sin 0+a—c0349 ......
OX oy

or

Prove

that

Now ya—u+xa—u:ersin6’.er a—Ucos¢9+a—usim9 +e'cosb.e' —a—usin9+a—ucose
00 oX oy oX oy

=e* (a—usin ¢9cos¢9+a—usin2 H—a—usin Qcosejta—ucos2 6
OX oy

OX
ou ou , ou
L Y—+X—=e" —
or 00 oy

Squaring (1) and (2) and then adding, we get

|



2 2 2 2
(a_uJ +(a_uj =e” a—ucos€+a—usin9 +e? —a—usin¢9+a—ucose
or 00 OX oy OX oy

— e2r
0

[a—i) (cos2 0 +sin? 0)+£%uj (cos2 0 +sin? 8)}

B BEC]

3.1 Jacobian:
Definition: If uand vare functions of two independent variablesx and y. Then the

uou
0
determinant x o is called the Jacobian of with respect to x, yand is denoted by o(u,v)
o ov a(x,y)

J(_j
X,y

Similarly, the Jacobian of u, v, w with respect to X, y,wis

axa

ou ou ou
ox oy o
ou,v,w) |ov ov oV
o(x,Y,2) “lox 5 oz
OW Ow ow
x oy o

3.2 PROPERTIES OF JACOBIANS:

Properties 1: If uand vare functions of xandyand xandy are functions of r and 6. Then
o(u,v) _a(u,v) a(x,y)

o(r,0)  a(x,y) o(r,0)

Properties 2: If uand vare functions of xandyand xandy are functions ofuand v. Then
oY) o(x.y) =1 (or) If J _ouy) and J,:_G(x,y) then JJ'=1

o(x,y) o(u,v) a(x,y) 2u.)
Problem 1: If u=e*”,v=e"";find J (HJ
X, Y

Solution : Given u=e*Y,v=e>";

a_u =e" @ — _ef(x+y)

OX ' Ox

a_u = ex"'y’ @ = _e_(X+Y)

% oy



au

Now J [HJ = ox
X, Y @
OX

au

ay ex+y ex-¢—y
ov _ef(X+y) _ef(X+y)
oy

- ex+y.e—(x+y) + ex+y.e—(x+y)
=-1+1=0

Problem 2: If u=3x+5y,v=4x-3y; find J[

Solution : Given u
a_

uv
X,y

=3X+5y,v=4x-3y;
ov

3, —=4
OX OX
u_g N
oy oy
u ou
B R T L] I L] P
X,y) (ov ov| |4 -3
ox oy

Problem 3: If u=x*-2y? v=2x*—-y?; find J(

Solution : Given u=x*-2y* v=2x>—y

u, Vv
X, Y

|

2

a—u:2x, @:4x
OX 15)4
6_u=_4y’ @z_Zy
oy oy
o
. uv) |0x oyl [2x -4y
CUxy) v av] ax -2y
ox oy
=—4xy +16xy
=12xy
) S X,y [ r,0 ,
Problem 4: If x=rcos#d,y=rsin@; find J o and J'| — |. Also show that JJ' =1
r, X,y
Solution: We have Xx=rcosé, y=rsing
%:cose, ﬂ:siné'
or or
%:—rsine ﬂ=rcosé?
00 00



OX
o(x.y) _lor
o(r, 0) |oy
or

= rcos’

Also, we have r® = x*+y?,

x
00| |cos@ —rsind
oy| |sin@ rcosé
00

@+rsin®@=r(cos*d+sin*H) =r

@=tan™ (lj
X

or X _ o0 -y -y
x r x X+y: 12
or _y 080 X X
o r oy C+y: r?
o orl|x y
o(r,0) _|ox | _|r r=X_2+y_2
oxy) 6@ 00| |-y x| r* r®
x oyl Irr 2
CxXE+y? ot 1
T TETT
=n£=1

L)

3 FUNCTIONALLY DEPENDENT AND FUNCTIONALLY INDEPENDENT:
Let u="f(x,y), v=g(x,y)be two given differentiable functions of the two

independent variables xandy . Suppose these functions uandvare connected by a relation
F(u,v) =0, where F isdifferentiable. Then these functions uand v are said to be functionally

dependent on one another(i.e., one function say u is a function of the second function v) if the

r

partial derivatives u,,u,,v, and v, are not all zero simultaneously)

Necessary and Sufficient
functionally dependent:

condition for the two functions u(x,y)and v(x,y)are

Problem 1: If u =5, v:u. Find J
y X=y X,y
dependent. Find the functionally relation between them.
Solution: Given u =5, v=u
y X=y
u_Xx ou_-x
x y oy Y

o _ (x=y).1-(x+y).l -2y

OX (x-y)’

v _(x=y)1-(x+y).(-1) _

(x—y)?
2X

oy (x—y)?

T (x-y)

u, v .
(—} Hence prove that uand vare functionally



w a1

ou,v) [ox oy |y y*
o(x,y) |ov ov| | -2y 2X
ox oy |(x-y)P (x-y)|

2X 2X
- 2 7 =0
y(x=y)* y(x-y)
. Uand vare functionally dependent.

X
—+1
y(y j_u+1

e
y

Now v =

1. i .
" v=u—+1|sthe functionally relation between uand v.
u_
Problem 1: If u=x?+y?+2xy+2x+2y,v=e"": find J[Hj
X, Y
Solution : Given U= X"+ Yy +2xy+2x+2y,v=e%";
a—u:2x+2y+2, @:e”y
OX OX
a—u:2y+2x+2, @:e”y
oy oy
a
-3 uv) |ox oyl 2X+2y+2 2y+2x+2
Coxy) |ovoav| | e ety
ox oy
= (2X+2y +2)e™) —(2x+ 2y + 2)et*Y)
=0

Hence u and v are functionally dependent.
Now v=e"Y = logv=x+Yy
- u=(log v)2 +2logv is the functionally relation between uand v.
Problem 2: Show that the functions u=x+y+2z, v=xy+yz+2X, w=Xx>+Yy’ +z%are

functionally related and find the functionally relation between them.
Solution: Given U=X+Y+2z, V=Xy+Yz+2X, W=X*+Yy*+7°

8_u=1 —=Yy+z %—ZX
OX X OX
8_u:1 @:x+z @:Zy
oy oy oy
a—uzl @=x+y @:22
oz oz 0z



ou ou ou
x oy oz
Now a(u,v,w): N vV
o(x,y,z) |ox oy oz
oW oOw ow
ox oy o

1 1 1

=|y+z X4z X+Yy

2X 2y 22

1 1 1

=2|y+2 X+Z X+Yy

X y z

Applying R, — R, + R, weget

1 1 1
=2|X+y+Z X+Yy+Z X+Yy+1Z

X y z
111
=2(x+y+2)|1 1 1|=
Xy z

=2(x+Yy+12).0 [since R and R, are identical]
=0

Hence u,vandware functionally dependent. So that functionally relation exists

between u,vandw.

Now u = (X+ Yy +2)?

=X* + Y2+ 22 +2xXy +2yZ + 22X
. U =W+ 2vis the functionally relation between u,vand w.
Problem 3: Prove that the functions u=x-y+3z, v=2x—-y—-zand w=2Xx—-Yy+zare

functionally related and find the functionally relation between them.
Solution: Given u=x—-y+3z, v=2Xx—y—zand w=2Xx—Yy+z

d_, N_, M _,
OX OX OX
au_ N_ 4 w_ 4
oy oy oy
N _q N__4 W _4
0z 0z 0z



u v o
oXx oy oz 5 _1 3
Now JWVW) _jv v vl g
o(x,y,z) |ox oy oz > 1 1
OW Ow Oow
x oy oz
11 3
=2(-DL 1 -1=(-2).(0)
11 1

. U,vandware functionally dependent.
Now U+V=4x—-2y+2z=2(2Xx-Yy+2)
Henceu+v =2w is the functionally relation betweenu, v and w.

TAYLOR’S EXPANSION FOR A FUNCTION OF TWO VARIABLES:
f(x, y)=f(a b)+(x-2a)f,(a b)+(y-b)f,(a b)

+%((x—a)2 fo (@ b)+2(x-a)(y-b)f, (a b)+(y=b)*f,(a, b))+....
Problem 1: Expand e*sin yin powers of x and y by Taylor’s theorem.
Solution: Let f(x,y)=e*siny
Then f,(x,y)=e*siny
f,(x,y)=€"cosy
f. (X, y)=e"siny
f.(xy)orf (xy)=e cosy
f,(x,y)=—€'siny
fo (X, y)=¢€"siny
fy (X y)=€"cosy
fy (X, y)=—€"siny
f, (X y)=—€"cosy
At (0,0), f(0,0)=0



f (O, O) =-1
By Taylor’s theorem, we have

f(x,y)="1 (0, 0)+ Xfx (0, 0)+ yfy (0, O)+%|:X2 fxX (O, 0)+2nyxy (0, 0)+ yz fyy (0’ O)}

1
+a[x3 Fo (0, 0)+3X7Yf, (0, 0)+3xy*f, (0, 0)+y*f, (0, 0)]+

2

. Y X’y y®
ie., e'siny=y+Xxy+———=—+....
y=y+Xxy > 8
Problem 2: Expand f(x,y)=tan™" (%) in powers of (x—1) and (y—1)

(or) Expand f(Xx,y)= tan‘l(%j in the neighborhood of (1, 1).

Solution: Let f(x,y)= tan‘l(%j

Then f (x,y)= X2‘+yy2

f,(xy)= NG i V2
2Xy

(x*+ y2)2

y2 - X
(x2 + y2)2

—2Xy
(x2 + yz)2
2y3_6x2y
(¢ +y7)
2x° - 6xy?
(x*+ yZ)3
6x’y —2y°
(x*+ y2)3
_ 6xy* —2x°

(x+y7)
At(1,1), f(L1)=tan(1) =%

fx(11 l) = _%

fo (X y) =

fyx (X! y) =

fyy (X! y) N

fxxx (X! y) =

fxxy (X! y) =

f><yy (X! y) =

fy (% Y)



By Taylor’s theorem for f(X,y)in powers of (x—1) and (y—1), we have
fx, y)=fLD+x-Df,LD+(y-Df LI

# 2 [-D7 £,0 D+ 20Dy -D F, @ D+ -D7 £, 0 ]

# [ £ 0 D430 DP (Y =D iy @ D +30-D(y =17 £, L D+ (y-D°F, 0. D .o

4

-1 l 1 2 2
. tan (%]_ 4+E[(x—1)—(y—1)]+z[(x—1) -(y-1 ]

—é[(x—l)s +3(x-1*(y=1) =3(x-D(y 1> = (y=1* | +.....
Problem 3: Expand e in powers of (x—1) and (y-1)
Solution: Let f(x,y)=¢e"
Then f, (X, y)=ye”
f,(xy)=xe”
Fu (X y) = y’e”
f (X, y)=xye? +e*
fy (X y)= x‘e”
At(1,1), QL) =e
flLl=e
f,LY=e
fu@D=e
f,Ll)=e+e=2e
f,D=e

By Taylor’s theorem, we have



fx, y)=fQLY)+(x-Df, L D+(y-)f L1
+%[(X—1)2 fo (L D+ 2=y D f (4 D+(y-1° f, (4, D |+.....

ie, e =e+(x—-1e+ (y—l)e+%[e(x—l)2 +4e(x—D)(y-1) +e(y-1)° |+.....

:e{1+(x—1)+(y—1)+ }=0 oy YD }

2! 2!
MAXIMUM AND MINIMUM OF FUNCTIONS OF TWO VARIABLES:
Working rule:
. of of . .
1. Find = =0and 5 =0, solving these equations for x and Y.
X

Let (a,b,) and (a,,b,) be the pairs of values.

2 2 2
2. Find r= oz S= 0’z t= oz for each airs of values obtained in step (1).
8y2

Xt oxoy
3. (i) If rt—s*>0and r<0 at (a,b,), then f(a,b,) has maximum at (a,,b,).

(ii) If rt—s®>>0and r >0 at (a,b,), then f(a,b,) has maximumat (a,b,).
(iii) If rt—s*<0and r>0 at (a,b,), then f(a,b,) is notan extreme at (a,,b,),

i.e., there is neither a maximum nor minimum at (a,,b,). In this case at (a,,b,) is

said to be saddle point.
(iv) If rt—s®*=0 at (a,b,), then there is no conclusion can be drawn about

maximum or minimum and we needs further investigation.
Similarly, examine the other pairs of points (a,,b,),(a;,b;),....one by one.

Problem 1: Find the maximum and minimum value of x*+ y* —3axy, a>0

Solution: Let z=x*+y*-3axy .. (1)
For f to be maxima or minima
a_ 0 and a_ 0
OX oy
0z 2
We have — =3(x"-ay)=0 .. 2
OX
0z
and —=3(y*-ax)=0 . (3)
oy

Solving (2) and (3), we get

x=0,x=a

Corresponding values of yare y=0,y=a
The stationary points are (0, 0)and (a, a)
o’z
pvie

Now r= 6X



0°1
S = =
Oxoy
0’z
:y =
At the point (0, 0), rt—s® =36xy—9a® =-9a”* <0
. The function does not have extreme value at (0, 0).
At the point (a,a), rt—s’=36a’-9a’=27a*>0 and r=6a>0
. The given function is minimum at (a,a).
The minimum value is z(a,a) =-a’.
Problem 2: Find the maximum and minimum value of f(x, y)=x*+3xy?—3x*-3y*+4

-3a

t 6y

Solution: Given f(x, y)=x>+3xy*-3x*-3y*+4 ... (1)
For f to be maxima or minima
ﬂ:O and ﬁ:o
OX oy
We have &:3x +3y*-6x=0 . 2
0z
and —=6xy-6y=0 . (3)
oy

Solving (2) and (3), we get
x=0,1,2 and y=0,%1
Hence (0,0),(2,0), (1, £1) are the stationary points of f.

2
Now r:a I =6x-6
OX
2
S= ot =06y
OXoy
2
t:gyz =6X—6

At (0, 0), rt—s*=(6x—6)"~36y*=36>0and r=6x—6=-6<0

. 1(0, 0) =4 is the maximum value

At (2,0), rt—s®=(6x—6)"-36y>=36>0and r=6x-6=6>0

- £(2,0) =0is the minimum value

At (L,£1), rt—s®=(6x—6)" —36y* =-36<0

. f (L £1)is not an extreme value.
Problem 3: Find the maximum and minimum value of f (x, y) = x* + y* —2x* + 4xy —2y°,
(x>0,y>0).
Solution: Given f(x, y)=x"+y*-2x*+4xy-2y*> ... (1)

For f to be maxima or minima

ﬂ:O and ﬂ:0
OX oy



We have Z—f:4(x3—x+ =0 )
X

of
and —=4(y*+x-y)=0 )
oy
Solving (2) and (3), we get
x=0,—+/2,+/2 andthe correspondingforare y =0,+/2,—2
Hence (0,0),(—\/E, \/5) and (\/5 —\/§)are the stationary points of f.
o0 f

Now r=—=12x*-4
X
o f
S = =
oxoy
o* f
t=—p=12y* -4

Atthe point (0, 0), rt—s =(12x* —4)(12y* -4)-16=0.

Therefore, we cannot say anything. It needs further investigation.

At the points (—\/5 \/E) (ﬁ —\/5)

rt—s*=20x20-16=384>0and r=20>0

.. The function f attains minimum value at (—\/E,ﬁ)and (\/5 —\/5)

Problem 4: The sum of three numbers is constant. Prove that product is maximum when they
are equal.
Solution: Let the three numbers be X,Y,z

Given x+y+z=a.

SLZ=a—-X-Yy
Let the product of three numbers be
P=xyz=xy(a-x-y) .. (1)

The product is maximum or minimum if
For maxima or minima

A o g

OX oy
oP 2
Now &:ay—2xy—y =0=y(@a-2x-y)=0
=2X+y=a @)
oP 2
and —=ax—-2xy—x"=0=x(a-2y—-x)=0
=>X+2y=a 3)
Solving (2) and (3), we get

x—y—z—E
3
O*P
Now r= =-2
OX? y




o’P

S= =a—-2Xx-2y
oxoy
2
tzaaylj:—Zx
At the point (E,E,Ej,
333
rt—s® =4xy—(a—2x-2y)°
2 2 2
_da @ _a g
9 9 3
andr:ﬁ<0
3
P is maximum at [E, E,Ej
3 33

The product is maximum, if the numbers are equal.

Problem 5: Discuss the maxima and minima of u(x, y) =sin xsin ysin(x+y), where

O<x<zand0<y<r.

Solution: Given function is u(x,y) =sinxsinysin(x+y)

Z—u =sin y[sin xcos(x+ y) +cos xsin(x+Y)]
X

=sin ysin(2x+y)
2
r= a_lzj = 2sin y cos(2x + )
OX

%u =sin x[siny cos(X + y) +cosysin(X + y)]

=sinxsin(x+2y)
2
S =

=sin(2x+2y)
2

t= % =2sin xcos(x+2Y)

Now Z—U =0=sinysin(2x+y)=0
X

where 0< x< 7z, siny#0

Hence sin(2x+y) =0

Similarly, %J=0:>Sin(x+2y)=0

From (1) and (2), we get
2X+y=rmandx+2y=rx
Solving these equations, we get

! =sIn Xcos(X+2y) + cos xsin(x +2y)



X:—, = —
3 y 3

Now At the point (Z, ZJ,
3 3

rt—s” =2sin(z/3)cos(rr).2cos(z /3

N—"

sinz —sin (47 /3)

(BB ) -2

2
andr =—/3<0
Hence u(x,y) is maximum at (z/3, z/3)

Maximum value of u(x,y) =sin(z/3)sin(z/3)sin(27/3)= (3J§)/8.

LAGRANGE’S METHOD OF UNDETERMINED MULTIFLIERS:

Note: To find the maxima or minima for a function f (x, y, z) =0 subject to the conditions
¢ (x,y,z)=0and ¢,(X,y,z) =0, form the Lagrange’s function as

F(x, y) = (%Y, 2) + A4(X. ¥, 2) + 4, (X, ¥, 2)

where Aand u are the Lagrange’s multipliers and proceed as above.

Problem 1: Find the points on the plane ax+by+cz=d which is nearest to the origin.
Solution: LetP(x, y, z) be any point on the given plane.

Then OP = x? + y? + 7°

Let f=x*+y*+2z> (1)
Now we have to minimize (1) subject to the condition
#(x,y,z)=ax+by+cz-d=0 . @)

Consider the Lagrangian function
ie., F(x,y,2)=x*+y*+7°+ A(ax+by+cz—d)
oF oF oF

For F to be minima or maxima, — =0, — =0, — =0
OX oy 0z
ﬁ:0:>2x+/1a:0 x:—% ...... 3)
OX 2
q=O:>2y+/”tb=0 y:—b—}b ...... 4)
oy 2
ﬁ:O:>22+/1c=0 z:—% ...... (5)
0z 2
Substituting (3), (4) and (5) in (2), we get
2 2 2 _ _
LA DA Ch g _goge - 22d ~ = 24 where p=a’+b*+c’
2 2 2 a“+b°+c p

Putting this value of Ain (3), (4), (5), we get
 _ad _bd od

P Y P



Hence (ﬂ%ﬂ] is the point on the given plane which nearest to the origin.

P P P

Problem 2: Find the minimum value of x*+ y? + z*subject to the condition xyz = a®
Solution: Let f =x*+y*+2z> (1)
and ¢(x,y,z)=xyz-a*=0 . 2)
Consider the Lagrangian function:
i.e., F(X,y,2)=x*+y*+2° + A(xyz -a®%)

For F to be minima, ﬁ:0, ﬁ:O, ﬁ:0
OX oy oz
ﬁ:O:2x+ﬂbyz:0 i:—i ...... 3)
OX yz 2
q:O:>2y+/1xz:0 Y_o_2 NN (4)
oy Xz 2
E:O:>22+ﬂpxy:0 .‘.i=—£ ...... (5)
0z Xy 2
Substituting (3), (4) and (5) in (2), we get
x_¥y_z_ 2 NN\ .. 6)
yz X Xy 2
From the first two members , we have
XY e AR A U N @)
yz X
From the last two members , we have
l = i — y2 = Z2 ...... (8)
ZX Xy
From (7) and (8), we have
X=y'="=x=y=z . 9)
Solving (2) and (9), we get
Minimum value of f =a’+a’+a*=3a’
Problem 3: Find the minimum value of x* +y*+z°given x+y+z=3a
Solution: Let f =x*+y*+z2> (1)
and #(x,y,z2)=x+y+z-3a=0 . @)
Consider the Lagrangian function:
ie, F(X,V,2)=x*+y +2° + A(x+y+z—-3a)
For F to be minima, ﬁ:0, i:O, ﬁ:0
OX oy /4
ﬁ=O:>2x+/1=0 x:—i ...... (3)
OX 2
i:O:>2y+/1:0 y:—i ...... 4)
oy 2



oF A

—=0=>2z+1=0 Sl=—=
0z 2
Substituting (3), (4) and (5) in (2), we get
A A_k_

_____ = a:—%:% or A=-2a
Using this value A =-2a in (3), (4) and (5), we have
L X=a, y=a z=a
The possible extreme point is (a,a,a)
Hence the minimum value of f =a®+a’+a® =3a’

Problem 4: Find the maximum value of x"y"z’subjectto x+y+z=a

Solution: Let f =x"y"z"
and #(x,y,2)=x+y+z-a=0
Consider the Lagrangian function:
ie., F(x,y,2)=x"y"z° + A(x+y+z—-a)

For F to be maxima, ﬁ:o,ﬁzo,ﬁ:o

OX oy 0z

ﬁ:O:>mxm‘1y“zp+/‘t:0 x:—m—f
OX A
i:O:>nxmy”’lz'f’+l:0 y=—%
F_o= px"y"z" 4+ 1=0 L= Pt
0z A
Substituting (3), (4) and (5) in (2), we get
_mf_nf pf o (men+p)f
A A A a
Substituting this value of A in (3), (4) and (5), we have
am an ap
SoX= , Y= , 2=
m-+n+p m+n+p m+n+p

) am an
Hence the maximum value of f :( j (
m+n+p

a™™P m™n" p p
)m+n+p

(m+n+p

m+n+p

n ap p
m+n+p



Unit-IV
Multiple Integrals

Double integrals, change of order of integration, change of variables. Evaluation of triple
integrals, change of variables between Cartesian, cylindrical and spherical polar co-
ordinates. Finding areas and volumes using double and triple integrals.

Double Integrals:

2y

1x
Problem 1: Evaluate HeXdydx
00

a b

Problem 2: Evaluate j j (% +y* )y dx

x=0y=0

Solution: Given integral 1= jl _T (x2+y2)dydx

x=0 y=0
a 3 b a 3 b
=.[(x2y+y?j dx = (x2b+—j dx
0 0 0 0
B S Y .
3 3] 3 3
-2 (e +b?)

dx dy

11
1
Problem 3: Evaluate ”
00 \/(1— XZ)(l— yZ)
1

1
. . . 1
Solution: Given integral 1= j I—
x=0 y:O \ll_ X2 \’1_ y2

dx dy



:j. 1de1- ! dy

1
Problem 4: Evaluate I
0

1
Solution: Given integral 1= |
0

Il
Ol O 2 O ey

1

a

E(ﬂm 0)d =—jJ1+_xdx

[Iog(x+\/1+7ﬂl
(1+\/_) (or) —smh 1

0

1 y2+1

Problem 5: Evaluate J' I X’y dxdy
0

1 y?+ 3 X3 x=y“+1
Solution: Given integral | = X2y dxdy = — dx
9 [ ] %y dxdy ! y(S]

y=0 x=y X=y



3 2 3 3 \*=
Iy (0 N A N
) 3 3 )

6 4 2 3
[y +3y" +3y +1—y—]dx

Wl oolr—\ ot—w
<

3 3

2 3
= y_ Zz 7 3y_+y_
8 4 2

y=0

1
3
1(6561 2187 243 243+9j 67
3
Ty

5 4 2)7120

Problem 6: Evaluate H x2 2)dxdy in the positive quadrant for which x+y <1.

Solution: Given integral I_I (x2+y dx dy
R

1 y=l-x

—I j (%% +y?)dy dx

><
O
’*<
O

Il
—_—

X

Il
—
7\
>
N
|
>
w
+
~
|
(&
w
N——
o

x=0
[X_g_x_4_(1_x)4]X1
3 4 12 )
g1 1 1.1
3 4 12 6

Problem 7: Evaluate Hydxdy where R is the region bounded by x —axis, ordinate x =2a

and the curve x° = 4ay.

a Xx=2a

Solution: Given integral | :jjydxdy = j j (X +y? )y dx
R

y=0x=2.fay



Problem 8: Find the value of [[xydxdy over the positive quadrant of the ellipse

XZ

2
Solution: Given ellipse is —2+Z—2 =1.
a

y=1+ b Va2 —x?
a
The region of integration can be expressed as

03x3a,03y39\/az—x2,
a

b
y=2Afa2 2
a a

Given integral | :ﬂxydxdy = j _[ Xy dy dx
R x=0 y=0
. y:E 22

=I af Xy dy dx
x=0 y=0

a 2 y:gm
x{ y } dx
0

h? @ , s b2 2Xz XA a
=— | (xa"=x")dx=—|a" ———

2a° X-L( ) 2a’ 2 4
b (a“ a“j_ b*> a* a’’

“22°\ 2 4) 22’4 8

Home Work:

Problem 1: Evaluate ”e"xz*yz’dydx
00

2

a2

+ —

2

y
b2

=1



2 X 1 x
Problem 2: Evaluate (i) ”e“ydydx (i) ”ex*ydydx
00 00

Va?-x?

I JaZ —x2 —y? dydx

0

Problem 4: Find the value of [[xydxdy taken over the positive quadrant of the circle

Problem 3: Evaluate

O ey

x> +y?=a’.
Problem 5: Find the area included between the parabolas y* = 4xand x> = 4y.

DOUBLE INTEGRALS IN POLAR COORDINATES:

=0, r=r,
To evaluate I I f(r,0)drd@over the region bounded by the lines =6, and@ =6, the

0=6; r=n,

curves r =r,r=r, . We first integrate w.r.to r between the limits r =r,and r =r,. Keeping
6@ fixed and then integrate w.r.to & from g, and 6, . In this integral r,are r, functions of &
and & and 6, are constants.

7 asin@

Problem 1: Evaluatej I rdrdé

0 0

7 asing . r=asing
Solution: Given integral I—j I rdrdg= J[%}

(1—cos 29)(“9
2

6=0 0=0
2
== | @~cos26)de
4 6=0
_a_2 9_5m29 o _nd?
4 2 Jpy 4

o /2

Problem 2: Evaluate j j e"rdrde
00

o /2

72
Solution: Given integral | =J' J' e‘“zrdrd¢9=—%_|' “ _2rdrde
0

O'—;S

9:0_4



714 asiné

Problem 3: Evaluate ' drd@
0J_.o r'[o ’\/3-2 —r?
zl4 asing r d d l;r/4asin6 _2r d d
Solution: Given integral | = ———drdf=—= ———drdé¢
J g.[o r'[o \/az—rz 29'[0 r'[o '\/az —r2
1 zl4 r=asing
== j ( a’ —r2) dé
29:0 r=0
rl4
:—j (\/az—azsinze—\/a_z)de
6=0
rl4 rl4
=-a J' (\/cos2 49—1)d9= a I (1-cos@)do
6=0 6=0

) 1
—a(0-sing)” =a| Z-—
a(@-sin )‘9:0 a[4 2)

712 a(l+cosd)

Problem 4: Evaluate'[ j rdrdo

6=0 r=a
12 a(l+cosd) 712 o TJr=a(l+coso)
- - . r
Solution: Given integral | = I J' rdrdé = J[—} do
=0 r=a 0=0 2 r=a
7l2 2 2 2
_ J[a (1+cosd) _a_}dg
0=0 2 2
7l2 2
=a2f cos“ 0+ 2cosd 40
6=0 2
rl2
=a’ {—Hcoszewose}de
=0

. 7l2
=a’ Q+Sm20+sin9 —a?| X1
4 8 8

6=0

TO FIND THE POLAR LIMITS OF DOUBLE INTEGRALS:
Consider the double integral ”f(r, ¢)drdfover a region R, where the limits of
R

integration of the region are not specified.
0=0, r=1(6,)
Hence [[ f(r, 0)drdo= [ [ f(r,0)drde
R 0=6, r="1(6,)
7l2 acos@
Problem 1: Evaluate j _[ rva’—r’drdé
0=0 r=0
12| acosd

1_|' I(—Zr)\/az—rzdr do

Solution: Given integral | :_?
%



3/2 r=acosd

__17r/2_(a2_r2) de
__9:0_ 3/2 )
_-1 ﬂJ/'Z _(az —a’cos? 0)3/2 —(a2 )3/1d¢9
3 L
l2 —~
:__1.[ (azsinze)yz—(az)yz}dﬁ
3 L

71'/2

:—J' asm49 a]de

3
:i{gll_Z} Z [37-4].
313 2] 18

Problem 2: Evaluate _Ursin Odrdé over the cardiod r =a(l—cos®d) above the initial line

Solution: The cardiod r =a(l—cos#) is symmetrical about the initial line &=0. The region
of integration R above the initial line is r is Various fromr =0 to r = a(l—cos#) and @various
from 6=0to O=nx

7 a(l-cos@)

Given integral Izj rsinedrdezj I rdrsinfdé
R d

= r=0
. r2 a(l-coso)
= I sin 0[3} do

r=0

2 T
a? J. (1-cos@)’sinfdo
9=

a‘ | (1-cos0)
kel
a’(2* 0°
452
_4a°

3

Problem 3: Evaluate ” r’drdé@ over the area included between the circles r =2sin@and

r=4siné.
Solution: The region of integration R is shown shaded.

Here ris various fromr =2sin@ to r =4sin@ and & various from @=0to =r
O=r r=4siné

Given integral I_”r drdé = j J' r*drsin6dé

0=0 r=2sin@



z .3 r=4sin@
r—} d6

oL

N
Il

r=2siné

4 4
- 4 - 4
256sin‘ 0  16sin nge
4 4

Il
T e—n

o

(4sing)*  (2sin ‘9)4](19

I
b e—n

o

N
S

~|

0 jsin49d9=6oj sin*6de
=0 =|

6=0

0="
2
~120 | sin® 040 =120x S x = x %
6=0 4
6
2

Change of order of integration:

In double integral with variable limits, the change of order of integration requires the
change of limits also. While doing so, sometimes it is required to spit up the region of
integration and the given integral is expressed as the sum of a number of double integrals with
changed limits. To fix up the new limits, it is always to draw a strip (rough sketch) of the region
of integration.

The change of order of integration quite often facilities the evaluation of a double
integral. The following Problems will makes these ideas clear.

Problem 1: Change the order of integration for the integral

2_2

j j f(x,y)dxdy
-a 0

Solution: Given limits are

x=-a,x=aandy=0,y=+a*—x

ie,x=—ax=aandy=0,x*+y*=a’
With these limits, the region of integration as shown in the figure. This is the region of semi-
circular area.
To change the order of integration, we take a strip parallel to x-axis. This strip moves on

x=—/a’—y? andx=./a’—y? from y=0toy=a.

Thus,l:j j f(x,y)dxdy

- -fyzo.[ — oy f(x, y)dxdy

Problem 2: To the change of order of integration and evaluate the integral

a Va?-x?

I _[ y* dxdy

0 0
Solution: Given limits are



x=0,x=aandy=0,y=+va’—x*

ie,x=0,x=aandy=0,x*+y*=a’
The region of integration is the region bounded by x* + y* = a®in the first quadrant.
To change the order of integration, we take a strip parallel to x-axis. This strip moves on

X= Oandx—J y’> from y=0toy=a.

e
Thus, I_J' _[ yZ dxdy

y=0 x=0

_Iy[y\/ﬁdX_J‘yZ 'az_yzdx
y=0

7r/2

= J' a’sin*@a’cos’0d@ puty=asind= dy =acosddd

4 /2

= J. 4sin*@cos®0d6  4sin? Hcos® O =sin® 260

4 72
a’ r (1-cos40) 40
4 7 2

_a g_Sin40 I rat
8 2 o 16
Problem 3: Change the order of integration and evaluate
4a 2+fax
I dy dx
0 x*/4a
Solution: Given limits are

2

x=0,x=4a andy::—,yzzx/&
a

i.e., x=0,x=4a andx’ = 4ay, y* = 4ax
The region of integration is the shaded region in the figure.

To change the order of integration, we take a strip parallel to x-axis. This strip moves on
2

x=Y_ and x=24[ay from y=0toy=4a.

4a
a | 2|ay
Thus, I—if zj dx |dy = _[ 2J—dy
y=0| y° y=0 “4a

Y
4a

y 3 4a
= [|2ay -1 |d
|-G 2E
_2JadaV4a 64a°
3/2 12a
32a° 16a’ _16a’

3 3 3




12-x

Problem 4: By changing the order of integration, evaluate J' J' Xy dx dy
00

Solution: Given limits are

x=0,x=landy=0,y=2-Xx

ie,x=0,x=1landy=0, x+y=2
The region of integration is as shown in the figure.
To change the order of integration, we take a strip parallel to x-axis. This strip moves on
x=0andx=2-yfrom y=1toy=2.

2 2-y

Thus, | = J J xy dx dy

y=1x=0

= j y jde}dy jy{)ﬂ
I

3 (- y) } __% y[4 4y+y* }dy

u —_—nN |

1 2

== 4 4y° + d

2j Y-y ey = 2{2 3 4
J(LE) >

2\3 12) 24

Problem 12: Change the order of integration and evaluate

=1

1 ‘i‘iy_}
y

o7
j dy dx

y2/9

O ey

Solution: Given limits are

y=0)y23andxzyz/g,X:,llo_yz

ie,y=0,y=3andy*=9,x*+y*=10
The region of integration is OABC as shown in the figure. This region OABC divided into two
parts by drawing a line parallel to y-axis at the point of intersection D.
To change the order of integration, For the region ABD, we take a strip parallel to y-axis. This

strip moves on y=0andy =3Jx fromx=0tox=1. For the region ADC, we take a strip

parallel to x-axis. This strip moves on y=0andy=+10-x’ from x =1 to x = /10 .Hence,

3 \10-y? 13 NTREd
I I dydx = I_[ dydx+_|. I dxdy =1, +1,(say)
0 y2/9 0 y=0
13Jx
Now I1=I I dydx

0 y=0



0 0 0
J10 o2
andl,= [ [ dxdy=[[y]}" dx
1 0 1
Jio Jio
X 1 X
= 10— x%dx = —\/10—x2+—sm‘1£—ﬂ
E!j |:2 2 \/E x=1
) 3 . 1 57 3 ) 1
=5sin*(1)-=-5sin?| — |===—-=_5sin!| —
@ 2 (Jl_oj 2 2 ( 10}
310y’ sz 3 _ . . 1
Hence,j j dydx=2+——=-5sin"| —
0 y%/9 2 2 ‘/ﬁ

1 . 1
=—(1+57)-5sin"'| —
p(1+57) (Jloj
12+x

Problem 13: By changing the order of integration, evaluate J' _[ xydx dy

0 x?
1 2+x
Solution: The given integral can be written as | = I j Xy dy dx
x=0 y:x2
The region of integration is given by
x=0,x=landy=x*y=2-x
ie,x=0,x=landy=x*x+y=2 .. (1)
The region of integration is OAB as shown in the figure. This region OAB divided into two

parts
by drawing a line parallel to x-axis at the point of intersection C. The point of intersection is

given by solving the equation (1).
To change the order of integration, For the region OAC, we take a strip parallel to x-axis. This
strip moves on x=0andx= ﬁ fromy=0toy=1. For the region CAB, we take a strip

parallel to x-axis. This stripmoveson x=0andx=2-yfromy=1toy=2.
1 2+x
Hence, | = I I Xy dy dx

x=0 y:)(2

1 Jy 2 2-y
= I y[j xdx ]dy+ J. y[f xdx}dy
y=0 x=0 y=1 =

x=0



y=0 y=1
3t 2 3 472
:1 y_ _}_l. 4y_ 4y__|_y_
2131 . 2 2 3 4|
y=0 y=1
:l 14_& 8_£+4_ z_ﬂ 1
23 2 3 4
1 5 9 3
=t —=—=—
6 24 24 8
A
v=2 K=y
(0:2)
(2,0)

(0,0) \

11/x

Problem 14: By changing the order of integration, evaluate j j 2y > dydx
o % (1+xy) (1+y )

1 1/x
- y
Solution: Let | = dydx
X'[o y'L (1+xy)” (1+ y2)
The region of integration is given by
x=0,x=1landy=x,y=1/x
e, x=0,x=landy=x,xy=2 .. Q)
The region of integration is OAB as shown in the figure. This region OAB divided into two
parts
by drawing a line parallel to x-axis at the point of intersection A(1, 1). The point of intersection
is given by solving the equation (1).
To change the order of integration, For the region OCD, we take a strip parallel to x-axis. This
strip moves on Xx=0andx=Yy fromy =0 toy =1. For the region CAB, we take a strip parallel

to x-axis. This strip moveson x=0andx=1/yfromy=1toy — .




1 lUx

y
Hence, | = XJ.O ij (s xy)2 (1+ yZ) dydx

1 y |1
- I 1+y L[O (1+ xy) x }der -[ (1+y )LIO(H xy)2 dx}dy
=1,+1, (say)
by [y
Now I, _yj:o (1+ yz) J' (L dx }dy

_j! 11 ]W

ol (1+ y2)2 (1+y?)

put y = tan @ in thefirst term of theintegral dy = sec® #dé
When y=0=60=0and wheny=1=6=x/4

zl4 2
- T[S Lol
=0

sec” @

_T [“ c;s 20} do+ [tan‘l(l) - tan‘l(O)]

[ s,|n226?r4 T

QD
>
o
-
|
k<|'-—;'~




Triple Integrals:
Let f(x,y,z) be a function defined over a three dimensional finite region V. Divide

the region V into nelementary volumesdV,,dVv,,......0V, . Let (X.,Y,,z,) be any point within
the r'" sub-division 6V, . The limit of the sum > f(x,y,,z)V,, as n—o and 6V, —>0is
r=1

known as triple integral of f(x,y,z)over the region V.
Symbolically, it is denoted by ”J f(x,y,2)dV.
\Y

Evaluation of Triple Inteqgral:

abc

Problem 1: Evaluate J”(xz +y* +2* Jdxdydz

000
Solution: Since the limits are constants. So, the order of integration is immaterial.
Integrating first w.r.to x keeping y and z are constants, we have

ab 3 ¢
Given integral | =”[X—+ xy2+xzz} dydz
00 3 x=0
18 ¢’ 2 2 i
” —+cy“+cz dydz
00 3 x=0

Now Integrating first w.r.to y keeping z is constant, we have
b

3 3

C y 2
—vy+ci-+cyz dz
3 y 3 y }

y=0

3
Finally, Integrating first w.r.to z, we get

|
!

[ h A3 3
bi+%+cbzz}dz

bc®  cb® 21
=|—2Z+—12+Cbh—
3 3 o
abc® acbh® a
= ch—
3 3 3
I :a—m(a2+b2+c2)
3

123
Problem 2: Evaluate ”J.xyz dxdydz
012

1 2 3
Solution: Given integral 1= I J' j Xyz dxdydz

z=0 y=1x=2



Alternative Method

1
Given integral | = I

2 3
I I Xyz dxdydz

=0 y=1x=2

z

1

2

1
I zdz
z=0
.2

| 2

2

[ ydy

y=1

2

y

X2

o de
L5 LEL
ooz 2

15
8

2 2)\2 2

135
222

272yt
Problem 3: Evaluate j”xyz dxdydz
010

Solution: Given integral 1=

e logye*

xyz dxdydz

yz
dydz

x=0

2

3

Problem 4: Evaluate j I Ilogzdzdydx
11 1

Solution: Given integral |=

eX

J' logzdz

z=1

e logy

J I

y=1 x=1

e



e logy

= _[ I [zlogz—z]‘il dxdy
y=1 x=1 B
e logy

= J. j [xex—ex+1]dxdy
y=1 x=1
F logy

- J. [xeX XX+ x}le dy
y=1

e

= J'[ylog y—2y+logy+(e—1)]dy
y=1

e

= J. [(y+1)logy—2y+(e—1)]dy

y=1

_|[¥ (Y )yt ey |
_sz)logy (4+yj y +(e 1)yl_l

2
=e——2e+§=1(e2—8e+13)
4 4 4

L ) yoxe2
- I J{xy+y?+zy} dxdz

z=-1x=0 y=X-1

-1 z

= I I{x(x+z—x+z)+

z=-1x=0

(X+12)* = (x+2)?
2

+z(X+Z—-X+ z)}dxdz

= Jl' j{2x2+4—;z+222}dxdz

z=-1x=0
z X=2

1 1 2
= _[ _[[4xz+222]dxdz:2 f {22%+22x} dz
— z=-1

z=—1x=0 x=0

111-x

Problem 7: Evaluate “ j xdzdxdy

0 y2 0

1 1 1-x
Solution: Given integral | = _[ _[ jxdzdxdy

y=0 x=y2 z=0



1-x
x{ I 1.dz}dxdy

y=0x=y z=0
11
= I _[ x[2],; dxdy
y=0 x=y?
101 - L2 8 1 ]
= X(1—-x)dxdy = —_———
V!OXJ)IZ ( ) y y‘[0|: 2 3 :|>(=y2 y

1 132 1y
Problem 8: Evaluate j f - ! — dzdydx
x=0 y=0  z=0 1-x°— Yy -z

Solution: Given integral | = I

j l_[x[p\/pjdz}dydx where p = 1-x* —y?
p
I

>
Il
o
<<
Il
o
N
Il
o
'ON
e
N

dz}dydx

X 1 ' 1 i
2 2sin (9| =7[043.2)-%
212 2 2 2 2 8

x=0
Problem 9: Evaluate the triple integral J'” xy?z dxdydz take through the positive octant of the
sphere x*+y*+z° =a’
Solution: Equation of the sphere x* + y*+z° =a®
The limits of the integration are

z2=0,z=,/a®>-x*—y?,y=0,y=+a’—x*andx=0,x=a

Given integral | = Lazoj.yjofx j ST xy?z dzdydx

z=0
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CHANGE OF VARIABLES IN A TRIPLE INTEGRAL.:

Let the variables x,y,z be changed to new variables u,v, wby the transformation.
X=¢(u,v,W),y =4 (u,v,w),z=¢(u,v,w)

Where ¢ (u,v,w), ¢, (u,v,w), ¢, (u,v,w) are continuous and continuous first order derivatives in

some region V' in the uvw-plane which corresponds to the region V in the xyz -plane. Then

JIT 1 y,2) e = [[] 1 (6o ) 3] cucucw

Where J = oAxy.2) _ (+0) is the Jacobian transformation of x,y,zw.r.to u,v,w.
o(u,v,w)

(a) To change rectangular coordinates to spherical coordinates:
We have x=rsin@cosg, y =rsindsing, z=rcosé

OX OX OX
o 00 o
and 322%¥.2) |y &y Oy

o(r,6,z) |or 060 0¢
0oz 07 o2
o 00 o4

sinfdcos¢ rcos@dcosg —rsindsing
=|sindsing rcos@sing rsin@cosg|=r’sinéd
cosé —rsinéd 0

Thus Jﬂ f (X, Y, z) dxdydz =”j f (rsin@cos ¢, rsindsing,rcosd) r’sin @drdd¢
\Y V'




(b) To change rectangular coordinates to cylindrical coordinates:
We have x=rcosé, y=rsing, z=z2

cos@d -rsin@ O

and Jz%zsine rcos@ O|=r
r,o,z
0 0 1

Thus m f (X, Y, z)dxdydz :Hj f(rcosé,rsing,z)rdrd@dz
\ Vv’

Problem 1: Evaluate the triple integral IJ'J'(x2+y2+zz)dxdydz taken over the volume

enclosed by the sphere x*+y?+2>=a” by transforming into spherical polar coordinates.

Solution: Equation of the sphere x> +y® +z° =a’

Introducing spherical polar coordinates
X=rsin@cosg, y=rsingsing, z=rcosd

we have dxdydz = r?sin#drd&d¢

and x> +y*+2*=a°

= r?sin®* @cos’ ¢+ r?sin® @sin’ g+ r’cos* 4 = a*

>r’=a’=r=a
The limits of the integration are
0=0,0=r,¢=0,¢p=27,r=0,r=a

Given integral | :Iriojzojjiazrzsin 6drddd ¢
= azjio r“jg”:osin HUZ)LM}d odr
= aZJ'ra:O r4j;:03in 0[¢5]Zod odr
= azrzo r“ﬁ:osin 0.27.dodr
= 2zazjrio r“I;:Osin adodr
= Znazjio r*[-cos@] _dr
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taken over the positive octant of

f 2_y2 2_y2_\2
Problem 2: Evaluate Iaoj ao J'J‘Ziy\/ : dxzdydzz :
e = a —Xx -y -z

the sphere x*+y®+ 2> =a® by changing to spherical polar coordinates.

Solution: By changing to spherical polar coordinates
Putting x=rsindcos¢, y=rsiné@sing, z=rcosd



we have dxdydz = r?sinddrdéd¢

and x> +y* +z° =r?

= r?sin®@cos’ ¢+ r’sin’ @sin’ g+ r’cos* 0 = a°
=>r’=a’=r=a

The limits of the integration are
0=0,0=r112,4=0,p=x/2,r=0,r=a
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Problem 3: By changing to spherical polar coordinates, find the volume the sphere
X +y*+z2° =a’
Solution: The region of integration is {(x,y,z):0<x*+y’ +2° <a’}
By changing to spherical polar coordinates
Putting X =rsin@dcos¢, y =rsindsing, z=rcosd
we have dxdydz = r?sin#drd&d ¢

and x> +y?+z°=r’



= r?sin® @cos’ ¢+ rsin’ @sin’ ¢+ r’cos’ 6 = a*
=>r’=a’=r=a

Using this transformation, The limits of the integration are
0=0,0=r,¢=0,¢=27,r=0,r=a

Given integral | :J‘;J‘;O_[:; r?sin@drd6d¢
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Problem 4: By changing to cylindrical polar coordinates, find the volume the cylinder with
base radius a and highth.

Solution: The region of integration is bounded by {x2 +y’<a®0<z< h}
By changing to cylindrical polar coordinates

Putting x=rcosé, y=rsing, z=z

we have dxdydz = rdrddd¢

Using this transformation, The limits of the integration are
0=0,0=r,r=0,r=a,z=0,z=h

Given integral 1 :Lio.[:;'fiordrded;zﬁ
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UNIT -5
Beta and Gamma functions

Beta and Gamma functions and their properties, relation between beta and gamma functions,
evaluation of definite integrals using beta and gamma functions.

GAMMA FUNCTION:

Definition: If nis a positive number, Then the definite integral Ie‘xx”‘ldx, n >0, is called the Gamma
0

function and is denoted by I'(n) . i.e., ['(n) = Ie‘xxn'ldx.
0
Gamma function is also called Eulerian integral of second kind.

PROPERTIES OF GAMMA FUNCTION:
i) r@=1
Proof: By the definition of Gamma function, we have

rQ= J'e*XXde = Ie’x.ldx = (e_lj - —(0-1)=1
0 0 0

(i) T(n+1)=nl(n)
By the definition of Gamma function, we have



r'(n)= Ie‘xx”‘ldx ..............
0

Changing n to n+1lin (1)

r'(n+1) = je‘xx”dx = [x” e—lj —_[nx”‘1 € dx
0 0

=0+ n.[e‘xx”‘ldx
0

For Problem, F(E) = F[E +l)
2 2
r

This is called recurrence formula for I'(n).
Let us discuss the following cases when
(@ n is positive integer
(b) nis positive fraction
(c) nis negative fraction
Case (a):  When nis positive integer
o I'(n+1)=nI’(n)
=n(n-)r'(n-21)
=n(n-)(n-2)I'(h-2)
=n(n-1)(n-2)....3.2.1T (1)
=n(n-1)(n-2)......3.2.1.1Since I'(1) =1
- I'(n+1)=n!
For Problem, I'(8)=7.6.5.4.3.2.1=T7!
Case (b): When nis positive fraction
rn)=(n-Yr(n-1
=(n-D)(n-2)I'(n-2)
=(n-1)(n-2)(n-3)I'(n—3) and soon.
For Problem, T ! = Z—1 E—1 §—1 r 1
2 2 2 2 2
531_(1) 15
=——-=T|=|==—
222 (2) 8 Jr
Case (c): When nis negative fraction
We have I'(n+1) =nI"(n)
I'(n+1)
n

I'(n)=

:EF(n +1)
n

On using (1), we have



~_1T'(n+2)
“n (n+)
1 1 TI(n+3
“n(n+) (n+2)

211 '(n+k+1)
n(nh+) T (n+k)
I'(n+k+1)

n(n+1)........ (n+k)

-1
1 F(2+lj 1
Problem (1): F(?j:_—l:_zr(aj:_z\/;
2
1 r(_sl”j 4
Problem (2): F(€]=_—1=_5r(gj
5

Note: 1. I'(n) is defined whenn>0
2. T'(n) is defined when ‘ n’is a negative fraction.
3. T'(n) isundefined whenn=0 and ‘n’ is a negative integer.
OTHER FORMS OF GAMMA FUNCTION:
r(n
K"

(i) Prove that j e ¥x"dx =
0

Put y =kx
So that dy = kdx
Also x=0;y=0 andx — oo}y — o0

je‘kxx”‘ldx = I e’ (ky)"kdy
0 0

k" [e”y"dy

0
Ie‘kxx”‘ldx =k"I'(n)
0
.. 1%
(ii) Prove that T'(n) =H_|.e Y dy
0

By the definition of Gamma function, we have

r'(n)= Te‘xx”‘ldx .............. (1)
0

Put y=x"
So that dy = nx""dx



Also x=0;y=0 andx > o0;y -

r'(n) Ieyﬂnd—g lIey” dy

Hence I'(n) = 1J‘e‘ymdy
n 0

1 n-1
(i) Prove that I'(n) = j log [%) dy
0

We have T'(n) = j e*x"dx (1)
0

X 1
Pute” = y:>x=|og(y]

So that —e “dx = dy
Also when x=0;y=1 andXx —> o;y — 0

0 n-1
Substituting, F(n):—jlog(lj dy
y
1

- T'(n) =j‘log (%j _ dy

(iv) Prove that T'(n) = ZI e ¥y idy
0

We have I'(n) = Ie‘xx”‘ldx .............. (1)
0

Put X = y?
So that dx = 2ydy
Also x=0;y=0 andx > o0;y — o

Substituting, T'(n) = 2[ ey 2ydy
0

g F(n):zje’yzyz”’lydy
0
SOLVED PROBLEMS:
Problem (1): Prove that Ie‘xzdx = %F(%j Hence show that F[%j =Jr.
0

Solution: We have I'(n) =J'e“t”‘1dt
0

| —

Put n=

(.

Lett=x
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= dt =2xdx
Also x=0;y=0 andx > o0;y > o

F(lj: e‘xz.l.Zxdx
2) % X
= ZJ'e‘dex
0

Hence J'e‘xzdx = ir(ij ..............................
) 2 (2

Deduction:
By changing x to y, we have

T 1 (1
eVdy==T|=|
[erdr=3 @
Multiplying (2) and (3), weget
2 o0 o0
Bf@ﬂ frracjers
0

)] -effe o

The region of mtegratlon is the first quadrant of the xy —plane.
Change Cartesian coordinates to polar coordinates

by putting x=rcosd,y=rsinéd

and dxdy =rdrdé&

e dxdy By property of multiple integrals

8 o—38

From this region, r varies from 0 to o while &varies from 0 to z
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2 =00 6=0 0
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Hence, r(%j:\/;.

Problem 2: Evaluate the following integrals

Te’azxzdx (ii) T\/;e’xgdx (iii) sze’Xde
0 0 0



(iv) I e dx (V) J' x‘e ™ dx (Vi) I e dx
0 0 0
(i) Solution: Given integral, I:J.e‘azxzdx
Put a’x? =y:>x=g

So that dx =

! g
Zaﬁy

And the limits are same.

I—Tey ! d —i]oey _%d
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(ii) Solution:Given integral, I:J'\/;e‘xsdx
0

1 _2
Put x* =y = x=y? so that dx:%y 3dy

=T = 3dy =1Teyy"$dy
0
FA

(iii) Solution: Given integral, I:J'xze’xzdx

Put x> =y = x=.Jy

So that dx = Ldy

20y



(iv) Solution: Given integral, | = J'e‘xsdx
0

1 2

Put x* =y =>x=Yy? sothat dx=%y_3dy

o121t

Sol=leYZy3dy==|eVy3 d
! S °dy 3! ys dy
1

- _r[l}
3 3
(v) Solution: Given integral, | :_[x“e’xzdx
0

Put x> =y = x=.Jy

So that dx = Ldy
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