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Course Objectives: 

To equip the students with standard concepts and tools at an intermediate to 

advanced level mathematics to develop the confidence and ability among the 

students to handle various real-world problems and their applications. 

  
Course Outcomes: At the end of the course, the student will be able to 

CO1: Develop and use of matrix algebra techniques that are needed by engineers for 

practicalapplications. 

CO2: Utilize mean value theorems to real life problems. 
CO3: Familiarize with functions of several variables which is useful in 

optimization. CO4: Learn important tools of calculus in higher 

dimensions. 

CO5: Familiarize with double and triple integrals of functions of several 

variables in two dimensions using Cartesian and polar coordinates and in 

three dimensions using cylindrical and spherical coordinates. 

  

UNIT I Matrices 
Rank of a matrix by echelon form, normal form. Solving system of 

Homogeneous and Non-Homogeneous equations. Solutions of simultaneous 

linear equations by Gauss elimination method and Gauss-Jordan method. 

Iterative Methods: Jacobi’s Iteration method and Gauss Seidel Iteration 

Method. 

  

UNIT II Linear Transformation and Orthogonal Transformation 

Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, 

Cayley- Hamilton Theorem (without proof), finding inverse and powers of a 

matrix by Cayley- Hamilton Theorem, Quadratic forms and Nature of the 

Quadratic Forms, Reduction of Quadratic formto canonicalforms by 

Orthogonal Transformation. 

  
UNIT III Calculus 

Mean Value Theorems: Rolle’s Theorem, Lagrange’s mean value theorem 

with their geometrical interpretation, Cauchy’s mean value theorem, Taylor’s 

and Maclaurin’s theorems with remainders (without proof), Problems and 

applications on the above theorems. 

  
UNIT IV Partial differentiation and Applications (Multi variable calculus) 

Partial derivatives, total derivatives, chain rule, change of variables, Taylor’s 



and Maclaurin’s series expansion of functions of two variables. Jacobian, 

maxima and minima of functionsof two variables, method of Lagrange 

multipliers. 

 

UNIT V Multiple Integrals (Multi variable Calculus) 
Double integrals, triple integrals, change of order of integration, change of 

variables to polar, cylindrical and spherical coordinates. Finding areas (by 

double integrals) and volumes (by double integrals and triple integrals). 

Textbooks: 

  

1. Higher Engineering Mathematics, B. S. Grewal, Khanna 

Publishers, 2017, 44th Edition 

2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley 

& Sons, 2018, 10thEdition. 

  
Reference Books: 

1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel 

Hass, Pearson Publishers, 2018, 14th Edition. 

2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. 

Iyengar, Alpha ScienceInternational Ltd., 2021 5th Edition(9th 

reprint). 

3. Advanced Modern Engineering Mathematics, Glyn James, Pearson 

publishers, 2018, 5thEdition. 

4. Advanced Engineering Mathematics, Micheael Greenberg, , 

Pearson publishers, 9thedition 

5. Higher Engineering Mathematics, H. K Das, Er. Rajnish 

Verma, S. Chand Publications,2014, Third Edition (Reprint 
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Subject: Linear Algebra & Calculus 

Unit-I:  Matrices: 

 

Syllabus: Rank of a matrix by echelon form, normal form. Solving system of 

homogeneous and non-homogeneous equations linear equations.  

 

Matrix: A set of mn numbers (Real or Complex) can be arranged in the form of m rows and n 

columns ( each column containing m elements)  is called as Matrix. The Numbers of the matrix  

elements. Matrices are denoted by Capital letters A, B, ..etc. 

Order of the Matrix: The number of rows and columns represents the order of the matrix. It 

is denoted by m n  , where m is number of rows and n is number of columns. 

 

Square Matrix: A matrix in which the number of rows and number of columns are equal is 

said to be square matrix. It is of order n n  or a square matrix n . 

Ex: 

3 3

1 2 3

1 5 4

1 4 3


− 
 
 
 − 

is an upper triangular matrix of order 3. 

Rectangular matrix: A matrix in which the number of rows and number of columns are not 

equal is said to be rectangular matrix. It is of order m n . 

Ex: 
2 3

2 3 4

4 5 6


 
 

− 
 is a rectangular matrix of order 2 3 . 

Row Matrix: A matrix is said to be row matrix, if it contains only one row. It is denoted by It 

is of order 1 n .  

Ex:  
1 3

1 2 3


−  is a row matrix. 

Column Matrix: A matrix is said to be column matrix, if it contains only one column. It is 

denoted by It is of order 1n .  

Ex: 

3 1

1

3

6


 
 
−
 
  

 is a column matrix. 

Diagonal Matrix: A square matrix n nA  is said to be diagonal matrix if 0,ija i j=    

(Or)  

A Square matrix is said to be diagonal matrix, if all the elements except principal diagonal 

elements are zero.  

Ex: 

3 3

1 0 0

0 2 0

0 0 3


 
 

−
 
  

 a diagonal matrix. 

The elements on the diagonal are known as principle diagonal elements.  

The diagonal matrix is represented by A=Diag ( )11 22, ,......, .nna a a  

 

Scalar Matrix: A Square matrix n nA   is said to be a Scalar matrix if 
0,

,

ij

ij

a i j

a k i j

=  


=  =
 

(Or)  



 

 

A diagonal matrix is said to be a Scalar matrix, if all the elements of the principle diagonal are 

equal. i.e. ,ija k i j=  =  

Ex: 
3 0

0 3

 
 
 

and 

2 0 0

0 2 0

0 0 2

 
 
 
  

 a scalar matrices. 

Trace of a Scalar matrix is nk  

 

Unit Matrix (or) Identity Matrix: A Square matrix A of order is said to be a Unit (or) Identity 

matrix if 
0,

1,

ij

ij

a i j
A

a i j

=  
= 

=  =
 

(or) 

A Scalar matrix is said to be a Unit matrix if the scalar 1k =  

Ex: 
2 3

1 0 0
1 0

, 0 1 0
0 1

0 0 1

I I

 
   

= =   
    

 are unit matrices. 

Zero or null matrix: A matrix in which all the elements are zero is called a zero or null matrix. 

It is of order m n  and is denoted by Om n  

EX: 
0 0 0 0 0

O ,O are zero matrices
0 0 0 0 0

   
= =   
   

  

Trace of a Matrix: Suppose is a square matrix, then the trace of is defined as the sum   

 of its diagonal elements. It is denoted byTrA  

 11 22. . ( ) ...... nni e Tr A a a a= + + +  

Properties: 

 (1) ( ) .Tr A B TrA TrB+ = +  

 (2) ( ) .Tr KA KTrA=  

 (3) ( ) ( )Tr AB Tr BA=  

Transpose of a Matrix: The transpose of the given matrix is obtained by interchanging rows 

and columns. Then it is denoted by AT or A1. 

Ex: If  

1 2 3

1 5 4

1 4 3

A

− 
 

=
 
 − 

 , then 

1 1 1

2 5 4

3 4 3

TA

− 
 

=
 
 − 

 

 Properties: If T TA and B are the transpose of A and B respectively, then 

(1) If A is of Order m n then AT is of order .n m  

(2) If A is a square matrix, then TTrA TrA= . 

(3)  ( )T(A)
T

A=  

(4) T T T(A B) A B =  Where A& B are of same order 

(5) T T T(AB) B A= , where A& B being conformable multiplication   

(6) T T(kA) Ak= , k being a constant 

(7) ( )
T

I I=  

 



 

 

Triangular Matrix: A square matrix in which each element either above or below the principal 

diagonal is zero is called a Triangular Matrix 

 

Upper Triangular Matrix: A square matrix in which all the elements below the principal 

diagonal are zero is called a Upper triangular matrix 

Thus A square matrix is said to be an Upper Triangular matrix, if 0,ija i j=    

Ex: 

1 2 3

0 2 4

0 0 3

− 
 
 
  

is an upper triangular matrix 

Lower Triangular Matrix: A square matrix in which all the elements above the principal 

diagonal are zero is called a lower triangular matrix 

Thus A matrix is said to be an Upper Triangular matrix, if 0,ija i j=    

Ex: 

1 0 0

2 2 0

5 8 3

 
 
−
 
  

is an lower triangular matrix 

 

Singular Matrix: A square matrix is said to be singular if 0A = .  

Ex: 

1 1 1

2 2 1

2 2 2

 
 
−
 
  

are singular matrices 

 

Non-singular Matrix: A square matrix is said to be non-singular if 0A   .  

Ex: 

1 1 1

2 2 1

2 1 2

− 
 
−
 
 − 

is a non-singular matrix 

Inverse of a Matrix: Let A square matrix of order n , then there exist another matrix B such 

that AB=BA=I is said to be inverse of A, and it is denoted by 1A−  . Thus 1AB −= . 

Note:  (i)   A square matrix A is said to be Invertible A 0   i.e. A is non singular 

             (ii) 
1 A

A
A

adj− =  

Symmetric Matrix: A Square matrix A is said to be symmetric matrix if , ,ij jia a i j=    

i.e. TA A=  

Ex: 

a h g

h b f

g f c

 
 
 
  

 , 

1 2 3

2 5 4

3 4 6

− 
 
 
  

are symmetric matrices of order 3. 

Identity matrix is a symmetric matrix.  

Zero square matrix is symmetric. i.e. .  

Number of Independent elements in a symmetric matrix are , is order.  

 



 

 

Anti-Symmetric Matrix: A Square matrix A is said to be symmetric matrix if  

, ,ij jia a i j= −   i.e. TA A= −  

Note: The diagonal elements of a skew-symmetric matrix are zero  

Ex: 

0

0

0

h g

h f

g f

− 
 
−
 
 − 

, 

0 2 5

2 0 4

3 4 0

− 
 
−
 
 − 

are skew-symmetric matrices 

Minor of an Element: Let ( )ij n nA a = be a matrix, then minor of an element ija  is denoted by

ijM  and is defined as the determinant of the sub-matrix obtained by Omitting 
thi row and 

thi

column of the matrix.  

Cofactor of an element: Let ( )ij n mA a = be a matrix, then cofactor of an element ija  is denoted 

by ijA and is defined as ( 1) .i j

ij ijA M+= −   

Cofactor Matrix: If we find the cofactor of an element for every element in the matrix, then 

the resultant matrix is called as Cofactor Matrix.  

Adjoint of a matrix: If A is square matrix of order n , then the transpose of the cofactor matrix 

of A is said to be the adjoint of a matrix A. It is denoted by adj A. 

Thus, if  A=

11 12 13

21 22 23

31 32 33

a a a

a a a

a a a

 
 
 
  

, then  

the cofactor matrix of A 

11 12 13

21 22 23

31 32 33

A A A

A A A

A A A

 
 
 
  

 

 The cofactor matrix oadjA f A
T

 = =

11 21 31

12 22 32

13 23 33

A A A

A A A

A A A

 
 
 
  

 

Note: If A is a square matrix of order n, then A.(adjA) (adjA).A A .I= =  

Where I is a unit matrix of order n   

Minor of order r :  The determinant of a square sub matrix of the given matrix is called its 

minor. If the order of the square sub matrix is r , then the corresponding minor is said to be a 

minor of order r .   

   

Rank of a matrix: A matrix A is said to be rank r , if 

(i) It has atleast one minor of order r non zero. 

(ii) Every minor of order higher than r vanishes. 

     Then the rank of A is denoted by ( )A  or (A)r  

Properties:- 

i. The rank of a matrix is always unique. 

ii. If  A is a non-zero matrix, then ( ) 1A  .   

iii. The rank of a null matrix is zero i.e, (O) 0 =  

iv. If A is singular matrix of order n , then ( )A n   



 

 

v. If A is nonsingular matrix of order n , then ( )A n =  

vi. If nI  is the unit matrix of order n , then ( )A n =  

vii. If A is a matrix of order m n , then ( ) min( , )A m n   

viii. The rank of the matrix is same as that of its transpose i.e., ( ) ( )A A  =  

Problem 1:  Find the rank of the matrix 

1 2 1

A 1 0 2

2 1 3

 
 

= −
 
 − 

  

Solution: Given 

1 2 1

A 1 0 2

2 1 3

 
 

= −
 
 − 

 

Then 

1 2 1

A 1 0 2 1(0 2) 2(3 4) 1( 1 0) 2 2 1 1 0

2 1 3

= − = − − − + − − = − + − = − 

−

 

i.e. minor of order 3 is non-zero. 

  The rank of A is 3 . . ( ) 3i e A =  

Problem 2:  Find the rank of the matrix 

2 3 4 1

A 5 2 0 1

4 5 12 1

− 
 

= −
 
 − − 

  

Solution: Given 

2 3 4 1

A 5 2 0 1

4 5 12 1

− 
 

= −
 
 − − 

 

Applying 1 4C C  , we get  

1 3 4 2

A ~ 1 2 0 5

1 5 12 4

− 
 
−
 
 − − 

 

Applying 2 2 1 3 3 1,R R R R R R→ − → − , we get 

1 3 4 2

A ~ 0 1 4 3

0 2 8 6

− 
 

− −
 
 − 

 

Applying 3 3 22R R R→ + , we get 



 

 

1 3 4 2

A ~ 0 1 4 3

0 0 0 0

− 
 

− −
 
  

 

We note that all the third minors are zero but the second order minor  

1 3
1 0

0 1

−
= = 

−
  

Hence rank of A is 2, . . ( ) 2i e A =  

Reduction of matrix A to Echelon Form: 

 

The Echelon form of matrix A is an equivalent matrix, obtained by a finite sequence of 

elementary operations on A which has the following properties. 

 

(i).   The zeros, if any, are below a nonzero row. 

(ii).  The first non-zero element in each non-zero row is one. 

(iii). The number of zeros before the first nonzero entry in a row less than the no number   

        such zeros in the next row immediately below it.  

Note (1): Condition (ii) is optimal (not compulsory) 

 

Note 2: The rank of A is equal to the number of nonzero rows in its echelon form. 

 

Problems: 

 

Problem 1: Reduce the matrix A =

1 2 1 8

2 1 1 0

3 2 1 7

− 
 

−
 
  

 to Echelon form and hence find its rank 

[ Jntu(A) June, 2009].  

Solution: Given 

1 2 1 8

A 2 1 1 0

3 2 1 7

− 
 

= −
 
  

 

Applying 1 1R R→− , we get 



 

 

  

1 2 1 8

A ~ 2 1 1 0

3 2 1 7

− − − 
 

−
 
  

 

Applying 2 2 1 3 3 12 , 3R R R R R R→ − → − , we get 

  

1 2 1 8

A ~ 0 5 1 16

0 8 4 31

− − − 
 
 
  

 

Applying 3 3 25 8R R R→ − , we get 

  

1 2 1 8

A ~ 0 5 1 16

0 0 12 27

− − − 
 
 
  

 

Thus the matrix is in the Echelon form. The number of non zero rows is 3. 

Hence the rank of A = 3. 

Problem 2: Reduce the matrix A =

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

 
 
 
 
 
 

 to Echelon form and hence find its rank 

[ Jntu(A) June, 2018].  

Solution: Given 

1 2 3 4

2 3 4 5
A

3 4 5 6

4 5 6 7

 
 
 =
 
 
 

 

Applying 2 2 1 3 3 2 4 4 3, ,R R R R R R R R R→ − → − → − , we get 

  

1 2 3 4

1 1 1 1
A ~

1 1 1 1

1 1 1 1

 
 
 
 
 
 

 

Applying 2 2 1 3 3 2 4 4 2, ,R R R R R R R R R→ − → − → − , we get 

  

1 2 3 4

0 1 2 3
A ~

0 0 0 0

0 0 0 0

 
 

− − −
 
 
 
 

 



 

 

This is in the Echelon form. The number of non zero rows is 2. 

Hence the rank of A = 2. 

Normal form: Every m n  matrix of rank r can be reduced by a finite number of elementary 

transformations to the form 
0

0
0 0 0

r r

r r

I I
or I or I or

   
         

   
 , where rI is the unit matrix  of 

order r  and 0 is the null matrix 

 The reduced form is known as normal form or canonical form 

Problem 1: Reduce the matrix 

0 1 2 2

4 0 2 6

2 1 3 1

− 
 
 
  

 to the normal form and hence find its rank.   

Solution: Let the matrix be 

0 1 2 2

A 4 0 2 6

2 1 3 1

− 
 

=
 
  

 

Applying 1 2C C , we get  

 

1 0 2 2

A ~ 0 4 2 6

1 2 3 1

− 
 
 
  

 

Applying 3 3 1R R R→ − , we get 

1 0 2 2

A ~ 0 4 2 6

0 2 1 3

− 
 
 
  

 

Applying 2
2

2

R
R → , we get 

 

1 0 2 2

A ~ 0 2 1 3

0 2 1 3

− 
 
 
  

 

Applying 3 3 1 4 4 12 , 2C C C C C C→ − → + , we get 

   

1 0 0 0

A ~ 0 2 1 3

0 2 1 3

 
 
 
  

 

Applying 3 3 2R R R→ − , we get 



 

 

   

1 0 0 0

A ~ 0 2 1 3

0 0 0 0

 
 
 
  

 

Applying 2
2

2

C
C → , we get 

   

1 0 0 0

A ~ 0 1 1 3

0 0 0 0

 
 
 
  

 

Applying 3 3 2 4 4 2, 3C C C C C C→ − → − , we get 

 

   

2

1 0 0 0

A ~ 0 1 0 0

0 0 0 0

I O
A ~

O O

 
 
 
  

 
 
 

 

Hence rank of A = 2  i.e. (A) 2 = . 

Problem 2: Reduce the matrix A to the normal form and hence find its rank. Where   

2 1 3 4

0 3 4 1
A

2 3 7 5

2 5 11 6

 
 
 =
 
 
 

   

 Solution:  Given  

2 1 3 4

0 3 4 1
A

2 3 7 5

2 5 11 6

 
 
 =
 
 
 

 

Applying 3 3 1 4 4 1, ,R R R R R R→ − → − , we get 

2 1 3 4

0 3 4 1
A ~

0 2 4 1

0 4 8 2

 
 
 
 
 
 

 

Applying 2 2 1 3 3 1 4 4 12 , 3 , 4 ,C C C C C C C C C→ − → − → − , we get 



 

 

  

2 0 0 0

0 3 4 1
A ~

0 2 4 1

0 4 8 2

 
 
 
 
 
 

  

Applying 3 3 2 4 4 33 2 , 2 ,R R R R R R→ − → − , we get 

  

2 0 0 0

0 3 4 1
A ~

0 0 4 1

0 0 0 0

 
 
 
 
 
 

 

Applying 1 2C C , we get 

  

2 0 0 0

0 1 4 3
A ~

0 1 4 0

0 0 0 0

 
 
 
 
 
 

 

Applying 3 3 2 ,R R R→ −  we get 

2 0 0 0

0 1 4 3
A ~

0 0 0 3

0 0 0 0

 
 
 
 −
 
 

 

Applying 3 3 2 4 4 24 , 3 ,C C C C C C→ − → −  we get 

2 0 0 0

0 1 0 0
A ~

0 0 0 3

0 0 0 0

 
 
 
 −
 
 

 

Applying 3 4C C , we get 

2 0 0 0

0 1 0 0
A ~

0 0 3 0

0 0 0 0

 
 
 
 −
 
 

 

Applying 31
1 3,

2 3

CC
C C→ →

−
, we get 



 

 

  

1 0 0 0

0 1 0 0
A ~

0 0 1 0

0 0 0 0

 
 
 
 
 
 

 

3 3 1

1 3 1 1

A ~
I O

O O



 

 
 
 

 

Hence the rank of A = 3. 

Normal form or canonical form: 

 (i)   A matrix of the form
0

0
0 0 0

r r

r r

I I
or I or I or

   
         

   
, where rI is the unit matrix   

       of order r  and 0 is the null matrix is  called the normal form or canonical form. 

(ii)  Every m n  matrix can be reduced to the form 
0

0 0

rI 
 
 

by a series of elementary   

       Transformations, where r is the rank of the matrix. 

Problem 1: Determine the rank of the matrix A= 

1 1 1

1 1 1

3 1 1

− − 
 
 
  

 by reduced it to the normal 

form. 

Solution: Given 

1 1 1

A 1 1 1

3 1 1

− − 
 

=
 
  

 

Applying 2 2 1 3 3 1, 3 ,R R R R R R→ − → − we get 

   

1 1 1

A ~ 0 2 2

0 4 4

− − 
 
 
  

 

Applying 2 2 1 3 3 1, ,C C C C C C→ + → + we get 

1 0 0

A ~ 0 2 2

0 4 4

 
 
 
  

 

 Applying 3 3 22 ,R R R→ − we get 



 

 

  

1 0 0

A ~ 0 2 2

0 0 0

 
 
 
  

 

Applying 3 3 2 ,C C C→ − we get 

1 0 0

A ~ 0 2 0

0 0 0

 
 
 
  

 

Applying 2
2 ,

2

C
C → we get 

1 0 0

A ~ 0 1 0

0 0 0

 
 
 
  

 

This is of the form 
2I O

O O

 
 
 

  

Rank of A = 2. 

 

Problem 2: Find the rank of the matrix A by reduced it to the normal form where 

1 1 1 1

1 2 3 4

2 3 5 5

3 4 5 8

 
 

−
 
 −
 

− − 

 

Solution: Given 

1 1 1 1

1 2 3 4
A

2 3 5 5

3 4 5 8

 
 

−
 =
 −
 

− − 

 

Applying 2 2 1 3 3 1 4 4 1, 2 , 3R R R R R R R R R→ − → − → − we get 

   

1 1 1 1

0 1 2 5
A ~

0 1 3 7

0 7 8 5

 
 

−
 
 −
 

− − 

 

Applying 2 2 1 3 3 1 4 4 1, ,C C C C C C C C C→ − → − → − we get 



 

 

1 0 0 0

0 1 2 5
A ~

0 1 3 7

0 7 8 5

 
 

−
 
 −
 

− − 

 

 Applying 3 3 2 4 4 2, 7 ,R R R R R R→ − → + we get 

  

1 0 0 0

0 1 2 5
A ~

0 0 1 2

0 0 6 30

 
 

−
 
 −
 

− 

 

Applying 3 3 2 4 4 22 , 5C C C C C C→ − → + we get 

1 0 0 0

0 1 0 0
A ~

0 0 1 2

0 0 6 30

 
 
 
 −
 

− 

 

Applying 4 4 36 ,R R R→ − we get 

1 0 0 0

0 1 0 0
A ~

0 0 1 2

0 0 0 18

 
 
 
 −
 

− 

 

Applying 4 4 32C C C→ + , we get 

1 0 0 0

0 1 0 0
A ~

0 0 1 0

0 0 0 18

 
 
 
 
 

− 

 

Applying 4
4

18

C
C →

−
, we get 

4

1 0 0 0

0 1 0 0
A ~ I

0 0 1 0

0 0 0 1

 
 
  =
 
 
 

 

Rank of A = 4. 

 



 

 

Problem 3: Find the rank of the matrix A by reduced it to the normal form where 

3 2 0 1

0 2 2 1

1 2 3 2

0 1 2 1

− − 
 
 
 − −
 
 

 

Solution: Given 

3 2 0 1

0 2 2 1
A

1 2 3 2

0 1 2 1

− − 
 
 =
 − −
 
 

 

Applying 1 1 3,R R R→  we get 

1 2 3 2

0 2 2 1
A ~

3 2 0 1

0 1 2 1

− − 
 
 
 − −
 
 

 

Applying 3 3 13 ,R R R→ − we get 

   

1 2 3 2

0 2 2 1
A ~

0 4 9 7

0 1 2 1

− − 
 
 
 −
 
 

 

Applying 2 2 1 3 3 1 4 4 12 , 3 , 2C C C C C C C C C→ + → + → − , we get 

1 0 0 0

0 2 2 1
A ~

0 4 9 7

0 1 2 1

 
 
 
 −
 
 

 

Applying 2 4R R we get 

1 0 0 0

0 1 2 1
A ~

0 4 9 7

0 2 2 1

 
 
 
 −
 
 

 

 Applying 3 3 2 4 4 24 , 2 ,R R R R R R→ − → − we get 



 

 

  

1 0 0 0

0 1 2 1
A ~

0 0 1 11

0 0 2 1

 
 
 
 −
 

− − 

 

Applying 3 3 2 4 4 22 ,C C C C C C→ − → − we get 

1 0 0 0

0 1 0 0
A ~

0 0 1 11

0 0 2 1

 
 
 
 −
 

− − 

 

Applying 4 4 32 ,R R R→ + we get 

1 0 0 0

0 1 0 0
A ~

0 0 1 11

0 0 0 23

 
 
 
 −
 

− 

 

Applying 4 4 311C C C→ + , we get 

1 0 0 0

0 1 0 0
A ~

0 0 1 0

0 0 0 23

 
 
 
 
 

− 

 

Applying 4
4

23

C
C →

−
, we get 

1 0 0 0

0 1 0 0
A ~

0 0 1 0

0 0 0 1

 
 
 
 
 
 

 

4A ~ I , which is the canonical form of the matrix A 

Rank of A = 4. 

Normal form of the type PAQ:- 

 Every m n  matrix of rank r can be transformed to the form 
0

0 0

rI
PAQ

 
= 

 
by elementary 

transformations. 

 



 

 

Working rule:-  

1. Write m n m m n nA I AI  =  

2. Now apply row and column transformations on the LHS matrix A to transform its normal 

form carrying out every row transformation on the pre-factor m mI   and every column 

transformation on the post factor n nI   reduces to non-singular matrices P and Q such that 

0

0 0

rI
PAQ

 
= 

 
  

Problem 1: Find the nonsingular matrices P and Q such that the normal form of A is PAQ 

where A= 

1 3 6 1

1 4 5 1

1 5 4 3

− 
 
 
  

. Hence find its rank. 

Solution: Since A is a matrix of 3 4  

      We write A= 3 4A = I AI  

1 0 0 0
1 3 6 1 1 0 0

0 1 0 0
1 4 5 1 0 1 0 A

0 0 1 0
1 5 4 3 0 0 1

0 0 0 1

 
−     

     =
     
        

 

 

Applying 2 2 1 3 3 1, ,R R R R R R→ − → − we get 

   

1 0 0 0
1 3 6 1 1 0 0

0 1 0 0
0 1 1 2 1 1 0 A

0 0 1 0
0 2 2 4 1 0 1

0 0 0 1

 
−     

     − = −
     
   − −     

 

 

Applying 2 2 1 3 3 1 4 4 13 , 6 ,C C C C C C C C C→ − → − → + , we get 

1 3 6 1
1 0 0 0 1 0 0

0 1 0 0
0 1 1 2 1 1 0 A

0 0 1 0
0 2 2 4 1 0 1

0 0 0 1

− − 
     
     − = −
     
   − −     

 

 

Applying 3 3 22 ,R R R→ − we get 

1 3 6 1
1 0 0 0 1 0 0

0 1 0 0
0 1 1 2 1 1 0 A

0 0 1 0
0 0 0 0 1 2 1

0 0 0 1

− − 
     
     − = −
     
   −     

 

 



 

 

Applying 3 3 2 4 4 2, 2C C C C C C→ + → − , we get 

1 3 9 7
1 0 0 0 1 0 0

0 1 1 2
0 1 0 0 1 1 0 A

0 0 1 0
0 0 0 0 1 2 1

0 0 0 1

− − 
     

−     = −
     
   −     

 

 

2I
. . PAQ,

O
i e

O O

 
= 

 
where 

1 0 0

P 1 1 0

1 2 1

 
 

= −
 
 − 

 and 

1 3 9 7

0 1 1 2
Q

0 0 1 0

0 0 0 1

− − 
 

−
 =
 
 
 

 

Since 
2I

A ,
O

O O

 
=  
 

therefore, rank of A is 2  

Problem 2: Find the nonsingular matrices P and Q such that the normal form of A is PAQ 

where A= 

1 2 3 2

2 2 1 3

3 0 4 1

− 
 

−
 
  

. Hence find its rank. 

Solution: Since A is a matrix of 3 4  

      We write A= 3 4A = I AI  

1 0 0 0
1 2 3 2 1 0 0

0 1 0 0
2 2 1 3 0 1 0 A

0 0 1 0
3 0 4 1 0 0 1

0 0 0 1

 
−     

     − =
     
        

 

 

Applying 2 2 1 3 3 12 , 3 ,R R R R R R→ − → − we get 

   

1 0 0 0
1 2 3 2 1 0 0

0 1 0 0
0 6 5 7 2 1 0 A

0 0 1 0
0 6 5 7 3 0 1

0 0 0 1

 
−     

     − − = −
     
   − − −     

 

 

Applying 2 2 1 3 3 1 4 4 12 , 3 , 2C C C C C C C C C→ − → − → + , we get 

1 2 3 2
1 0 0 0 1 0 0

0 1 0 0
0 6 5 7 2 1 0 A

0 0 1 0
0 6 5 7 3 0 1

0 0 0 1

− − 
     
     − − = −
     
   − − −     

 

 

Applying 3 3 2 ,R R R→ − we get 



 

 

1 2 3 2
1 0 0 0 1 0 0

0 1 0 0
0 6 5 7 2 1 0 A

0 0 1 0
0 0 0 0 1 1 1

0 0 0 1

− − 
     
     − − = −
     
   − −     

 

 

Applying 2
3 ,

6

C
C →

−
 we get 

1 1 3 3 2
1 0 0 0 1 0 0

0 1 6 0 0
0 1 5 7 2 1 0 A

0 0 1 0
0 0 0 0 1 1 1

0 0 0 1

− 
     
     − = −
     
   − −     

 

 

Applying 3 3 2 4 4 25 , 7C C C C C C→ + → − , we get 

1 1 3 4 3 1 3
1 0 0 0 1 0 0

0 1 6 5 6 7 6
0 1 0 0 2 1 0 A

0 0 1 0
0 0 0 0 1 1 1

0 0 0 1

− − 
     

−     = −
     
   − −     

 

 

2I
. . PAQ,

O
i e

O O

 
= 

 
where 

1 0 0

P 2 1 0

1 1 1

 
 

= −
 
 − − 

 and 

1 1 3 4 3 1 3

0 1 6 5 6 7 6
Q

0 0 1 0

0 0 0 1

− − 
 

−
 =
 
 
 

 

Since 
2I

A ,
O

O O

 
=  
 

therefore, rank of A is 2  

 

 

 

 

 

 

 

 

 

 

 



 

 

Linear system of equations: 

 

Consider the system of ‘ m ’linear equations in ‘ n ’unknowns say as given below. 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

......

......

. . . .

. . . .

......

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

+ + + = 


+ + + =






+ + + = 

-----------------------  (1) 

The above equations can be written in the matrix form as 

11 12 1 1 1

21 22 2 2 2

1 2

........

........

. . . . .

. . . . .

........

n

n

m m mn m m

a a a x b

a a a x b

a a a x b

     
     
     
     =
     
     
     

    

-------------------------  (2) 

 

AX B =    -------------------------  (3) 

 where A is called coefficient matrix  

  and B is called constant matrix 

The matrix A B   is called Augumented matrix and is given by  

 

11 12 1 . 1

21 22 2 . 2

1 2

........

........

. . . .

. . . .

........ .

n

n

m m mn m

a a a b

a a a b

a a a b

 
 
 
 
 
 
 
  

 

The given system is said to be consistent, if the system equations posses one or more solutions. 

Otherwise the system is said to be inconsistent. 

Gauss-elimination method: 

This method is simple and general. It consists of two steps 

Step 1: Reduction of the Augumented matrix to upper triangular or echelon form. 

Step 2: Finding the values of the unknown variables by back substitution. 

Problem 1:  Solve the following system of equations by Gauss elimination method. 



 

 

3;x y z+ + =  

      
3 3 16;

3 3;

x y z

x y z

− + =

+ − = −  

Solution: Given system of system of equations can be written in the matrix form AX=B 

     

  With  

1 1 1 3

2 1 3 , , 16

3 1 1 3

x

A X y B

z

     
     

= − = =
     
     − −       

Consider the augumented matrix [A/B] is  

 

1 1 1 3

/ 2 1 3 16

3 1 1 3

A B

 
 

= − 
 − − 

 

 Applying 2 2 1 3 3 12 , 3R R R R R R→ − → − we get 

 

1 1 1 3

/ ~ 0 3 1 10

0 2 4 12

A B

 
 

− 
 − − − 

 

 Applying 3 3 23 2R R R→ − we get 

 

1 1 1 3

/ ~ 0 3 1 10

0 0 14 56

A B

 
 

− 
 − − 

 

 Applying 3
3

14

R
R →

−
we get 

 

1 1 1 3

/ ~ 0 3 110

0 0 1 4

A B

 
 

− 
 
 

 

 This is in the Echelon form. 

 This is equivalent to   

1 1 1 3

0 3 1 10

0 0 1 4

x

y

z

     
     

− =
     
          

 

 Which implies  



 

 

   3;x y z+ + =  

      
3 10

4

y z

z

− + =

=  

By back substitution, we have  

 

1, 2, 4.x y z= = − =

 
Problem 2:  Solve the following system of equations  

2 3 1x y z+ + =  

      
2 3 8 2

3

x y z

x y z

+ + =

+ + =  

Solution: Given system of system of equations can be written in the matrix form AX=B 

     

  With  

1 2 3 1

2 3 8 , , 2

1 1 1 3

x

A X y B

z

     
     

= = =
     
            

Consider the augumented matrix [A/B] is  

 

1 2 3 1

/ 2 3 8 2

1 1 1 3

A B

 
 

=  
 
 

 

 Applying 2 2 1 3 3 12 ,R R R R R R→ − → − we get 

 

1 2 3 1

/ ~ 0 1 2 0

0 1 2 2

A B

 
 

− 
 − − 

 

 Applying 3 3 2R R R→ − we get 

 

1 2 3 1

/ ~ 0 1 2 0

0 0 4 2

A B

 
 

− 
 − 

 

  

This is in the Echelon form. 

 This is equivalent to   



 

 

1 2 3 1

0 1 2 0

0 0 4 2

x

y

z

     
     

− =
     
     −     

 

 Which implies  

   2 3 1;x y z+ + =  

      
2 0

4 2

y z

z

− + =

− =  

Solving these equations,  

By back substitution, we have  

 

9 1
, 1, .

2 2
x y z

−
 = = − =

 

Gauss-Jordan Elimination method: 

 

Consider the system of m linear non-homogeneous equations with n  unknowns. 

Let the matrix form for the linear equations be AX=B.  

 

To find the rank of A and [A/B], reduce the augmented matrix [A/B] to echelon form by 

elementary row operations then the matrix A automatically reduces to echelon form. 

    

Note:  

(i) The system is consistent and it has unique solution, If ( ) ( / )A A B n = = , where 

n  is the no. of unknowns. 

(ii) The system is consistent and it has infinite solution, If ( ) ( / )A A B n =  . 

Note: In this case, we have to give arbitrary values to n r−  variables and the remaining 

variables can be expressed in terms of these arbitrary variables.   

(iii) The system is inconsistent and it has no solution, If ( ) ( / )A A B  . 

Problem 1:  Discuss for what values of the simultaneous equations  

 6;x y z+ + = 2 3 10;x y z+ + = 2 ;x y z + + =   

have (i) no solution (ii) a unique Solution (iii) an infinite number of solutions 

Problem 2:   Find whether the following set of equations are consistent if so, solve them 

2 4,2 3 9,3 2x y z x y z x y z+ + = − + = − − =  

Solution: The given system of equations can be written in the matrix form as  



 

 

  

1 1 2 4

2 1 3 9

3 1 1 2

x

y

z

     
     

− =
     
     − −     

 

        i.e., AX=B 

The augmented matrix  /A B is  

    

1 1 2 4

/ 2 1 3 9

3 1 1 2

A B

 
 

= −
 
 − − 

    

Applying 2 2 1 3 3 12 , 3R R R R R R→ − → −  

 

1 1 2 4

/ ~ 0 3 1 1

0 4 7 10

A B

 
 

− −
 
 − − − 

 

Applying 3 3 23 4 ,R R R→ −  

   

1 1 2 4

/ ~ 0 3 1 1

0 0 17 34

A B

 
 

− −
 
 − − 

 

Rank of A=3 and Rank of  [A/B]=3 

Rank of A= Rank of  [A/B]=3= no of unknowns  

The given system has a unique solution. 

1 1 2 4

0 3 1 1

0 0 17 34

x

y

z

     
     

− − =
     
     − −     

 

This is equivalent to 2 4x y z+ + =  

   3 1y z− − =  

17 34z− = −  

From (3), we have 2z =  

Substituting 2z = in (2) 3 2 1 1y y− − =  = −  

Substituting 1y = − , 2z = in (1) 1 4 4 1x x+ − + =  =  

1, 1, 2x y z = = − =   is the solution.  



 

 

Problem 2:   Test for consistency in the set of equations and solve them if they are consistent 

2 2 2,3 2 5,3 5 3 4, 4 6 0x y z x y z x y z x y z+ + = − − = − + = − + + =  

Solution: The augmented matrix  [A/ B] is given by 

      

1 2 2 2

3 2 1 5
[A/ B]

2 5 3 4

1 4 6 0

 
 

− − =
 − −
 
  

 

Applying 2 2 13R R R→ − , 3 3 12R R R→ −  and 4 4 1R R R→ − ,we get 

   

1 2 2 2

0 8 7 1
[A/ B] ~

0 9 1 8

0 2 4 2

 
 

− − − 
 − − −
 

−  

 

Applying 2
2

1

R
R →

−
, 3

3
1

R
R →

−
 and 4

4
2

R
R → ,we get 

1 2 2 2

0 8 7 1
[A/ B] ~

0 9 1 8

0 1 2 1

 
 
 
 
 

−  

 

Applying 2 4R R , we get  

1 2 2 2

0 1 2 1
[A/ B] ~

0 9 1 8

0 8 7 1

 
 

− 
 
 
  

 

Applying 3 3 2 4 4 29 , 8R R R R R R→ − → − , we get 

1 2 2 2

0 1 2 1
[A/ B] ~

0 0 17 17

0 0 9 9

 
 

− 
 −
 

−  

 

Applying 3
3

17

R
R →

−
 and 4

4
9

R
R →

−
,we get 



 

 

1 2 2 2

0 1 2 1
[A/ B] ~

0 0 1 1

0 0 1 1

 
 

− 
 −
 

−  

 

Applying 4 4 3R R R→ − ,we get 

1 2 2 2

0 1 2 1
[A/ B] ~

0 0 1 1

0 0 0 0

 
 

− 
 −
 
  

 

Rank of A= number of non-zero rows = 3 

Rank of [A/ B]= number of non-zero rows = 3 and n =number of variables=3 

  [A/ B] 3n  = = =A .  So the system is consistent and has unique solution. 

We have 

1 2 2 2

0 1 2 1

0 0 1 1

0 0 0 0

x

y

z

   
    

−    =
    −
     

   

 

2 2 2x y z+ + =            ..…….  (1) 

2 1y z+ = −                  ...…….  (2) 

1z = −                        ...…….. (3) 

Solving these equations, we get  

2, 1, 1x y z = = = −  is the solution. 

Linear system of Homogeneous equations: 

Consider the system of ‘ n ’ Homogeneous linear equations  AX=O 

Here the coefficient matrix A and augmented matrix [A/O] are same  

Therefore ( ) ( )A A O =  

The system of equations is consistent always. 

Let r  be the rank of the matrix A 

Nature of the solution: 

i) If r n= , then the system of equations have only trivial solutions 

ii) If r n ,  then the system of equations have infinite no of non-trivial solutions 



 

 

iii) If no. eqations < no. of unknowns,  then the system of equations have infinite no of 

non-trivial solutions 

Trivial solution: Zero solution is called trivial solution 

Non-Trivial solution: Non-Zero solution is called non-trivial solution 

Note: For the system of equations AX=O 

(i) A is singular  X is non-trivial solution 

(ii) A is non-singular X is trivial solution. 

 

Problem 1: Solve the system of equations 0,x y w+ + =  0,y z+ =  0,x y z w+ + + =  

2 0x y z+ + =  

Solution: The system of equations in matrix form given by 

1 1 0 1 0

0 1 1 0 0

1 1 1 1 0

1 1 2 0 0

x

y

z

w

     
     
     =
     
     
     

   

The coefficient matrix  

1 1 0 1

0 1 1 0
A

1 1 1 1

1 1 2 0

 
 
 =
 
 
 

 

Applying 3 3 1 4 4 1,R R R R R R→ − → − , we get 

1 1 0 1

0 1 1 0
A ~

0 0 1 0

0 0 2 1

 
 
 
 
 

− 

 

Applying 4 4 32R R R→ − , we get 

1 1 0 1

0 1 1 0
A ~

0 0 1 0

0 0 0 1

 
 
 
 
 

− 

 

Rank of A = r  = 4 and number of variables n = 4  

Since r n=  

There is no non trivial solution  

0, 0, 0, 0x y z w = = = =  is the solution. 



 

 

Problem 2: Solve the system of equations 1 2 42 2 0x x x+ − = , 1 2 42 0x x x− − =  

1 3 42 0x x x+ − = , 1 2 3 44 3 0x x x x− + − = . 

 

Solution: The system of equations in matrix form given by 

1

2

3

4

1 2 0 2 0

2 1 0 1 0

1 0 2 1 0

4 1 3 1 0

x

x

x

x

−     
    

− −
    =
    −
    

− −    

   

The coefficient matrix  

1 2 0 2

2 1 0 1
A

1 0 2 1

4 1 3 1

− 
 

− −
 =
 −
 

− − 

 

Applying 2 2 1 3 3 1 4 4 12 , , 4R R R R R R R R R→ − → − → − , we get 

1 1 0 1

0 5 0 3
A ~

0 2 2 1

0 9 3 7

 
 

−
 
 −
 

− 

 

Applying 3 3 2 4 4 25 2 , 5 9R R R R R R→ − → − , we get 

1 1 0 1

0 5 0 3
A ~

0 0 10 1

0 0 15 8

 
 

−
 
 −
 
 

 

Applying 4 4 32 3R R R→ − , we get 

1 1 0 1

0 5 0 3
A ~

0 0 10 1

0 0 0 19

 
 

−
 
 −
 
 

 

Rank of A = r  = 4 and number of variables n = 4  

Since r n= , there is no non trivial solution  

1 2 3 40, 0, 0, 0x x x x = = = =  is the solution. 

Problem 3: Solve the system of equations  3 2 0,2 2 3 0,x y z w x y z w+ − + = − + − =  

3 2 4 0, 4 3 0.x y z w x y z w− + − = − + − + =   



 

 

Solution: The system of equations can be in matrix form as 

1 1 3 2 0

2 1 2 3 0

3 2 1 4 0

4 1 3 1 0

x

y

z

w

−     
     

− −
     =
     − −
     
− −     

  i.e.AX=O 

Consider the coefficient matrix  

1 1 3 2

2 1 2 3
A

3 2 1 4

4 1 3 1

− 
 

− −
 =
 − −
 
− − 

 

Applying 2 2 1 3 3 1 4 4 12 , 3 , 4R R R R R R R R R→ − → − → + , we get 

         

1 1 3 2

0 3 8 7
A ~

0 5 10 10

0 5 15 9

− 
 

− −
 
 − −
 

− 

 

Applying 3
3

5

R
R →

−
, we get 

                    

1 1 3 2

0 3 8 7
A ~

0 1 2 2

0 5 15 9

− 
 

− −
 
 −
 

− 

 

Applying 3 4R R , we get 

  

1 1 3 2

0 1 2 2
A ~

0 3 8 7

0 5 15 9

− 
 

−
 
 − −
 

− 

 

Applying 3 3 2 4 4 23 , 5R R R R R R→ + → − , we get 

    

1 1 3 2

0 1 2 2
A ~

0 0 2 1

0 0 5 1

− 
 

−
 
 −
 

− − 

 

Applying 4 4 32 5R R R→ + , we get 



 

 

    

1 1 3 2

0 1 2 2
A ~

0 0 2 1

0 0 0 7

− 
 

−
 
 −
 

− 

,  

This is in the Echelon form 

Rank of A = Number of non zero rows = 4 

Since r n= , there is no non-zero solution.  

0, 0, 0, 0x y z w = = = =  is the solution. 

 



 

 

 

 

Sub: Linear Algebra & Calculus 

Unit-II 
Syllabus: Eigen values & Eigen vectors: Eigen values and Eigenvectors and their 

properties, Cayley Hamilton theorem (without proof), finding inverse and power of a 

matrix by Cayley-Hamilton theorem, diagonalisation of a matrix. 

 

Consider the system of ‘ n ’linear equations in ‘ n ’unknowns  

11 1 12 2 1

21 1 22 2 2

1 1 2 2

( ) ...... 0

( ) ...... 0

. . . .

. . . .

...... ( ) 0

n n

n n

n n nn n

a x a x a x

a x a x a x

a x a x a x







− + + + = 


+ − + + =






+ + + − =         

-----------------------  (1) 

Then these equations can be written in the form of matrix as ( ) 0A I X− = , where is a   

parameter. 

These equations will have a non-trivial solution iff the matrix ( )A I−  is singular ie., 

0A I− = . This equation is known as characteristic equation.  

The roots of the characteristic equation are the characteristic roots or latent values or Eigen 

values. 

If   is a characteristic root of a matrix A , then a non zero vector X such that  AX X= ia 

called a characteristic vector or eigen vector of A corresponding to the characteristic root . 

OR 

Let A be a square matrix of order n . A nonzero vector X is said to be a characteristic vector or 

eigen vector of A, if there exists a scalar such that AX X= . 

 

Note: Eigen vector must be a non zero vector   

 

Problem 1: Find the Eigen values and the corresponding Eigen vectors of 

1 1 3

1 5 1

3 1 1

 
 
 
  

 

Sol: If X is an Eigen vector of A corresponding to the Eigen value   of A, 

 We have ( ) 0A I X− =  



 

 

i.e., 

1

2

3

1 1 3 0

1 5 1 0

3 1 1 0

x

x

x







−     
    

− =
    
    −    

  --------------- (1) 

The Characteristic equation of A is  

 0A I− =  

 

i.e., 

1 1 3

1 5 1 0

3 1 1







−

− =

−

 

On simplying, 

3 27 36 0

( 2)( 3)( 6) 0

 

  

 − + =

 + − − =
 

The Eigen values of A are = −2, 3, 6. 

To find Eigen Vectors:- 

The eigen vectors 

1

2

3

x

X x

x

 
 

=
 
  

 of A corresponding to the eigen values   are given by

( ) 0A I X− =  

1

2

3

1 1 3 0

1 5 1 0

3 1 1 0

x

x

x







−     
    

 − =
    
    −    

                             ------    (1) 

Case(i): For 2 = −  from  (1) , we get  

 

1

2

3

3 1 3 0

1 7 1 0

3 1 3 0

x

x

x

    
    

 =
    
        

 

 Reducing the coefficient matrix to the echelon form 

 Applying R2→ 3R2−R1, R3→R3−R1 

 



 

 

1

2

3

3 1 3 0

0 20 0 0

0 0 0 0

x

x

x

    
    

 =
    
        

                    Since  r =1, n=3      ( n−r = 3−1=2) 

Hence we have    

1 2 3

2

2 3 0

20 0

x x x

x

+ − =

=
 

For one variables, we have to give one arbitrary constant.  

2 0,x =  

We taking 3 1x k x k=  = −  

For 2 = − , the corresponding eigen vector 

1

2

3

1

0

1

x

x k

x

−   
   

 =
   
     

 

 

Case(ii): 3 = , the eigen vector X is given by 

1

2

3

3 1 3 0

1 7 1 0

3 1 3 0

x

x

x

    
    

 =
    
        

 

 Reducing the coefficient matrix to the echelon form 

 Applying R2→ 3R2−R1, R3→R3−R1 

 

1

2

3

3 1 3 0

0 20 0 0

0 0 0 0

x

x

x

    
    

 =
    
        

                    Since  r =1, n=3      ( n−r = 3−1=2) 

Hence we have    

1 2 3

2

2 3 0

20 0

x x x

x

+ − =

=
 

For one variables, we have to give one arbitrary constant.  

2 0,x =  

We taking 3 1x k x k=  = −  



 

 

Hence the Eigen vectors of A corresponding to Eigen value 3 = − are 

2

1

0

− 
 
 
  

and 

3

0

1

 
 
 
  

 

 

Case(ii): 5 = , the eigen vector from (1) is given by  

 

1

2

3

7 2 3 0

2 4 6 0

1 2 5 0

x

x

x

− −     
    

− =
    
    − − −    

 

 Reducing the coefficient matrix to Echelon form, we get 

 Applying R1 R3, and R1→-R1 

 

1

2

3

1 2 5 0

2 4 6 0

7 2 3 0

x

x

x

    
    

 − − =
    
    − −    

 

 

Applying R2→ R2 -2 R1 and  R3→ R3+7R1 

 

1

2

3

1 2 5 0

0 8 16 0

0 16 32 0

x

x

x

    
    

 − − =
    
        

 

Applying R2→ R2/-8 and R3→ R3/16 

1

2

3

1 2 5 0

0 1 2 0

0 0 0 0

x

x

x

    
    

 =
    
        

 

( ) ( . 2 3)A n i e    

This implies that  

1 2 32 5 0x x x+ + =  

         2 32 0x x+ =  

For one variable (3-2=1), we have to give one arbitrary constant  

Taking 3x k= , we get 1x k= −  ; 2 2x k= −  



 

 

1

2

3

1

2

0

x

X x k

x

−   
   

 = = −
   
     

 is the eigen vector of A corresponding to 5 = . 

Hence the Eigen values of A are 3, 3,5 = − − and the corresponding Eigen vectors of A are 

2

1

0

− 
 
 
  

, 

3

0

1

 
 
 
  

, 

1

2

0

− 
 
−
 
  

 

Problem 2: Find the Eigen values and the corresponding Eigen vectors of 

2 2 0

2 1 1

7 2 3

 
 
 
 − − 

 

Solution: Let A = 

2 2 0

2 1 1

7 2 3

 
 
 
 − − 

 

If X is an Eigen vector of A corresponding to the Eigen value   of A, 

 We have ( ) 0A I X− =  

i.e., 

1

2

3

2 2 0 0

2 1 1 0

7 2 3 0

x

x

x







−     
    

− =
    
    − − −    

   --------------- (1) 

The Characteristic equation of A is  0A I− =  

  
 

2 2 0

2 1 1 0

7 2 3

(2 ) (1 )( 3 ) 2 2[2( 3 ) 7] 0

( 1)( 3)( 4) 0

1,3, 4







   

  



−

− =

− − −

 − − − − − − − − + =

 − − + =

 = −

 

The Eigen values of A are 1,3, 4 = −  

To find Eigen Vectors: 

The eigen vector 

1

2

3

x

X x

x

 
 

=
 
  

 of A corresponding to the eigen values   are given by

( ) 0A I X− =  



 

 

1

2

3

2 2 0 0

2 1 1 0

7 2 3 0

x

x

x







−     
    

 − =
    
    − − −    

                             ------    (1) 

Case(i):  1 =  from  (1) , we get  

 

1

2

3

1 2 0 0

2 0 1 0

7 2 4 0

x

x

x

    
    

 =
    
    − −    

 

Reducing the coefficient matrix to the echelon form 

Applying R2→ R2 − 2R1, R3→R3 +7R1, We get 

 

 

1

2

3

1 2 0 0

0 4 1 0

0 16 4 0

x

x

x

    
    

 − =
    
    −    

      

Applying  R3→R3 +4R2, We get 

1

2

3

1 2 0 0

0 4 1 0

0 0 0 0

x

x

x

    
    

 − =
    
        

 

Since  3 2n r− = − =1 

For one variable,  we have to give one arbitrary constant  

Hence we have 1 22 0x x+ =  

2 34 0x x− + =  

Let 2x k= , then 3 4x k=  and 1 2x k= −  

1

2

3

2

X 1

4

x

x k

x

−   
   

 = =
   
     

 

In particular k =1, 
1

2

X 1

4

− 
 

=
 
  

is the eigen vector of A corresponding to eigen value 1 = . 

Case(ii):  3 =  from  (1) , we get  

 



 

 

1

2

3

1 2 0 0

2 2 1 0

7 2 6 0

x

x

x

−     
    

 − =
    
    − −    

 

Reducing the coefficient matrix to the echelon form 

Applying R2→ R2 + 2R1, R3→R3 − 7R1, We get 

 

 

1

2

3

1 2 0 0

0 2 1 0

0 12 6 0

x

x

x

−     
    

 =
    
    − −    

      

Applying  R3→R3 +6R2, We get 

1

2

3

1 2 0 0

0 2 1 0

0 0 0 0

x

x

x

−     
    

 =
    
        

 

Since  3 2n r− = − =1 

For one variable,  we have to give one arbitrary constant  

Hence we have 1 22 0x x− + =  

2 32 0x x+ =  

Let 2x k= , then 3 2x k= −  and 1 2x k=  

1

2 2

3

2

X 1

2

x

x k

x

   
   

 = =
   
   −  

 

In particular k =1, 
2

2

X 1

2

 
 

=
 
 − 

is the eigen vector of A corresponding to eigen value 3 = . 

Case(iii):  4 = −  from  (1) , we get  

 

1

2

3

6 2 0 0

2 5 1 0

7 2 1 0

x

x

x

    
    

 =
    
    −    

 

Reducing the coefficient matrix to the echelon form 

Applying R2→ 3R2−R1, R3→6R3 + 7R1, We get 



 

 

 

 

1

2

3

6 2 0 0

0 13 3 0

0 26 6 0

x

x

x

    
    

 =
    
        

      

Applying  R3→R3 −2R2, We get 

1

2

3

6 2 0 0

0 13 3 0

0 0 0 0

x

x

x

    
    

 =
    
        

 

Since  3 2n r− = − =1 

For one variable,  we have to give one arbitrary constant  

Hence we have 1 26 2 0x x+ =  

             2 313 3 0x x+ =  

Let 3x k= , then 2

3

13
x k

−
=  and 1

1

13
x k

−
=  

1

2

3

1 13

X 3 13

1

x

x k

x

   
   

 = = −
   
     

 

In particular k =13, 
3

1

X 3

13

 
 

= −
 
  

is the eigen vector of A corresponding to eigen value 1 = . 

 

Hence the Eigen values of A are 1,3, 4 = − and the corresponding Eigen vectors of A are 

2

1

4

− 
 
 
  

, 

2

1

2

 
 
 
 − 

, 

1

3

13

 
 
−
 
  

. 

Cayley Hamilton Theorem: 

State: Every square matrix satisfies its characteristic equation. 

Proof: Let A be a square matrix of order n .  

          Then  A I−  is also square matrix of order n . 



 

 

 Let  be a eigen value of A, then 0A I− =  

Let 1 2

1 2 1( 1) ( ...... )n n n n

n nA I a a a a    − −

−− = − + + + + + be a polynomial of order n . 

Then 1 2

1 2 1 0......n n

n nAdj A I B B B B   − −

− −− = + + + + , where 0B , 1B ….. 1nB − are n -rowed 

matrices. 

Now ( ) . .A I Adj A I A I I A A AdjA  − − = −  =  

( ) 1 2 1 2

1 2 1 0 1 2 1

1 2

1 1 2 2 3 1 0 0

1 2

1 2 1

( ...... ) ( 1) ( ...... )

( ) ( ) ......... ( )

( 1) ( ...... )

n n n n n n

n n n n

n n n

n n n n n

n n n n

n n

A I B B B B a a a a

B AB B AB B AB B AB

a a a a

       

   

   

− − − −

− − −

− −

− − − − −

− −

−

 − + + + + = − + + + + +

 − + − + − + + − +

= − + + + + +

Comparing the coefficients of like powers of  , we get  

1 ( 1)n

nB I−− = −  

1 2 1( 1)n

n nAB B a I− −− = −  

2 3 2( 1)n

n nAB B a I− −− = −  

……………………. 

……………………. 

……………………. 

1 0 1( 1)n

nAB B a I−− = −  

0 ( 1)n

nAB a I= − . 

Premultiplying the above equations successively, by 1 2, , ........., ,n n nA A A A I− − and then adding, 

we get 

1 1 2 2 2

1 1 2 2 3 3 1 0 0

1 2

1 2 1

.....

( 1) (A ...... )

n n n n n n

n n n n n n

n n n n

n n

A B A B A B A B A B A B A B AB AB

a A a A a A a

− − − −

− − − − − −

− −

−

− + − + +− + + + − +

= − + + + + +
 

1 2

1 2 1( 1) (A ...... ) 0n n n n

n na A a A a A a− −

− − + + + + + =   …….. (1) 

Thus the matrix A satisfies its characteristic equation. 

Hence the theorem. 

To find Inverse matrix: 

Determination of 1A−  by Cayley Hamilton theorem 

Pre-multiplying equation (1) by 1A− on both sides, we get  



 

 

 

( )

1 1 2

1 2 1

1 2 3 1

1 2 1

1 1 2 3

1 2 1

A (A ...... ) 0

A ...... A 0

1
A A ......

n n n

n n

n n n

n n

n n n

n

n

a A a A a A a

a A a A a I a

a A a A a I
a

− − −

−

− − − −

−

− − − −

−

+ + + + + =

 + + + + + =

−
 = + + + +

 

Problem 1:   Verify Cayley Hamilton theorem for the matrix 
3 2

1 5

 
 
 

. 

Solution:  Let  
3 2

A
1 5

 
=  
 

 

Then the Characteristic equation of A is 0A I− =  

( )( )
2

3 2
0

1 5

3 5 2 0

8 13 0





 

 

−
 =

−

 − − − =

 − + =

 

C.H.T states that every square matrix A satisfies its characteristic equation 

We have to verify that 
2 8 13 0A A I− + =  

Now  

2
3 2 3 2

1 5 1 5
A

   
=    
   

11 16

8 27

 
=  
 

 

2
11 16 3 2 1 0

8 13 8 13
8 27 1 5 0 1

A A I
     

 − + = − +     
     

 

11 24 13 16 16 0

8 8 0 27 40 13

0 0
0

0 0

− + − + 
=  

− + − + 

 
= = 
 

 

Hence Cayley Hamilton theorem is verified. 

Problem 2:  Find  the characteristic equation  for the matrix 

2 1 1

1 2 1

1 1 2

− 
 
− −
 
 − 

and verify that it is 

satisfied by A and hence obtain 1A− . 

Solution:  Let  

2 1 1

A 1 2 1

1 1 2

− 
 

= − −
 
 − 

 



 

 

Then the Characteristic equation of A is 0A I− =  

2 1 1

. . 1 2 1 0

1 1 2

i e







− −

− − − =

− −

 

Expanding, 
3 26 9 4 0  − + − =   

To verify Cayley Hamilton theorem: 

We have to show that 
3 2A 6A 9A 4I O− + − =  

Now 2

2 1 1 2 1 1 6 5 5

A 1 2 1 1 2 1 5 6 5

1 1 2 1 1 2 5 5 6

− − −     
     

= − − − − = − −
     
     − − −     

 

And 3

2 1 1 6 5 5 22 21 21

A 1 2 1 5 6 5 21 22 21

1 1 2 5 5 6 21 21 22

− − −     
     

= − − − − = − −
     
     − − −     

 

3 2

22 21 21 6 5 5 2 1 1 1 0 0

A 6A 9A 4 21 22 21 6 5 6 5 9 1 2 1 4 0 1 0

21 21 22 5 5 6 1 1 2 0 0 1

22 36 21 30 21 30 18 4 9 0 9 0

21 30 22 36 21 30 9 0 18 4 9 0

21 30 21 30 22 36 9

− − −       
       

− + − = − − − − − + − − −
       
       − − −       

− − + − − − − − 
 

= − + − − + + − − − − −
 
 − − + −  0 9 0 18 4

14 9 9 14 9 9

9 14 9 9 14 9

9 9 14 9 9 14

0 0 0

0 0 0

0 0 0

 
 
 
 − − − − 

− − −   
   

= − + − −
   
   − − −   

 
 

=
 
  

 

3 2A 6A 9A 4 O − + − =  

Hence CHT is verified. 

To find 1A−  

Pre-multiplying equation (1) by 1A− , we have  



 

 

1 24A A 6A 9I

6 5 5 2 1 1 1 0 0

5 6 5 6 1 2 1 9 0 1 0

5 5 6 1 1 2 0 0 1

− = − +

− −     
     

= − − − − − +
     
     − −     

 

6 12 9 5 6 0 5 6 0

5 6 0 6 12 9 5 6 0

5 6 0 5 6 0 6 12 9

3 1 1

1 3 1

1 1 3

− + − + + − + 
 

= − + + − + − + +
 
 − + − + + − + 

− 
 

=
 
 − 

 

1

3 1 1
1

A 1 3 1
4

1 1 3

−

− 
 

 =
 
 − 

 

Problem 3:   Verify Cayley Hamilton theorem for the matrix 

1 0 2

A 0 2 1

2 0 3

 
 

=
 
  

and find its 1A−

. 

Solution:  Given  

1 0 2

A 0 2 1

2 0 3

 
 

=
 
  

 

The Characteristic equation of A is 0A I− =  

i.e. 

1 0 2

0 2 1 0

2 0 3







−

− =

−

 

Expanding, 
3 26 7 2 0  − + + =   

To verify Cayley Hamilton theorem: 

We have to show that 
3 2A 6A 7 A 2I O− + + =  

Now 2

1 0 2 1 0 2 5 0 8

A 0 2 1 0 2 1 2 4 5

2 0 3 2 0 3 8 0 13

     
     

= =
     
          

 



 

 

And 3 2

5 0 8 1 0 2 21 0 34

A A A 2 4 5 0 2 1 12 8 23

8 0 13 2 0 3 34 0 55

     
     

= = =
     
          

 

Now 3 2

21 0 34 5 0 8 1 0 2 1 0 0

A 6A 7 A 2I 12 8 23 6 2 4 5 7 0 2 1 2 0 1 0

34 0 55 8 0 13 2 0 3 0 0 1

       
       

− + + = − + +
       
              

 

    

21 30 7 2 0 0 0 0 34 48 14 0

12 12 0 0 8 24 14 2 23 30 7 0

34 48 14 0 0 0 0 0 55 78 21 2

0 0 0

0 0 0

0 0 0

− + − + + + − + + 
 

= − + + − + + − + +
 
 − + + + + + − + + 

 
 

=
 
  

 

3 2A 6A 7A 2I O − + + =  

Hence CHT is verified. 

To find 1A−  

Pre-multiplying equation (1) by 1A− , we have  

1 22A A 6A 7 I

5 0 8 1 0 2 1 0 0

2 4 5 6 0 2 1 7 0 1 0

8 0 13 2 0 3 0 0 1

5 6 7 0 0 0 12 8 0

2 0 7 4 12 7 5 6 0

8 12 0 0 0 0 13 18 7

− = − + −

     
     

= − + −
     
          

− + − − − − − 
 

= − + − − + − − + +
 
 − + − + − − + − 

 

1

6 0 4
1

A 2 1 1
2

4 0 2

−

− 
 

 = −
 
 − 

 

Calculation of powers of a matrix:- 

Diagonalization of the matrix is useful for finding power of a matrix. 

Let A be the given square matrix of order n . 

Then D=P-1AP 

  D2 = (P-1AP) (P-1AP) 

          = P-1A(P P-1)AP 



 

 

          = P-1AIAP 

          = P-1A2P      

 Similarly, D3= P-1A3P 

In general, Dn= P-1AnP-------------(1) 

To obtain An Premultiplying by P and post multiplying by P-1 ,  

      An = P An P-1 

Hence the power of the matrix can be obtained by An = P An P-1  

Problems:- 

Problem 1: Find a matrix P which transform the matrix 

1 0 1

1 2 1

2 2 3

A

− 
 

=
 
  

. 

Solution: The Characteristic equation of A is 0A I− =  

  i.e., 

1 0 1

1 2 1 0

2 2 3







− −

 − =

−

 

i.e., 
3 26 11 6 0   − + − =  

i.e., ( 1)( 2)( 3) 0   − − − =  

The characteristic roots are 1, 2,3 = . 

The eigen values are distinct. So A is diagonalizable.  

To find eigen vectors for the corresponding eigen values 1, 2,3 = . 

Case (1):- When 1 =   

Let 

1

1 2

3

x

X x

x

 
 

=
 
  

be the eigen vector corresponding 1 = . 

Then we have [A-1.I] 0X =  

1

2

3

0 0 1 0

1 1 1 0

2 2 2 0

x

x

x

−     
    

 =
    
        

 

This is reduce to echelon form  

Applying 2 1R R , we get   



 

 

1

2

3

1 1 1 0

0 0 1 0

2 2 2 0

x

x

x

    
    

 − =
    
        

 

Applying 3 3 12R R R→ − , we get 

1

2

3

1 1 1 0

0 0 1 0

0 0 0 0

x

x

x

    
    

 − =
    
        

 

Which implies 

1 2 3

3

0
..................(1)

0

x x x

x

+ + = 


− = 
 

The solution of the system (1) is  

2 1 3, , 0,x k x k x= = − =  


1

1

1

0

X k

 
 

= −
 
  

 is the eigen vector of A corresponding to 1 =  

Case (2):- When 2 = , 

Let 

1

2 2

3

x

X x

x

 
 

=
 
  

be the eigen vector corresponding 2 = . 

Then we have [A- 2.I] 0X =  

1

2

3

1 0 1 0

1 0 1 0

2 2 1 0

x

x

x

− −     
    

 =
    
        

 

This is reduce to echelon form  

Applying 2 2 1R R R→ + , 3 3 12R R R→ +  we get   

1

2

3

1 0 1 0

0 0 0 0

0 2 1 0

x

x

x

− −     
    

 =
    
    −    

 

Applying 3 2R R , we get 



 

 

1

2

3

1 0 1 0

0 2 1 0

0 0 0 0

x

x

x

− −     
    

 − =
    
        

 

Which implies 


1 3

2 3

0
..................(2)

2 0

x x

x x

+ = 


− = 
 

Let 2 ,x k= then we have 3 12 , 2x k x k= = −  



1

2 2

3

2

1

2

x

X x k

x

−   
   

= =
   
     

 is the eigen vector of A corresponding to 3 =  

Case (iii): When 3 =   

Let 

1

3 2

3

x

X x

x

 
 

=
 
  

be the eigen vector corresponding 3 = . 

Then we have [A-3.I] 0X =  

1

2

3

2 0 1 0

1 1 1 0

2 2 0 0

x

x

x

− −     
    

 − =
    
        

 

This is reduce to echelon form  

Applying 2 2 12R R R→ + , 3 3 1R R R→ +  we get   

1

2

3

2 0 1 0

0 2 1 0

0 2 1 0

x

x

x

− −     
    

 − =
    
    −    

 

Applying 3 3 2R R R→ + , we get   

1

2

3

2 0 1 0

0 2 1 0

0 0 0 0

x

x

x

− −     
    

 − =
    
        

 

The solution of the system (3) is     since 3 2 1n r− = − =  

Let 2 ,x k= then we have 3 12 ,x k x k= = −  



 

 

1

3 2

3

1

1

2

x

X x k

x

−   
   

= =
   
     

 is the eigen vector of A corresponding to 3 = . 

Writing the three eigen vectors of a matrix A as the three columns, the required transformation 

matrix P is 

1 2 1

1 1 1

0 2 2

− − − 
 
 
  

  

This is called the modal matrix of A.  

To find 1P− : 

 The cofactors of P = 

0 2 2

2 2 2

1 0 1

− 
 

−
 
 − 

  

0 2 1

2 2 0

2 2 1

AdjP

− 
 

= − −
 
  

 

 and 1(2 2) 2(2 0) 1(2 0) 0 4 2 2P = − − + − − − = + − =   

 

 1

0 2 1
1

2 2 0
2

2 2 1

AdjP
P

P

−

− 
 

= = − −
 
  

 

Now 1

0 2 1 1 0 1 1 2 1
1

2 2 0 1 2 1 1 1 1
2

2 2 1 2 2 3 0 2 2

P AP−

− − − − −     
     

= − −
     
          

 

1 0 0

0 2 0

0 0 3

D

 
 

= =
 
  

 

Hence 4 4 1A PD P−=  

               

4

4

4

1 0 01 2 1 0 2 1
1

1 1 1 0 2 0 2 2 0
2

0 2 2 2 2 10 0 3

 − − − −   
    

= − −    
        

  



 

 

   

49 50 40

65 66 40

130 130 81

− − − 
 

=
 
  

 

Problem 2:   Determine the modal matrix P for 

3 1 1

1 5 1

1 1 3

A

− 
 

= − −
 
 − 

 

Solution: Given 

3 1 1

1 5 1

1 1 3

A

− 
 

= − −
 
 − 

 

  The Characteristic equation of A is 0A I− =  

  i.e., 

3 1 1

1 5 1 0

1 1 3







− −

 − − − =

− −

 

i.e., 
3 211 36 36 0   − + − =  

i.e., ( 2)( 3)( 6) 0   − − − =  

The characteristic roots are 2,3,6 = . 

The eigen values are distinct. So A is diagonalizable.  

To find eigen vectors for the corresponding eigen values 1, 2,3 = . 

The eigen vector X to the corresponding eigen value  is given by [A- I]X=0 

Case (1):- When 2 =   

Let 

1

1 2

3

x

X x

x

 
 

=
 
  

be the eigen vector corresponding 2 = . 

Then we have [A 2 I]X = 0−  

1

2

3

1 1 1 0

1 3 1 0

1 1 1 0

x

x

x

−     
    

 − − =
    
    −    

 

This is reduce to echelon form  

Applying 2 2 1 3 3 1,R R R R R R→ + → − , we get   



 

 

1

2

3

1 1 1 0

0 2 0 0

0 0 0 0

x

x

x

−     
    

 =
    
        

 

Which implies 


1 2 3

2

0
..................(2)

2 0

x x x

x

− + = 


= 
 

The solution of the system (1) is  

Let 3x k= , then we have 2 10, .x x k= = −  


1

1

0

1

X k

− 
 

=
 
  

 is the eigen vector of A corresponding to 2 =  

Case (2):- When 3 = ,  

Let 

1

2 2

3

x

X x

x

 
 

=
 
  

be the eigen vector corresponding 3 = . 

Then we have [A 3I]X = 0−  

1

2

3

0 1 1 0

1 2 1 0

1 1 0 0

x

x

x

−     
    

 − − =
    
    −    

 

This is reduce to echelon form  

Applying 3 1R R , we get 

1

2

3

1 1 0 0

1 2 1 0

0 1 1 0

x

x

x

−     
    

 − − =
    
    −    

 

Applying 2 2 1R R R→ + , we get   

1

2

3

1 1 0 0

0 1 1 0

0 1 1 0

x

x

x

−     
    

 − =
    
    −    

 

Applying 3 3 2R R R→ − , we get 



 

 

1

2

3

1 1 0 0

0 1 1 0

0 0 0 0

x

x

x

−     
    

 − =
    
        

 

Which implies 


1 2

2 3

0
..................(2)

0

x x

x x

− = 


− = 
 

The solution of the system (2) is     since 3 2 1n r− = − =  

Let 3x k= , then we have 1 2, .x k x k= =  


2

1

1

1

X k

 
 

=
 
  

 is the eigen vector of A corresponding to 3 =  

Case (3):-When 6 =   

Let 

1

3 2

3

x

X x

x

 
 

=
 
  

be the eigen vector corresponding 6 = . 

Then we have [A 6 I]X = 0−  

1

2

3

3 1 1 0

1 1 1 0

1 1 3 0

x

x

x

− −     
    

 − − − =
    
    − −    

 

This is reduce to echelon form  

Applying 3 1R R , we get 

1

2

3

1 1 3 0

1 1 1 0

3 1 1 0

x

x

x

− −     
    

 − − − =
    
    − −    

 

Applying 2 2 1 3 3 1, 3R R R R R R→ + → + , we get   

1

2

3

1 1 3 0

0 2 4 0

0 4 8 0

x

x

x

− −     
    

 − − =
    
    − −    

 

Applying 3 3 22R R R→ − , we get 



 

 

  

1

2

3

1 1 3 0

0 2 4 0

0 0 0 0

x

x

x

− −     
    

 − − =
    
        

 

Which implies 

1 2 3

2 3

3 0
..................(3)

2 4 0

x x x

x x

− − = 


+ = 
      since 3 2 1n r− = − =   

The solution of the system (2) is  

Let 3x k= , then we have 1 2, 2 ,x k x k= = −  


3

1

2

1

X k

 
 

= −
 
  

 is the eigen vector of A corresponding to 3 =  

Writing the three eigen vectors of a matrix A as the three columns, the required transformation 

matrix is  

1 1 1

0 1 2

1 1 1

P

− 
 

= −
 
  

  

This matrix P is called the modal matrix.  

Now to find 1P− : 

Cofactors of  P =

3 2 1

0 2 2

3 2 1

 
 

−
 
 − 

  

Then AdjP=

3 0 3

2 2 2

1 2 1

− 
 
 
 − 

and 6P =  

1

3 0 3
1

2 2 2
det 6

1 2 1

AdjP
P

P

−

− 
 

= =
 
 − 

 

Now 1

3 0 3 3 1 1 1 1 1
1

2 2 2 1 5 1 0 1 2
6

1 2 1 1 1 3 1 1 1

P AP−

− − −     
     

= − − −
     
     − −     

 



 

 

2 0 0

0 3 0

0 0 6

D

 
 

= =
 
  

 

Hence the given matrix A is diagonalizable. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Subject: Linear Algebra & Calculus  

Unit-III 

Mean Value Theorems: Rolle’s Theorem, Lagrange’s mean value theorem, Cauchy’s 

mean value theorem, Taylor’s and Maclaurin theorems with remainders (without 

proof) related problems. 

 

INTRODUCTION 

Continuity: A function ( )f x is said to be continuous at ,x a=  

if lim ( ) lim ( ) ( )
x a x a

f x f x f a
→ − → +

= =   

Let ( )f x  be a continuous function in the closed interval [ , ]a b . This means that if  ,a x b   

lim ( ) ( )
x c

f x f c
→

= and 
0 0

lim ( ) ( ), lim ( ) ( )
x a x b

f x f a f x f b
→ + → −

= =  

Differentiation: A function ( )f x is said to be differentiable at ,x c=  

if 
( ) ( )

lim
x a

f x f a

x a→ +

−

−
and 

( ) ( )
lim
x a

f x f a

x a→ −

−

−
exists  

Let ( )f x  be a differentiable in the closed interval [ , ]a b . This means that if  ,a x b   

( ) ( )
lim
x a

f x f a

x a→

−

−
exists 

Further, 
0 0

( ) ( ) ( ) ( )
lim ( ) and lim ( )

x a x b

f x f a f x f b
f a f b

x a x b→ + → −

− −
= =

− −
exist. 

Rolle ’s Theorem: 

Statement: If ( )f x  is a function such that 

  (i)    continuous in a closed interval  ,a b    

  (ii)   derivable in the open interval ( ),a b  and   

  (iii)   ( ) ( )f a f b=   

 Then, there exits at least one value of x, say c in ( ),a b so that ( ) 0f c =  

Physical Interpretation:  If ( )y f x= is continuous curve defined in  ,a b   and derivable in 

the open interval ( ),a b  and ( ) ( )f a f b=  , then there exits at least one value of c lie in 

( ),a b  at which tangent to the curve is parallel to  x− axis 

Problem. 1: Verify Rolle’s theorem for the following functions 3 4( ) ( 2) ( 3)f x x x= + − in 

 2, 3−  



 

 

Solution:   We have 3 4( ) ( 2) ( 3)f x x x= + −  

(i) since every polynomial is continuous for all values of x  

   ( )f x  is also continuous in  2,3−  

(ii) Now 2 4 3 3( ) 3( 2) ( 3) 4( 2) ( 3)f x x x x x = + − + + −

 

                           

2 3

2 3

( 2) ( 3) [3( 3) 4( 2)]

( 2) ( 3) (7 1)

x x x x

x x x

= + − − + +

= + − −
 

                   which exists on ( )2, 3−  

(iii)  
( 2) 0, (3) 0

( 2) (3)

f f

f f

− = =

 − =
  

Thus, all the three conditions of Rolle’s theorem are satisfied. 

    There exists ( )2,3c − such that ( ) 0f c =  

      
2 3( 2) ( 3) (7 1) 0

2 3 1/ 7

c c c

c or c or c

 + − − =

 = − = =
 

Clearly 1/ 7 ( 2,3)c =  −  

 ( . ) 2 1/ 7 3i e −    

Hence Rolle’s Theorem is verified. 

Problem 2: Verify Rolle’s theorem for the following functions 3 2( ) 2 4 2f x x x x= + − −  in

2, 2 −
 

 

Solution: 

(i) Since every polynomial is continuous for all values of x , 

  ( )f x  is also continuous in 2, 2 −
 

 

(ii)  Now 2( ) 6 2 4f x x x = + − , which exists on ( )2, 2−  



 

 

(iii) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

3 2

3 2

2 2 2 2 4 2 2

4 2 2 4 2 2

0

2 2 2 2 4 2 2

4 2 2 4 2 2

0

2 2

f

f

f f

− = − + − − − −

= − + + −

=

= + − −

= + − −

=

 − =

  

Thus three conditions of Rolle’s Theorem are satisfied. 

    There exists ( )2, 2c − such that ( ) 0f c =  

26 2 4 0

1 2 / 3

c c

c or c

 + − =

 = − =
 

  1 and 2 / 3c c= − = are in between ( )2, 2−  

Hence Rolle’s Theorem is verified. 

Problem 3: Verify Rolle’s theorem for the following functions 3 2( ) 2 4 2f x x x x= + − −  in

3, 3 −
 

 

Solution:  (i) Since every polynomial is continuous for all values of x , 

  ( )f x  is also continuous in 3, 3 −
 

 

(ii)  Now 2( ) 6 2 4f x x x = + − , which exists for every ( )3, 3x −  

 ( )f x is differentiable in ( )3, 3−  

(iii) ( )3 1 2 3f − = −  and ( )3 1 2 3f = +  

 ( ) ( )3 3f f−    

Thus, the condition (3) of the Rolle’s theorem is not satisfied. 

   Rolle’s theorem is not applicable 

Problem 4: Verify Roll’s theorem for the function
2

( ) log in [ , ], 0, 0.
( )

x ab
f x a b a b

x a b

 +
=   

+ 
  



 

 

Solution:  Given 
2

2( ) log log( ) log log( )
( )

x ab
f x x ab x a b

x a b

 +
= = + − − + 

+ 
 

(i)    Since ( )f x is a composite function of continuous functions in [ , ],a b  

So   ( )f x is continuous in [ , ]a b  

(ii)   
2

2 2

2 1
( )

( )

x x ab
f x

x ab x x x ab

−
 = − =

+ +  

      ( ) exists for all ( , )f x x a b   

(iii)  
2

2
( ) log log1 0

a ab
f a

a ab

 +
= = = 

+ 
 

         and  
2

2
(b) log log1 0

b ab
f

b ab

 +
= = = 

+ 
 

( ) ( )f a f b =  

Thus three conditions of  Rolle’s theorem are satisfied. 

  There exists ( ),c a b such that ( ) 0f c =  

  

2

2

2

0
( )

c ab

c c ab

c ab c ab

−
 =

+

 =  = 

 

 ( , )c ab a b =   

Hence Rolle’s Theorem is verified. 

Lagrange’s mean value theorem: 

Statement: If ( )f x is a function defined on  ,a b such that 

 (i)    Continuous in a closed interval  ,a b    

 (ii)   Derivable in the open interval ( ),a b     

            Then, there exits atleast one value of x, say c in ( ),a b such that  

                          
( ) ( )

( )
f b f a

f c
b a

−
 =

−
 

Physical Interpretation:  If ( )y f x= is continuous curve defined in  ,a b  and derivable in 

the open interval ( ),a b  and ( ) ( )f a f b=  , then there exits at least one value of c lie in 

( ),a b  at which tangent to the curve is parallel to chord joining  ( , ( )A a f a and ( , ( )B b f b  



 

 

Problem 1: Verify Lagrange’s mean value theorem for the following functions in the 

intervals indicated 

        (i)   2( ) 2 7 10; 2, 5f x x x a b= − + = =  

(ii)  ( ) ( 1)( 2)f x x x x= − − in  0, 1/ 2  

(iii)  3 2( ) 2f x x x= −  in   1, 1−
 

Solution:  (i)  Given 2( ) 2 7 10f x x x= − +  
 We note that ( )f x is a polynomial in x  

  So it is continuous on [2,  5] and differentiable on (2,  5) 
Thus, all the conditions of Lagrange’s mean value theorem are satisfied.  
By Lagrange’s mean value theorem, we have 

  

(5) (2)
( )

5 2

25 4
4 7

3

f f
f c

c

−
 =

−

−
 − =  

4 14

7
3.5 (2, 5)

2

c

c

 =

 = = 

 

 Hence Lagrange’s mean value theorem is verified. 

(ii)  Given ( ) ( 1)( 2)f x x x x= − − is defined on  0, 1/ 2  

( )f x is continuous in closed interval  0, 1/ 2
 

 We have 3 2( ) 3 2f x x x x= − +  
 2( ) 3 6 2f x x x = − +

 Which exits on (0, 1/ 2)
 

( )f x is differentiable on (0, 1/ 2)
 

Thus, all the conditions of Lagrange’s mean value theorem are satisfied in  0, 1/ 2 . 

By Lagrange’s mean value theorem, we have 

(1/ 2) (0)
( )

1/ 2 0

f f
f c

−
 =

−

 

2 3 / 8 0
3 6 2

1/ 2 0
c c

−
 − + =

−

 

2

2

3
3 6 2

4

12 24 5 0

51
1 1 0.764 1.764;0.236

6

c c

c c

c

 − + =

 − − =

 =  =  =

 

But only the value of 0.236c = lies between 0 and 1/2. 

Hence Lagrange’s mean value theorem is verified. 

(iii)  Given 3 2( ) 2f x x x= −  
 We note that ( )f x is a polynomial in x  

  So it is continuous on [-1,  1]  



 

 

and 2'( ) 3 4f x x x= − which exists on  (-1,  1) 
it is differentiable on (-1,  1) 
Thus, all the conditions of Lagrange’s mean value theorem are satisfied.  
By Lagrange’s mean value theorem, we have 

  

2

2

(1) ( 1)
( )

5 2

1 7
4 4 3

2

4 4 3 0

4 16 48 4 8

8 8

1 3 1
1 , 1.5, 0.5

2 2 2

f f
f c

c c

c c

c

c

− −
 =

−

− +
 − = =

 − − =

 + 
 = =

−
 =  = = −

 

 Hence Lagrange’s mean value theorem is verified. 

But only the value of 0.5c = − lies between -1 and 1. 

Hence Lagrange’s mean value theorem is verified. 

 

Problem 2: Verify Lagrange’s mean value theorem for ( ) logf x x= in [1, ]e

 
Solution:  Given  ( ) logf x x=  
 Since ( )f x is continuous and derivable for all 0.x   

Also, 
1

( )f x
x

 =  

Taking 1,a b e= =  
(1) log1 0f = = and (e) loge 1f = =  

Thus, all the conditions of Lagrange’s mean value theorem are satisfied. 

By Lagrange’s mean value theorem, we have 

1 1 0
1 (1, )

1
c e e

c e

−
=  = − 

−  

Hence Lagrange’s mean value theorem is verified. 

Problem 3: Verify Lagrange’s mean value theorem for ( ) xf x e= in [0, 1]

 
Solution:  Given function is ( ) xf x e=  
 (i)   Since 

xe is continuous for all .x  
( ) xf x e =  is continuous in [0, 1]

 (ii) ( ) xf x e = , which exists for all in (0, 1)   

( ) xf x e =  is derivable  in (0, 1)

 Taking 0, 1a b= =  
(iii) 

0(0) 1f e= = and (1) ef =  
Thus, all the conditions of Lagrange’s mean value theorem are satisfied. 

By Lagrange’s mean value theorem, we have 

      
( ) ( )

( )
f b f a

f c
b a

−
 =

−  



 

 

1
log( 1) [log( ) 1]

1 0

c e
e c e e

−
 =  = −  =

−  

Since 2 e 3 1 1 2 0 log( 1) 1e e    −    −   
log( 1)c e = − lies in (0, 1)  

Hence Lagrange’s mean value theorem is verified. 

Problem 4: Calculate approximately 5 245 by using Lagrange’s mean value theorem

 
Solution:  Let 

1 55( ) , (243, 245)f x x x x= =   

 Taking 243, 245a b= =  

  
4 5 4 51 1

( ) ( )
5 5

f x x f c c− − =  =  

 By Lagrange’s mean value theorem, we have  

4/51 (245) (243)

5 245 243

f f
c− −

=
−

 i.e.,  c  lies between (243, 245) 

4/5

4/5 1 55

2
(245) (243)

5

2
245 (243)

5

c f f

c

−

−

 = −

 = −
 

 

4/55

5

2
245 3 (244) [ put 244]

5

2 1
245 3 . 3.0049

5 81.26

c− = + =

 = + =
 

Cauchy Mean Value Theorem: 

Statement: If f and g be continuous on [ , ]a b  and differentiable on ( , ).a b  Suppose that 

( ) 0g x   for all ( , ).x a b  Then there exists ( , )x a b  such that 
( ) ( ) (c)

.
g( ) ( ) g (c)

f b f a f

b g a

−
=

−
 

Problem 1: Apply Cauchy’s mean value theorem for 2( ) 9f x x= +  and 3g( ) 2x x= − in 

[1, 2].

 
Solution:  Given  2( ) 9f x x= +  and 3g( ) 2x x= −  

(i) Since ( )f x and g( )x are continuous and derivable for all x  

( )f x and g( )x are continuous on [1, 2].  

(ii) We have   ( ) 2f x x = and 2g ( ) 3x x = which are exists on (1, 2) . 

Thus, all the conditions of Cauchy’s mean value theorem are satisfied. 

By Cauchy’s mean value theorem (1, 2)c such that  

(2) (1) (c)

g(2) (1) g (c)

f f f

g

−
=

−  

2

13 10 2

6 1 3

c

c

−
 =

+  
14

(1, 2)
9

c =     

This means that Cauchy’s mean value theorem is verified. 



 

 

Problem 2: If ( ) xf x e=  and g( ) xx e−=  for in[ , ], 0a b a b  , show that c  is the average 

of a and b  by Cauchy’s mean value theorem 

 
Solution:  Given  ( ) xf x e=  and g( ) xx e−=  

 Since ( )f x and g( )x are continuous and derivable for all x  

( )f x and g( )x are continuous on [ , ].a b  

Also, we have   ( ) xf x e = and g ( ) xx e− = − which are exists on ( , )a b . 

Thus, all the conditions of Cauchy’s mean value theorem are satisfied. 

By Cauchy’s mean value theorem ( , )c a b such that  

( ) ( ) (c)

g( ) ( ) g (c)

f b f a f

b g a

−
=

−  

2
b a c

a b c

b a c

e e e
e e

e e e

+

− − −

−
 =  − = −

− −

 2 (or ) ( , )
2

a b
c a b c a b

+
 = + = 

 

(  It is the arithmetic mean between a and b )
 

This verifies Cauchy’s mean value theorem. 

Problem 3: Verify Cauchy’s mean value theorem for ( )f x x=  and 
1

g( )x
x

= in 

[ , ], 0 .a b a b 

 

Solution:  Given  ( )f x x=  and 
1

g( )x
x

=  

 Since ( )f x and g( )x are continuous and derivable for all 0.x   

( )f x and g( )x are continuous on [ , ]a b  

Also, we have 
1

( )
2

f x
x

 = and
1

g ( )
2

x
x x

−
 = which are exists on ( , )a b . 

Thus, all the conditions of  Cauchy’s mean value theorem are satisfied. 

By Cauchy’s mean value theorem ( , )c a b such that  

( ) ( ) (c)
.

g( ) ( ) g (c)

f b f a f

b g a

−
=

−  
1

2
1 1 1

2

b a b ac
c ab

a b

b a c c ab

− −
=   − = −

− −−  

( , )c ab a b =    (  It is the geometric mean between a and b ) 

Hence Cauchy’s mean value theorem is verified. 

Taylor’s and Maclaurin’s theorem  

Definition: A series of the form  

2 3 4 5( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) .........

1! 2! 3! 4! 5!

iv vx a x a x a x a x a
f x f a f a f a f a f a f a

− − − − −
  = + + + + + +  

Is called as Taylor’s series expansion of ( )f x  about .x a=   



 

 

Definition: A series of the form  

2 3 4 5

( ) (0) (0) (0) (0) (0) (0) .........
2! 3! 4! 5!

iv vx x x x
f x f xf f f f f  = + + + + + +  

Is called as Maclaurin’s series expansion of ( )f x . 

Problem 1:      Show that 
3 5 7

sin .........
3! 5! 7!

x x x
x x= − + − +   

Solution:  Maclaurin’s series expansion of ( )f x  is given by 

 
2 3 4 5

( ) (0) (0) (0) (0) (0) (0) .........
2! 3! 4! 5!

iv vx x x x
f x f xf f f f f  = + + + + + +  -------- (1) 

 Let ( ) sinf x x=  At 0x = , (0) sin 0 0f = =  

Then we have 

( ) cos

( ) sin

( ) cos

( ) sin

( ) cos

iv

v

f x x

f x x

f x x

f x x

f x x

 =

 = −

 = −

=

=

(0) cos 0 1

(0) sin 0 0

(0) cos 0 1

(0) sin 0 0

(0) cos 0 1

iv

v

f

f

f

f

f

 = =

 = − =

 = − = −

= =

= =

  

Substituting these values in (1)  

3 5 7

sin .........
3! 5! 7!

x x x
x x= − + − +  

Problem 2:      Show that 
2 4 6

cosh 1 .........
2! 4! 6!

x x x
x = + + + +   

Solution:  Maclaurin’s series expansion of ( )f x  is given by 

 
2 3 4 5

( ) (0) (0) (0) (0) (0) (0) .........
2! 3! 4! 5!

iv vx x x x
f x f xf f f f f  = + + + + + +  -------- (1) 

 Let ( ) coshf x x=  At 0x = , (0) cosh 0 1f = =  

Then we have 

( ) sinh

( ) cosh

( ) sinh

( ) cosh

( ) sinh

iv

v

f x x

f x x

f x x

f x x

f x x

 =

 =

 =

=

=

(0) sinh 0 0

(0) cosh 0 1

(0) sinh 0 0

(0) cosh 0 1

(0) sinh 0 0

iv

v

f

f

f

f

f

 = =

 = =

 = =

= =

= =

  

Substituting these values in (1)  



 

 

2 4 6

cosh 1 .........
2! 4! 6!

x x x
x = + + + +  

Problem 3:   Expand  
3 5

1tan .........
3 5

x x
x x− = − + −   

Solution:  Maclaurin’s series expansion of ( )f x  is given by 

 
2 3 4 5

( ) (0) (0) (0) (0) (0) (0) .........
2! 3! 4! 5!

iv vx x x x
f x f xf f f f f  = + + + + + +  -------- (1) 

 Let 1( ) tanf x x−=  At 0x = , 1(0) tan 0 0f −= =  

Then we have 

( )

( )

( )

( )

2

2
2

2

3
2

3

4
2

2 3

5
2

1
( )

1

2
( )

1

6 2
( )

1

24 24
( )

1

24(1 10 26 )
( )

1

iv

v

f x
x

x
f x

x

x
f x

x

x x
f x

x

x x
f x

x

 =
+

−
 =

+

−
 =

+

−
=

+

− −
=

+

(0) 1

(0) 0

(0) 2

(0) 0

(0) 24

iv

v

f

f

f

f

f

 =

 =

 = −

=

=

  

Substituting these values in (1)  

3 5
1tan .........

3 5

x x
x x− = − + −  

Problem 4:  Obtain the Maclaurins series expansion for  log(1 )x+   

Solution:  Maclaurin’s series expansion of ( )f x  is given by 

 
2 3 4 5

( ) (0) (0) (0) (0) (0) (0) .........
2! 3! 4! 5!

iv vx x x x
f x f xf f f f f  = + + + + + +  -------- (1) 

 Let ( ) log(1 )f x x= +  At 0x = , (0) log(1 0) 0f = + =  

Then we have 



 

 

2

3

3

3

1
( )

1

1
( )

(1 )

2
( )

(1 )

6
( )

(1 )

24
( )

(1 )

iv

v

f x
x

f x
x

f x
x

f x
x

f x
x

 =
+

−
 =

+

 =
+

−
=

+

=
+

2

3

3

3

1
(0) 1

1 0

1
(0) 1

(1 0)

2
(0) 2

(1 0)

6
(0) 6

(1 0)

24
(0) 24

(1 0)

iv

v

f

f

f

f

f

 = =
+

−
 = = −

+

 = =
+

−
= = −

+

= =
+

  

Substituting these values in (1)  

2 3 4 5

log(1 ) .........
2 3 4 5

x x x x
x x+ = − + − − +  

 

 

 

 



 

 

Subject: Linear Algebra & Calculus 

Unit-IV 

Multivariable Calculus: Partial derivatives, total derivatives, chain rule, change of 

variables, Jacobians, maxima and minima of  functions of two variables, method of 

Lagrange multipliers. 

 

PARTIAL DERIVATIVES,  

Let ( , )z f x y= be the function of two variables x and y . If we keep y  constant and 

varies then z  becomes a function of a variable x only. The derivative of z  with respect to x , 

keeping y  as constant is called partial derivative with respect to x  and is denoted by the 

symbols ,
z

x





f

x




, ( , )xf x y etc. 

Then 
0

( , ) ( , )
lim
x

z f x x y f x y

x x



→

 + −
=


 

Similarly, the partial derivative of ‘ z ’ with respect to ‘ y ’ keeping x  as constant is 

denoted by ,
z

y





f

y




, ( , )yf x y etc. 

 
0

( , ) ( , )
lim
x

z f x y y f x y

y y



→

 + −
=

  

Standard notation: 
2 2 2

2 2
, , , ,x y xx xy yy

z z z z z
p z q z r z s z t z

x y x x y y

    
= = = = = = = = =
     

 

 

Problem 1: Find the first and second order partial derivatives of   3 3( , ) 3f x y x y axy= + −  

and verify 
2 2f f

y x x y

 
=

   
 

Solution:  We have   3 3( , ) 3f x y x y axy= + −  

 

2 2

2 2 2 2

2 2

3 3 , 3 3

6 , 3 , 3 6

f f
x ay y ax

x y

f f f f
x a a y

x y x x y x

 
= − = −

 

   
= = − = − =

     

             

 We observe that 
2 2f f

y x x y

 
=

   
  

Problem 2: Find the first and second order partial derivatives of   2 2 2x y hxy+ +  

and verify 
2 2f f

y x x y

 
=

   
 

Solution:  Let   2 2( , ) 2f x y x y hxy= + +  



 

 

 
2 2 2 2

2 2

2 2 , 2 2 ,

2, 2 , 2 , 2.

f f
x hy y hx

x y

f f f f
h h

x y x x y x

 
= + = +

 

   
= = = =

     

             

 Thus 
2 2f f

y x x y

 
=

   
 is verified. 

Problem 3: Evaluate 
z

x




and 

z

x




, if ( )2 2z log x y= +  

Solution:  Given ( )2 2( , ) logf x y x y= +  

 Then we have 
2 2 2 2

2 2
and

z x z y

x x y y x y

 
= =

 +  +
             

Problem 4: If  1tan ,
x

u
y

−  
=  

 
Prove that 

2 2f f

x y y x

 
=

   
 

Solution:  Given that 1tan ,
x

u
y

−  
=  

 
 

 Now 
2

2 2 2 2 2

1 1

1

u x y y

x x y x y y x yx

y

  
= = = 

  + +   
+  
 

 

2

2 2 2 2 2 2

1

1

u x y x x

y y y x y y x yx

y

   − −
= = = 

  + +   
+  
 

 

( ) ( )

2 2 2 2 2

2 2
2 2 2 2

.1 2f x y y y x y

y x x y x y

 + − −
= =

  + +
 

( ) ( )

2 2 2 2 2

2 2
2 2 2 2

.1 2f x y x x x y

x y x y x y

 + − −
= − =

  + +
 

 Hence  
2 2f f

y x x y

 
=

   
. 

Problem 5: If  1 1sin tan
x y

u
y x

− −   
= +   

  
Prove that 

2 2f f

x y y x

 
=

   
 

Solution:  Given that 1 1sin tan
x y

u
y x

− −   
= +   

  
 

 Now 
22

1 1

11

u x y

x x y x xyx
xy

     
= +   

        +  −       

                          
2

2 2 2 2 22 2 2 2

1 1y x y y

y x y x x yy x y x

−
= + = −

+ +− −
  …….  (1) 



 

 

22

1 1

11

u x y

y y y y xyx
xy

     
= +   

        +  −      

        

2

2 2 2 2 22 2 2 2

1y x x x x

y x y x x yy x y y x

− −
= + = +

+ +− −

  

…….  (2) 

Multiplying (1) by x  and (2) by y  and then on adding, we have   

0
u u

x y
x y

 
+ =

 
 EULER’S  THEOREM ON HOMOGENEOUS FUNCTION: 

Definition 1: A function ( , )f x y is said to be homogeneous function of degree n , if the degree 

or power of each term in ( , )f x y is n , where n  is the real number  

Problem 1: 
1 2 2

0 1 2( , ) .......... .n n n n

nf x y a x a x y a x y a y− −= + + + + +  
Note: A function ( , )f x y is said to be homogeneous function of degree or power n  in ,x y  can 

be expressed in the form as  n x
y f

y

 
 
 

 or .n y
x f

x

 
 
 

 

Problem 1: Let 
3 2 3( , ) 2f x y x x y y= + +  

Then 
3

3 3

3
( , ) 1 2

y y y
f x y x x f

x x x

   
= + + =   

  
 

( , )f x y is a homogeneous function of degree 3. 

Definition 2:  A function ( , )f x y is said to be homogeneous function of degree n , if

( , ) ( , )nf kx ky k f x y=  where n  is the real number 

Problem 1: Let 
4 4

( , )
x y

f x y
x y

+
=

+  

Then 
4 4 4 4 4( ) ( )

( , )
kx ky k x y

f kx ky
kx ky k x y

+ +
= =

+ +  

         

4 4
3

3 ( , )

x y
k

x y

k f x y

+
=

+

=

 

( , )f x y is a homogeneous function of degree 3. 

Problem 2: Let 
2 2

1( , ) tan
2

x y
f x y

xy

−  +
=  

 
 

Then 
2 2

1 ( ) ( )
( , ) tan

2

kx ky
f kx ky

kxky

−  +
=  

 
 

         

2
1

2

2 2
1 0

( )
tan

2

tan ( , )
2

k x y

k xy

x y
k f x y

xy

−

−

 +
=  

 

 +
= = 

 

 



 

 

      ( , )f x y is a homogeneous function of degree zero. 

CHAIN RULE OF PARTIAL DIFFERENTIATION: 

(1)  Let ( , )z f x y= where 1( )x t= and 2 ( )y t=  are functions of t . Then z  is called a      

composite function of a variable .t  

(2)   Let ( , )z f u v= where 1( , )u x y= and 2 ( , )v x y=  are functions of ,x y . Then z  is 

called a composite function of a variable and .x y  

Theorem: Let ( , )z f u v= where 1( , )u x y= and 2 ( , )v x y=  are functions of ,x y . 
 

Then

 

z z u z v

x u x v x

    
= +

       

and   
z z u z v

y u y v y

    
= +

    
 

These equations referred to as the chain rule of partial differentiation. The above rule can be 

extended to functions of more than two independent variables.  

TOTAL DERIVATIVE (or) TOTAL DEFFERENTIAL COEFFICIENT: 

Let ( , )z f x y=  where 1( )x t= and 2 ( )y t=  are functions of .t   Then the derivative 

of z w.r.to .t  i.e., 
dz

dt
is called the total differential coefficient or total derivative of .z   

  
dz z dx z dy

dt x dt y dt

 
 = +

   
Similarly, if ( , , )u f x y z= where ,x

 
y and z  are functions of t.  Then the chain rule is 

  
dz z dx z dy u dz

dt x dt y dt z dt

  
 = + +

  
 

Problem 1:  If  2 2 ,z u v= + where 
2u at= and 2v at= , find 

dz

dt
.   

Solution: Given 2 2 ,z u v= + where 
2u at= and 2v at=  

We have 
dz z du z dv

dt u dt v dt

 
= +
   

               
2

2 .2 2 .2

4 .2 4 .2

u at v a

at at at a

= +

= +  

( )2 24 2
dz

a t t
dt

 = +

 

Problem 2:  If  2 4 ,z y ax= − where 
2x at= and 2y at= , find 

dz

dt
.   

Solution: Given 2 4 ,z y ax= − where 
2x at= and 2y at=  

We have 
dz z dx z dy

dt x dt y dt

 
= +
   

               
2 2

4 .2 2 .2

8 8 0

a at y a

a t a t

= − +

= − + =  

0
dz

dt
 =

 



 

 

Problem 3:  If  sin ,
x

z
y

 
=  

 
where 

tx e= and 2y t= , find 
dz

dt
as a function of t. Verify your 

result by direct substitution.   

Solution: Given sin ,
x

z
y

 
=  

 
where 

tx e= and 2y t=  

We have 
dz z dx z dy

dt x dt y dt

 
= +
   

                  

( )

2

2 2 2 4

2 2

2 3

1
cos . cos . .2

cos . cos . .2

2
cos . 1

cos . 2

t

t t t t

t t

t t

x x x
e t

y y y y

e e e e
t

t t t t

e e

t t t

e e
t

t t

    −
= +   

   

    −
= +   

   

   
= −   

  

 
= − 

 

 

Also,  ( )
2

2 4 2 3

2
cos cos 2

t t t t tdz e t e e t e e
t

dt t t t t

    −
= = −    

    
 as before.

 

 

CHANGE OF VARIABLES: 

Change of two independent variables x and y  by any other variable .t  

Let ( , ),z f x y= where 1( )x t= and 2 ( )y t=  are functions of single variable  .t  

  Then 
z z x z y

t x t y t

    
= +

    
is called the total differential coefficient of .z  

Change of two independent variables x and y  by other two variables u  and .v   

Let ( , ),z f x y= where 1(s, )x t= and 2 (s, )y t=  

Then we have z is composite function of  .t  

 Then   
z z x z y

s x s y s

    
= +

      

and 
z z x z y

t x t y t

    
= +

    
 

Corollary: Let ( , , ),u f x y z= where 1(s, )x t= , 2 (s, )y t=  and 3(s, )z t=  

  Here u is composite function of  .t  

 Then 
u u x u y u z

s x s y s z s

      
= + +

        

      

and 
u u x u y u z

t x t y t z t

      
= + +

      
 

Problem 1:  If  ( ), ,u F x y y z z x= − − − Prove that 0
u u u

x y z

  
+ + =

  
.   

Solution: Given ( ), ,u F x y y z z x= − − −  

Put , ,r x y s y z t z x= − = − = −  

( ), ,u F r s t=    



 

 

.1 .0 ( 1)

u u r u s u t

x r x s x t x

u u u u u

r s t r t

      
= + +

      

    
= + + − = −
    

 

.( 1) .1 .0

u u r u s u t

y r y s y t y

u u u u u

r s t r s

      
= + +

      

    
= − + + = − +
    

 

           and 
u u r u s u t

z r z s z t z

      
= + +

      
 

.(0) .( 1) .1
u u u u u

r s t s t

    
= + − + = − +
      

Therefore, 0
u u u u u u u u u

x y z r t r s s t

        
+ + = − − + − + =

        
 

Hence the results. 

Problem 2:  If  ( ),u f x y=  where cosrx e =  and sin ,ry e =  Prove that 

2ru u u
x y e

r y

  
+ =

  

2 2

2and ru u u u
e

x y r 

−
       

+ = +    
        

.   

Solution: Given ( ),u f x y=  where cosrx e =  and sinry e =
 

cos sinr ru u x u y u u
e e

r x r y r x y
 

      
= + = +

      

 
cos sinr u u

e
x y

 
  

= + 
  

     …… (1) 

sin cosr ru u x u y u u
e e

x y x y
 

  

      
= + = − +

      

 

     

sin cosr u u
e

x y
 

  
= − + 

  

    

…… (2)

 
Now sin . cos sin cos . sin cosr r r ru u u u u u

y x e e e e
r x y x y

     


        
+ = + + − +   

        

 

       

2 2 2sin cos sin sin cos cosr u u u u
e

x y x y
     

    
= + − + 

    

 

    

2ru u u
y x e

r y

  
 + =

  
 

Squaring (1) and (2) and then adding, we get   



 

 

( ) ( )

2 22 2

2 2

22

2 2 2 2 2

22 2 2

2

cos sin sin cos

cos sin cos sin

r r

r

r

u u u u u u
e e

r x y x y

u u
e

x y

u u u u
e

x y r

   


   



−

           
+ = + + − +      

            

    
= + + +   

     

          
 + = +       

            

 

3.1     Jacobian:  

Definition: If u and v are functions of two independent variables x  and y . Then the 

determinant 

u u

x y

v v

x y

 

 

 

 

  is called the Jacobian of with respect to x , y and  is denoted by
( , )

( , y)

u v

x




 

,
or

, y

u v
J

x

 
 
 

   

Similarly, the Jacobian of u , v , w  with respect to x , y, w is  

 
( , , )

( , y, z)

u u u

x y z

u v w v v v

x x y z

w w w

x y z

  

  

   
=

   

  

  

 

3.2 PROPERTIES OF JACOBIANS: 

 

Properties 1: If u and v are functions of  x and y and x and y  are functions of and .r  Then  

( , ) ( , ) ( , y)
.

( , ) ( , y) ( , )

u v u v x

r x r 

  
=

  
 

Properties 2: If u and v are functions of x and y and x and y  are functions ofu and .v  Then  

( , ) ( , y)
. 1

( , y) ( , )

u v x

x u v

 
=

 
 (or) If 

( , )

( , y)

u v
J

x


=


and  
( , y)

( , )

x
J

u v


 =


then 1JJ  =  

Problem 1: If  ( ),x y x yu e v e+ − += = ; find 
,

,

u v
J

x y

 
 
   

Solution : Given  ,x y x yu e v e+ − += = ;

  
( )

( )

,

,

x y x y

x y x y

u v
e e

x x

u v
e e

y y

+ − +

+ − +

 
= = −

 

 
= = −

 
 



 

 

( ) ( )

( ) ( )

,
Now

,

. .

1 1 0

x y x y

x y x y

x y x y x y x y

u u

x y e eu v
J

v vx y e e

x y

e e e e

+ +

− + − +

+ − + + − +

 

  
= = 
  − − 

 

=− +

= − + =  

Problem 2: If  3 5 , 4 3u x y v x y= + = − ; find 
,

,

u v
J

x y

 
 
   

Solution : Given  3 5 , 4 3u x y v x y= + = − ;

  
3, 4

5, 3

u v

x x

u v

y y

 
= =

 

 
= = −

 
 

3 5,
29

4 3,

u u

x yu v
J

v vx y

x y

 

  
 = = =− 

  − 

 
 

Problem 3: If  2 2 2 22 , 2u x y v x y= − = − ; find 
,

,

u v
J

x y

 
 
   

Solution : Given  2 2 2 22 , 2u x y v x y= − = − ;

  
2 , 4

4 , 2

u v
x x

x x

u v
y y

y y

 
= =

 

 
= − = −

 
 

2 4,

4 2,

4 16

12

u u

x yx yu v
J

v v x yx y

x y

xy xy

xy

 

−  
 = = 

  − 

 

=− +

=  

Problem 4: If  cos , sinx r y r = = ; find 
,

,

x y
J

r 

 
 
 

and 
,

,

r
J

x y

 
 
 

. Also show that JJ 1 =  

Solution:  We have   cos , y sinx r r = =               

          

cos , sin

sin cos

x y

r r

x y
r r

 

 
 

 
= =

 

 
= − =

 

  



 

 

2 2 2 2

cos sin( , y)

sin cos( , )

cos sin (cos sin )

x x

rx r

y y rr

r

r r r r

 

 



   

 

−  
= =
 

 

= + = + =

 

 Also, we have 2 2 2 1, tan
y

r x y
x

 −  
= + =  

 
 

2 2 2

2 2 2

,

,

r x y y

x r x x y r

r y x x

y r y x y r





  − −
= = = =

  +

 
= = =

  +

 

  
2 2

3 3

2 2

( , )

( , y)

r r x y

x yr x yr r

y xx r r

x y r r



 

 

 
= = = +
  −

 

 

2 2 2

3 3

1x y r

r r r

+
= = =  

, , 1
. 1

, ,

x y r
J J r

r x y r





   
  = =   

   
 

.3 FUNCTIONALLY DEPENDENT AND FUNCTIONALLY INDEPENDENT: 

Let ( , ), ( , )u f x y v g x y= = be two given differentiable functions of the two 

independent variables x and y . Suppose these functions u and v are connected by a relation

( , ) 0,F u v =  where F is differentiable. Then these functions u and v  are said to be functionally 

dependent on one another(i.e., one function say u  is a function of the second function v ) if the 

partial derivatives , ,x y xu u v and yv are not all zero simultaneously)   

Necessary and Sufficient condition for the two functions ( , )u x y and ( , )v x y are 

functionally dependent: 

Problem 1:  If  ,
x x y

u v
y x y

+
= =

−
. Find

,

,

u v
J

x y

 
 
 

. Hence prove that u and v are functionally 

dependent. Find the functionally relation between them.  

Solution: Given ,
x x y

u v
y x y

+
= =

−
 

2
,

u x u x

x y y y

  −
= =

 

 
2 2

2 2

( ).1 ( ).1 2

( ) ( )

( ).1 ( ).( 1) 2

( ) ( )

v x y x y y

x x y x y

v x y x y x

y x y x y

 − − + −
= =

 − −

 − − + −
= =

 − −

 



 

 

2

2 2

2 2

1

( , )

2 2( , )

( ) ( )

2 2
0

( ) ( )

u u x

x y y yu v

v v y xx y

x y x y x y

x x

y x y y x y

  −

 
 = =

  −

  − −

= − =
− −

 

u and v are functionally dependent. 

Now 

1
1

1
1

x
y

y u
v

ux
y

y

 
+ 

+ = =
− 

− 
 

 

1

1

u
v

u

+
 =

−
is the functionally relation between u and .v  

Problem 1: If  2 2 ( )2 2 2 , x yu x y xy x y v e += + + + + = ; find 
,

,

u v
J

x y

 
 
   

Solution : Given  2 2 ( )2 2 2 , x yu x y xy x y v e += + + + + = ;

  
2 2 2,

2 2 2,

x y

x y

u v
x y e

x x

u v
y x e

y y

+

+

 
= + + =

 

 
= + + =

 
 

( ) ( )

( ) ( )

2 2 2 2 2 2,

,

(2 2 2) (2 2 2)

0

x y x y

x y x y

u u

x y y xx yu v
J

v v e ex y

x y

x y e x y e

+ +

+ +

 

+ + + +  
 = = 

  

 

= + + − + +

=  
Hence u and v are functionally dependent. 

Now logx yv e v x y+=  = +

 

 
( )

2
log 2logu v v = + is the functionally relation between u and .v  

Problem 2:  Show that the functions 2 2 2, ,u x y z v xy yz zx w x y z= + + = + + = + + are 

functionally related and find the functionally relation between them.  

Solution: Given 
2 2 2, ,u x y z v xy yz zx w x y z= + + = + + = + +  

1 2

1 2

1 2

u v w
y z x

x x x

u v w
x z y

y y y

u v w
x y z

z z z

  
= = + =

  

  
= = + =

  

  
= = + =

  

 

 



 

 

2 2 3

1 2

( , , )
Now

( , , )

1 1 1

2 2 2

1 1 1

2

Applying , weget

1 1 1

2

1 1 1

2( ) 1 1 1

2( ).0 [ since and are identical ]

0

u u u

x y z

u v w v v v

x y z x y z

w w w

x y z

y z x z x y

x y z

y z x z x y

x y z

R R R

x y z x y z x y z

x y z

x y z

x y z

x y z R R

  

  

   
=

   

  

  

= + + +

= + + +

→ +

= + + + + + +

= + + =

= + +

=

 

Hence u , v and w are functionally dependent. So that functionally relation exists 

between u , v and .w  

Now 2( )u x y z= + +

 

        

2 2 2 2 2 2x y z xy yz zx= + + + + +

 

 

2u w v = + is the functionally relation between u , v and .w
 Problem 3:  Prove that the functions 3 , 2 and 2u x y z v x y z w x y z= − + = − − = − + are 

functionally related and find the functionally relation between them.  

Solution: Given 3 , 2 and 2u x y z v x y z w x y z= − + = − − = − +  

2 2 2

1 1 1

3 1 1

u v w

x x x

u v w

y y y

u v w

z z z

  
= = =

  

  
=− = − = −

  

  
= =− =

  

 

  



 

 

2 1 3
( , , )

Now 2 1 1
( , , )

2 1 1

1 1 3

2( 1) 1 1 1 ( 2).(0)

1 1 1

u u u

x y z

u v w v v v

x y z x y z

w w w

x y z

  

  
−

   
= = − −

   
−

  

  

= − − = −  

    

 u , v and w are functionally dependent.  

Now 4 2 2 2(2 )u v x y z x y z+ = − + = − +

 Hence 2u v w+ =
 

is the functionally relation between u , v and .w
 TAYLOR’S EXPANSION FOR A FUNCTION OF TWO VARIABLES: 

( )2 2

( , ) ( , ) ( ) ( , ) ( ) ( , )

1
( ) ( , ) 2( )( ) ( , ) ( ) ( , ) .....

2!

x y

xx xy yy

f x y f a b x a f a b y b f a b

x a f a b x a y b f a b y b f a b

= + − + −

+ − + − − + − +   

Problem 1: Expand sinxe y in powers of x  and y  by Taylor’s theorem. 

Solution: Let  ( , ) sinxf x y e y=  
 Then   ( , ) sinx

xf x y e y=         

           ( , ) cosx

yf x y e y=  

( , ) sinx

xxf x y e y=  

( , ) or ( , ) cosx

yx xyf x y f x y e y=  

  ( , ) sinx

yyf x y e y= −  

( , ) sinx

xxxf x y e y=  

( , ) cosx

xxyf x y e y=  

( , ) sinx

xyyf x y e y= −  

  ( , ) cosx

yyyf x y e y= −  

 At ( )0, 0 , ( )0, 0 0f =  

     ( )0, 0 0xf =         

              ( )0, 0 1yf =  

  ( )0, 0 0xxf =  

  ( )0, 0 1yxf =  

    ( )0, 0 0yyf =  

  ( )0, 0 0xxxf =  

  ( )0, 0 1xxyf =  

 ( )0, 0 0xyyf =  



 

 

   ( )0, 0 1yyyf = −  
 By Taylor’s theorem, we have  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

3 2 2 3

1
( , ) 0, 0 0, 0 0, 0 0, 0 2 0, 0 0, 0

2!

1
0, 0 3 0, 0 3 0, 0 0, 0 ......

3!

x y xx xy yy

xxx xxy xyy yyy

f x y f xf yf x f xyf y f

x f x yf xy f y f

 = + + + + + 

 + + + + + 

 

 i.e.,

 

2 3

sin ....
2 6

x x y y
e y y xy= + + − +

 
Problem 2: Expand 

1( , ) tan
y

f x y
x

−  
=  

 
in powers of ( 1)x −  and (y 1)−  

 (or) Expand 
1( , ) tan

y
f x y

x

−  
=  

 
in the neighborhood of (1, 1).  

Solution: Let  
1( , ) tan

y
f x y

x

−  
=  

   

 Then   2 2
( , )x

y
f x y

x y

−
=

+         

           2 2
( , )y

x
f x y

x y
=

+  

( )
2

2 2

2
( , )xx

xy
f x y

x y
=

+
 

( )

2 2

2
2 2

( , )yx

y x
f x y

x y

−
=

+
 

  

( )
2

2 2

2
( , )yy

xy
f x y

x y

−
=

+
 

( )

3 2

3
2 2

2 6
( , )xxx

y x y
f x y

x y

−
=

+
 

( )

3 2

3
2 2

2 6
( , )xxy

x xy
f x y

x y

−
=

+
 

( )

2 3

3
2 2

6 2
( , )xyy

x y y
f x y

x y

−
=

+
 

  

( )

2 3

3
2 2

6 2
( , )yyy

xy x
f x y

x y

−
=

+
 

 At (1, 1), ( )1(1,1) tan 1
4

f
−= =  

    
1

(1, 1)
2

xf = −         



 

 

              
1

(1, 1)
2

yf =  

  
1

(1, 1)
2

xxf =  

  (1, 1) 0xyf =  

    
1

(1, 1)
2

yyf = −  

 ( )
1

1, 1
2

xxxf = −  

( )
1

1, 1
2

xxyf = −  

 ( )
1

1, 1
2

xyyf =  

   ( )
1

1, 1
2

yyyf =  

 By Taylor’s theorem for ( , )f x y in powers of ( 1)x −  and (y 1)− , we have   

2 2

3 2 2 3

( , ) (1, 1) ( 1) (1, 1) ( 1) (1, 1)

1
( 1) (1, 1) 2( 1)( 1) (1, 1) ( 1) (1, 1)

2!

1
( 1) (1, 1) 3( 1) ( 1) (1, 1) 3( 1)( 1) (1, 1) ( 1) (1, 1) .....

3!

x y

xx xy yy

xxx xxy xyy yyy

f x y f x f y f

x f x y f y f

x f x y f x y f y f

= + − + −

 + − + − − + − 

 + − + − − + − − + − + 

 

 1 2 2

3 2 2 3

1 1
tan ( 1) ( 1) ( 1) ( 1)

4 2 4

1
( 1) 3( 1) ( 1) 3( 1)( 1) ( 1) .....

12

y
x y x y

x

x x y x y y

−  
  = + − − − + − − −   

 

 − − + − − − − − − − +   

Problem 3: Expand 
xye in powers of ( 1)x −  and ( 1)y −  

Solution: Let  ( , ) xyf x y e=  
 Then   ( , ) xy

xf x y ye=         

           ( , ) xy

yf x y xe=  
2( , ) xy

xxf x y y e=  

( , ) xy xy

yxf x y xye e= +  

  
2( , ) xy

yyf x y x e=  

 At (1, 1), (1,1)f e=  
     (1, 1)xf e=         

              (1, 1)yf e=  

  (1, 1)xxf e=  

  (1, 1) 2yxf e e e= + =  

    (1, 1)yyf e=  
 By Taylor’s theorem, we have  



 

 

 2 2

( , ) (1, 1) ( 1) (1, 1) ( 1) (1, 1)

1
( 1) (1, 1) 2( 1)( 1) (1, 1) ( 1) (1, 1) .....

2!

x y

xx xy yy

f x y f x f y f

x f x y f y f

= + − + −

 + − + − − + − + 

 

 i.e.,

 

2 21
( 1) ( 1) ( 1) 4 ( 1)( 1) ( 1) .....

2!

xye e x e y e e x e x y e y = + − + − + − + − − + − + 

 

         

2 2( 1) ( 1)
1 ( 1) ( 1) 2( 1)( 1) .....

2! 2!

x y
e x y x y
 − −

= + − + − + + − − + + 
 

 MAXIMUM AND MINIMUM OF FUNCTIONS OF TWO VARIABLES: 

Working rule: 

1.  Find 

 

0 and 0
f f

x y

 
= =

 
, solving these equations for x  and y .

 

      Let ( )1 1,ba  and ( )2 2,ba  be the pairs of values. 

 2.  Find 

 

2

2
,

z
r

x


=


2 2

2
,

z z
s t

x y y

 
= =
  

 for each airs of values obtained in step (1). 

 3.  (i) If 
2 0rt s−  and 0r   at ( )1 1,ba , then ( )1 1,bf a  has maximum at ( )1 1,ba .  

 

        

(ii) If 
2 0rt s−  and 0r   at ( )1 1,ba , then ( )1 1,bf a  has maximum at ( )1 1,ba .

 
(iii) If 

2 0rt s−  and 0r   at ( )1 1,ba , then ( )1 1,bf a  is not an extreme at ( )1 1,ba , 

i.e., there is neither a maximum nor minimum at ( )1 1,ba . In this case at ( )1 1,ba  is 

said to be saddle point. 

(iv)  If 
2 0rt s− =  at ( )1 1,ba , then there is no conclusion can be drawn about 

maximum or minimum and we needs further investigation. 

Similarly, examine the other pairs of points ( ) ( )2 2 3 3,b , ,b ,....a a one by one.

  

Problem 1: Find the maximum and minimum value of 3 3 3 , 0x y axy a+ −   

Solution: Let 3 3 3z x y axy= + −       .…… (1) 

 For f to be maxima or minima 

 0 and 0
f f

x y

 
= =

 
  

We have 
23( ) 0

z
x ay

x


= − =


      .…… (2) 

    and  23( ) 0
z

y ax
y


= − =


       ……. (3) 

 Solving (2) and (3), we get  

 0,x x a= =  

 Corresponding values of y are 0,y y a= =  

 The stationary points are (0, 0) and ( , )a a  

 Now    
2

2
6

z
r x

x


= =


 



 

 

2

2

2

3

6

z
s a

x y

z
t y

y


= = −
 


= =


 

 At the point (0, 0), 2 2 236 9 9 0rt s xy a a− = − = −   

   The function does not have extreme value at (0, 0). 

 At the point ( , )a a , 
2 2 2 236 9 27 0rt s a a a− = − =   and 6 0r a=   

  The given function is minimum at ( , )a a . 

 The minimum value  is 3( , ) .z a a a= −   

Problem 2: Find the maximum and minimum value of 3 2 2 2( , ) 3 3 3 4f x y x xy x y= + − − +  

Solution: Given  3 2 2 2( , ) 3 3 3 4f x y x xy x y= + − − +     .…… (1) 

 For f to be maxima or minima 

 0 and 0
f f

x y

 
= =

 
  

We have 
2 23 3 6 0

f
x y x

x


= + − =


     .…… (2) 

and  6 6 0
z

xy y
y


= − =


       ……. (3) 

 Solving (2) and (3), we get  

  0,1,2 and 0, 1x y= =   

 Hence (0,0), ( 2,0) , (1, 1) are the stationary points of .f  

 Now    
2

2
6 6

f
r x

x


= = −


 

2

2

2

6

6 6

f
s y

x y

f
t x

y


= =
 


= = −


 

 At (0, 0), ( )
22 26 6 36 36 0 and 6 6 6 0rt s x y r x− = − − =  = − = −   

 (0, 0) 4f = is the maximum value  

 At (2, 0), ( )
22 26 6 36 36 0 and 6 6 6 0rt s x y r x− = − − =  = − =   

 (2,0) 0f = is the minimum value  

At (1, 1) , ( )
22 26 6 36 36 0rt s x y− = − − = −   

 (1, 1)f  is not an extreme value.

 Problem 3: Find the maximum and minimum value of 4 4 2 2( , ) 2 4 2 ,f x y x y x xy y= + − + −  
( 0, 0).x y   

Solution: Given  4 4 2 2( , ) 2 4 2f x y x y x xy y= + − + −    .…… (1) 

 For f to be maxima or minima 

 0 and 0
f f

x y

 
= =

 
  



 

 

We have 
34( ) 0

f
x x y

x


= − + =


     .…… (2) 

and  34( ) 0
f

y x y
y


= + − =


       ……. (3) 

 Solving (2) and (3), we get  

  0, 2 , 2 and the corresponding for are 0, 2 , 2x y= − = −  

 Hence ( ) ( )(0,0), 2, 2 and 2, 2− − are the stationary points of .f  

 Now    
2

2

2
12 4

f
r x

x


= = −


 

2

2
2

2

4

12 4

f
s

x y

f
t y

y


= =
 


= = −


 

 At the point (0, 0), ( )( )2 2 212 4 12 4 16 0.rt s x y− = − − − =  

 Therefore, we cannot say anything. It needs further investigation.  

 At the points ( )2, 2− , ( )2, 2−
 

2 20 20 16 384 0 and 20 0rt s r− =  − =  =   

  The function f attains minimum value at ( )2, 2− and ( )2, 2− . 

Problem 4: The sum of three numbers is constant. Prove that product is maximum when they 

are equal. 

Solution: Let the three numbers  be , ,x y z  

Given  .x y z a+ + =  
z a x y = − −      

 Let the product of three numbers be 

( )P xyz xy a x y= = − −      .…… (1) 

 The product is maximum or minimum if 

For maxima or minima 

 0, 0
f f

x y

 
= =

 
  

Now 
22 0 ( 2 ) 0

P
ay xy y y a x y

x


= − − =  − − =


  

2x y a + =        .…… (2) 

and  22 0 ( 2 ) 0
P

ax xy x x a y x
y


= − − =  − − =


   

2x y a + =         ……. (3) 

 Solving (2) and (3), we get 

  
3

a
x y z= = =   

 Now    
2

2
2

P
r y

x


= = −


 



 

 

2

2

2

2 2

2

P
s a x y

x y

P
t x

y


= = − −
 


= = −


 

 At the point , ,
3 3 3

a a a 
 
 

,  

2 2

2 2 2

4 ( 2 2 )

4
0

9 9 3

2
and 0

3

rt s xy a x y

a a a

a
r

− = − − −

= − = 

−
= 

 

    P is maximum at , ,
3 3 3

a a a 
 
   

 The product is maximum, if the numbers are equal.  

 

Problem 5: Discuss the maxima and minima of  ( , ) sin sin sin( ),u x y x y x y= + where

0 and 0 .x y      

Solution: Given  function is ( , ) sin sin sin( )u x y x y x y= +   

       sin sin cos( ) cos sin( )
u

y x x y x x y
x


 = + + +


   

                 

 

2

2

2

2

2

sin sin(2 )

2sin cos(2 )

sin sinycos( ) cosysin( )

sin sin( 2 )

sin cos( 2 ) cos sin( 2 y)

sin(2 2 y)

2sin cos( 2 )

y x y

u
r y x y

x

u
x x y x y

y

x x y

u
s x x y x x

x y

x

u
t x x y

y

= +


= = +



= + + +



= +


= = + + +
 

= +


= = +


    

Now    0
u

x


= 


sin sin(2 ) 0y x y+ =    

 where 0 , sin 0x y     

Hence sin(2 ) 0x y+ =       ……. (1) 

Similarly, 0 sin( 2 ) 0
u

x y
y


=  + =


     ……. (2) 

From (1) and (2), we get  

2 and 2x y x y + = + =  

 Solving these equations, we get  



 

 

,
3 3

x y
 

= =  

 Now At the point ,
3 3

  
 
 

,  

( ) ( ) ( )

( )( )

2

2

2sin / 3 cos( ).2cos / 3 sin sin 4 / 3

3 3 9
3 3 3 0

2 4 4

and 3 0

rt s

r

    − = −

 −
= − − − = − =   

 

= − 

 

Hence ( , )u x y  is maximum at ( )/ 3, / 3   

 Maximum value of  ( ) ( ) ( ) ( )( , ) sin / 3 sin / 3 sin 2 / 3 3 3 / 8.u x y   = =  

LAGRANGE’S METHOD OF UNDETERMINED MULTIFLIERS: 

Note: To find the maxima or minima for a function ( , , ) 0f x y z =  subject to the conditions  

1( , , ) 0x y z = and 2 ( , , ) 0x y z = , form the Lagrange’s function as 

1 2F( , ) ( , , ) ( , , ) ( , , )x y f x y z x y z x y z = + +  

where  and  are the Lagrange’s multipliers and proceed as above. 

 

 

Problem 1: Find the points on the plane ax by cz d+ + =  which is nearest to the origin. 

Solution: Let P( , , )x y z  be any point on the given plane. 

 Then 2 2 2OP x y z= + +    

 Let 2 2 2f x y z= + +        …… (1) 

 Now we have to minimize (1) subject to the condition 

   ( , , ) 0x y z ax by cz d = + + − =      …… (2) 

 Consider the Lagrangian function 

  i.e., 2 2 2( , , ) ( )F x y z x y z ax by cz d= + + + + + −  

 For F to be minima or maxima, 0, 0, 0
F F F

x y z

  
= = =

    

0 2 0
F

x a
x




=  + =


 
2

a
x


 = −     …… (3) 

0 2 0
f

y b
y




=  + =
   2

b
y


 = −     …… (4) 

0 2 0
F

z c
z




=  + =


 
2

c
z


 = −     …… (5) 

Substituting (3), (4) and (5) in (2), we get  
2 2 2

2 2 2

2 2 2

2 2
0 , where

2 2 2

a b c d d
d p a b c

a b c p

  


− −
− − − − =  = = = + +

+ +
 

Putting this value of  in (3), (4), (5), we get  

, y ,
ad bd cd

x z
p p p

= = =  



 

 

Hence , ,
ad bd cd

p p p

 
 
 

is the point on the given plane which nearest to the origin. 

 

Problem 2: Find the minimum value of 2 2 2x y z+ + subject to the condition 3xyz a=   

Solution: Let 2 2 2f x y z= + +       …… (1) 

 and  3( , , ) 0x y z xyz a = − =        …… (2) 

 Consider the Lagrangian function: 

  i.e., 2 2 2 3( , , ) ( )F x y z x y z xyz a= + + + −  

 For F to be minima, 0, 0, 0
F F F

x y z

  
= = =

    

0 2 0
F

x yz
x




=  + =


  
2

x

yz


 = −    …… (3) 

0 2 0
f

y xz
y




=  + =
   2

y

xz


 = −    …… (4) 

0 2 0
F

z xy
z




=  + =


  
2

z

xy


 = −    …… (5) 

Substituting (3), (4) and (5) in (2), we get  

2

x y z

yz zx xy


= = = −       …… (6) 

From the first two members , we have  

2 2x y
x y

yz zx
=  =       …… (7) 

From the last two members , we have  

2 2y z
y z

zx xy
=  =       …… (8) 

From (7) and (8), we have 
2 2 2x y z x y z= =  = =      …… (9) 

Solving (2) and (9), we get 
  x y z a= = =  

Minimum value of 2 2 2 23f a a a a= + + =  

 

Problem 3: Find the minimum value of 2 2 2x y z+ + given 3x y z a+ + =   

Solution: Let 2 2 2f x y z= + +       …… (1) 

 and  ( , , ) 3 0x y z x y z a = + + − =      …… (2) 

 Consider the Lagrangian function: 

  i.e., 2 2 2( , , ) ( 3 )F x y z x y z x y z a= + + + + + −  

 For F to be minima, 0, 0, 0
F F F

x y z

  
= = =

    

0 2 0
F

x
x




=  + =


   
2

x


 = −    …… (3) 

0 2 0
f

y
y




=  + =
    2

y


 = −    …… (4) 



 

 

0 2 0
F

z
z




=  + =


   
2

z


 = −    …… (5) 

Substituting (3), (4) and (5) in (2), we get  

3
3 3 or 2

2 2 2 2
a a a

   
− − − =  − = = −    …… (6) 

Using this value  2a = −  in (3), (4) and (5), we have 

, ,x a y a z a = = =       …… (7) 

The possible extreme point is ( , , )a a a  

Hence the minimum value of 2 2 2 23f a a a a= + + =  

 

Problem 4: Find the maximum value of m n px y z subject to x y z a+ + =   

Solution: Let m n pf x y z=        …… (1) 

 and  ( , , ) 0x y z x y z a = + + − =      …… (2) 

 Consider the Lagrangian function: 

  i.e., ( , , ) ( )m n pF x y z x y z x y z a= + + + −  

 For F to be maxima, 0, 0, 0
F F F

x y z

  
= = =

    

10 0m n pF
mx y z

x
−

=  + =


  
mf

x


 = −    …… (3) 

10 0m n pf
nx y z

y
−

=  + =
   

nf
y


 = −    …… (4) 

10 0m n pF
px y z

z
−

=  + =


  
pf

z


 = −    …… (5) 

Substituting (3), (4) and (5) in (2), we get  

( )mf nf pf m n p f
a

a


  

− + +
− − − =  =    …… (6) 

Substituting this value of    in (3), (4) and (5), we have 

, ,
am an ap

x y z
m n p m n p m n p

 = = =
+ + + + + +

  …… (7) 

Hence the maximum value of 

m n p

am an ap
f

m n p m n p m n p

     
=      

+ + + + + +     
 

( )

.m n p m n p

m n p

a m n p

m n p

+ +

+ +
=

+ +
 

 

 

 



 

 

Unit-IV 

     Multiple Integrals 

 
Double integrals, change of order of integration, change of variables. Evaluation of triple 

integrals, change of variables between Cartesian, cylindrical and spherical polar co-

ordinates. Finding areas and volumes using double and triple integrals. 

 

Double Integrals: 

 

Problem 1: Evaluate 

21

0 0

x y

xe dydx     

Solution:       

2
21 1 /

0 0 0 0
1/

xx y y x

x
e

I e dydx dx
x

 
= =  

 
    

( ) ( )
1 1

0 0

1
2

0

1

( 1)
2

1 1
0 ( 1)

2 2

x x

x

x e dx xe x dx

x
e x

= − = −

 
= − − 
 

= − − − =

 

 

Problem 2: Evaluate ( )2 2

0 0

a b

x y

x y dy dx
= =

+     

Solution:  Given integral  ( )2 2

0 0

a b

x y

I x y dy dx
= =

= + 
 

                                         

( )

3 3
2 2

0 00 0

3 3 3 3

0

2 2

3 3

3 3 3 3

3

b ba a

a

y b
x y dx x b dx

x b ba ab
b x

ab
a b

   
= + = +   

   

 
= + = + 
 

= +

 

                                          

 

Problem 3: Evaluate 

( )( )

1 1

2 2
0 0

1

1 1
dx dy

x y− −
     

Solution:  Given integral  

1 1

2 2
0 0

1

1 1x y

I dx dy
x y= =

=
− −

 
 



 

 

                                        

1 1

2 2
0 0

1 1
1 1

0 0

2

1 1

1 1

sin sin

.
2 2 4

x y

x y

dx dy
x y

x y

  

= =

− −

= =

=
− −

   =    

= =

 

 

Problem 4: Evaluate 

21 1

2 2

0 0

1

1

x

dy dx
x y

+

+ +     

Solution:  Given integral  

21 1

2 2

0 0

1

1

x

I dy dx
x y

+

=
+ +   

                                         

( )

1

2

2 2

0 0

1

1

0 0

1

1 1

0

1
put 1

1
tan

1
tan 1 tan 0

a

a

dy dx x a
a y

y
dx

a a

dx
a

−

− −

= + =
+

 
=  

 

= −

 





 

          ( )
1 1

2

0 0

1
/ 4 0 1

4
dx x dx

a


= − = +   

                                        

( )

( )

1
2

0

1

log 1
4

log 1 2 ( ) sinh 1
4 4

x x

or



  −

 = + +
  

= +

 

 

Problem 5: Evaluate 

2 11

2

0

y

y

x y dx dy

+

     

Solution:  Given integral  

22 111 3 3
2

0 0
3

x yy

y x y x y

x
I x y dx dy y dx

= ++

= = =

 
= =  

 
  

 



 

 

                                         

( )

3 2 3 3

0

3 6 4 2 3

0

3

7 5 4 3

0

3
8 6 5 4 2

0

3
8 6 5 4 2

0

( 1)

3 3

3 3 1

3 3

1
3 3

3

1
3 3

3 8 6 5 4 2

1
3 3

3 8 6 5 4 2

1 6561 2187 243 243 9 67

3 8 6 5 4 2 120

x

x y

y

y

y y
y dx

y y y y
y dx

y y y y y dx

y y y y y

y y y y y

=

=

=

=

 +
= − 

 

 + + +
= − 

 

= + − + +

 
= + − + + 

 

 
= + − + + 

 

 
= + − + + = 

 







 

Problem 6: Evaluate ( )2 2

R

x y dx dy+   in the positive quadrant for which 1x y+  . 

Solution: Given integral  ( )2 2

R

I x y dx dy= +
 

                                        

( )
11

2 2

0 0

11 3
2

0 0

1 3
2 3

0

1
3 4 4

0

3

(1 )

3

(1 )

3 4 12

1 1 1 1

3 4 12 6

y x

x y

y x

x y

x

x

x

x y dy dx

y
x y dx

x
x x dx

x x x

= −

= =

= −

= =

=

=

=

= +

 
= + 

 

 −
= − + 

 

 −
= − − 
 

= − − =

 




 

Problem 7: Evaluate 
R

y dx dy   where R is the region bounded by x −axis, ordinate 2x a=

and the curve 2 4 .x ay=  

Solution: Given integral  ( )
2

2 2

0 2

a x a

R y x ay

I y dx dy x y dy dx

=

= =

= = +  
 



 

 

                                          

( )

2

0 2

2
2

0 2

2

0

2 3
2

0

4 4
4

2

2 2

2 2
2 3

2

3 3

a x a

y x ay

x aa

y x ay

a

y

a

y

xy dy dx

x
y dy

y a ay dy

y y
a a

a a
a

=

= =

=

= =

=

=

=

 
=  

 

= −

 
= − 
 

= − =

 




 

Problem 8: Find the value of xy dx dy   over the positive quadrant of the ellipse 
2 2

2 2
1.

x y

a b
+ =  

Solution: Given ellipse is  
2 2

2 2
1.

x y

a b
+ =

 

        

2 2b
y a x

a
=  −

 
The region of integration can be expressed as 

2 20 , 0 ,
b

x a y a x
a

    −
  

Given integral   

2 2

0 0

b
y a x

a a

R x y

I xy dx dy x y dy dx

= −

= =

= =  
 

                                       

2 2

2 2

0 0

2

0 0

2 2 2 4
2 3 2

2 2

0 0

2 4 4 2 4 2 2

2 2

2

( )
2 2 2 4

2 2 4 2 4 8

b
y a x

a a

x y

b
y a xa a

x y

aa

x x

x y dy dx

y
x dx

b b x x
xa x dx a

a a

b a a b a a b

a a

= −

= =

= −

= =

= =

=

 
=  

 

 
= − = − 

 

 
= − = = 

 

 




 

 

Home Work: 

Problem 1: Evaluate 
2 2( )

0 0

x ye dy dx

 

− +

   



 

 

Problem 2: Evaluate 
2 1

0 0 0 0

( ) ( )

x x

x y x yi e dy dx ii e dy dx+ +

       

Problem 3: Evaluate 

2 2

2 2 2

0 0

a a x

a x y dy dx

−

− −      

Problem 4: Find the value of xy dx dy   taken over the positive quadrant of the circle 

2 2 2.x y a+ =  

Problem 5: Find the area included between the parabolas 2 24 and 4 .y x x y= =  

DOUBLE INTEGRALS IN POLAR COORDINATES: 

To evaluate 
2 2

1 1

( , )

r r

r r

f r dr d

 

 

 

= =

= =

  over the region bounded by the lines 1 = and 2 =  the 

curves 1r r= , 2r r=  . We first integrate w.r.to r  between the limits 1r r= and 2r r= .  Keeping 

  fixed and then integrate w.r.to   from 1 and 2  . In this integral 1r are 2r functions of    

and 1 and 2 are constants.     

Problem 1: Evaluate 
sin

0 0

a

r dr d

 

     

Solution:  Given integral  

sinsin 2

0 0 0 0
2

r aa

r r

r
I r dr d d

  

 

 

=

= = = =

 
= =  

 
  

 

                                         

( )
2

2 2

0 0

2

0

2 2

0

1 1 cos 2
sin

2 2 2

(1 cos 2 )
4

sin 2

4 2 4

a
a d d

a
d

a a

 

 





 




  

 

 


= =

=

=

=

− 
= =  

 

= −

 
= − = 

 

 


 

Problem 2: Evaluate 
2

/2

0 0

re r dr d






−

     

Solution:  Given integral  
2 2

/2 /2

0 0 0 0

1
2

2

r rI e r dr d e r dr d

 

 
 

− −= = − −   
 

                                         

( )

 

 

2

2

/2

0 0

/2

0
0

/2

0

/2
/2

0

0

1

2

1

2

1
0 1

2

1 1
1.

2 2 4

r

r

r

d e d

e d

d

d
























 



−


−

=
=

=

=

=

= −

 = −
 

= − −

= = =

 







 



 

 

 

Problem 3: Evaluate 
/4 sin

2 2
0 0

a

r

r
dr d

a r

 




= = −
    

 

Solution:  Given integral  
/4 sin /4 sin

2 2 2 2
0 0 0 0

1 2

2

a a

r r

r r
I dr d dr d

a r a r

   

 

 
= = = =

−
= = −

− −
   

 

                                         

( )

( )

( ) ( )

( )

/4 sin
2 2

0
0

/4

2 2 2 2

0

/4 /4

2

0 0

/4

0

1
2

2

sin

cos 1 1 cos

1
sin

4 2

r a

r

a r d

a a a d

a d a d

a a

 







 

 







 

   


 

=

=
=

=

= =

=

= − −

= − − −
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Problem 4: Evaluate 
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Solution:  Given integral  
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TO FIND THE POLAR LIMITS OF DOUBLE INTEGRALS: 

 Consider the double integral ( , )
R

f r dr d  over a region R, where the limits of 

integration of the region are not specified. 

Hence 
2 2

1 1

( )

( )

( , ) ( , )

r f

R r f

f r dr d f r dr d

  

  

   

= =
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Problem 1: Evaluate 
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Solution: Given integral  
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Problem 2:   Evaluate sinr dr d    over the cardiod (1 cos )r a = −  above the initial line

 Solution: The cardiod (1 cos )r a = −  is symmetrical about the initial line 0. =  The region 

of integration R above the initial line is r is Various from 0r =  to (1 cos )r a = −  and  various 

from 0 = to  =   

Given integral  

(1 cos )
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Problem 3: Evaluate 3r dr d   over the area included between the circles 2sinr = and 

4sin .r =

 Solution: The region of integration R is shown shaded. 

Here r is various from 2sinr =  to 4sinr =  and   various from 0 = to  =   

    Given integral  
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Change of order of integration: 

 In double integral with variable limits, the change of order of integration requires the 

change of limits also. While doing so, sometimes it is required to spit up the region of 

integration and the given integral is expressed as the sum of a number of double integrals with 

changed limits. To fix up the new limits, it is always to draw a strip (rough sketch) of the region 

of integration.  

The change of order of integration quite often facilities the evaluation of a double 

integral. The following Problems will makes these ideas clear. 

Problem 1: Change the order of integration for the integral   
2 2

0

( , )

a a x

a

f x y dx dy

−

−

    

Solution: Given limits are  

2 2, and 0,x a x a y y a x= − = = = −  

 i.e., 2 2 2, and 0,x a x a y x y a= − = = + =  

With these limits, the region of integration as shown in the figure. This is the region of semi-

circular area. 

 To change the order of integration, we take a strip parallel to x-axis. This strip moves on  

2 2 2 2andx a y x a y= − − = − from 0y to y a= = . 

Thus, 

2 2

2 20

( , )

a ya

y x a y

I f x y dx dy

−

= = −

=  
 

         

2 2

2 20
( , )

a x a y

y x a y
f x y dx dy

= −

= =− −
=    

Problem 2: To the change of order of integration and evaluate the integral 
2 2

2

0 0

a a x

y dx dy

−

    

Solution: Given limits are  



 

 

2 20, and 0,x x a y y a x= = = = −  

 i.e., 2 2 20, and 0,x x a y x y a= = = + =  

The region of integration is the region bounded by 2 2 2x y a+ = in the first quadrant. 

To change the order of integration, we take a strip parallel to x-axis. This strip moves on  

2 20 andx x a y= = − from 0y to y a= = . 

Thus, 
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Problem 3: Change the order of integration and evaluate 

2

4 2

0 4

a ax

x a

dy dx    

Solution: Given limits are  
2

0, 4 and , 2
4

x
x x a y y ax

a
= = = =  

 i.e., 
2 20, 4 and 4 , 4x x a x ay y ax= = = =  

The region of integration is the shaded region in the figure. 

To change the order of integration, we take a strip parallel to x-axis. This strip moves on  
2

2
4

y
x and x ay

a
= = from 0 4y to y a= = . 

Thus,   2
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Problem 4: By changing the order of integration, evaluate 
1 2

0 0

x

xy dx dy

−

    

Solution: Given limits are  

0, 1 and 0, 2x x y y x= = = = −  

 i.e., 0, 1 and 0, 2x x y x y= = = + =   

The region of integration is as shown in the figure. 

To change the order of integration, we take a strip parallel to x-axis. This strip moves on  

0 and 2x x y= = − from 1 2y to y= = . 

Thus, 
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Problem 12: Change the order of integration and evaluate 

2

2

103

0 /9

y

y

dy dx

−

    

Solution: Given limits are  

2 20, y 3 and 9, 10y x y x y= = = = −     

     i.e., 2 2 20, y 3 and 9, 10y y x y= = = + =  

The region of integration is OABC as shown in the figure. This region OABC divided into two 

parts by drawing a line parallel to y-axis at the point of intersection D.   

To change the order of integration, For the region ABD, we take a strip parallel to y-axis. This 

strip moves on 0 and 3y y x= = from 0 to 1x x= = . For the region ADC, we take a strip 

parallel to x-axis. This strip moves on 
20 and 10y y x= = − from 1 to 10x x= = .Hence, 
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Problem 13: By changing the order of integration, evaluate 
2

1 2

0

x

x

xydx dy
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Solution: The given integral can be written as 
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0

x

x y x

I xy dy dx

+

= =
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The region of integration is given by  
20, 1 and , 2x x y x y x= = = = −  

      i.e., 20, 1 and , 2x x y x x y= = = + =     …… (1) 

The region of integration is OAB as shown in the figure. This region OAB divided into two 

parts  

by drawing a line parallel to x-axis at the point of intersection C. The point of intersection is 

given by solving the equation (1).   

To change the order of integration, For the region OAC, we take a strip parallel to x-axis. This 

strip moves on 0 andx x y= = from 0 to 1y y= = . For the region CAB, we take a strip 

parallel to x-axis. This strip moves on 0 and 2x x y= = − from 1 to 2y y= = . 

Hence, 
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Problem 14: By changing the order of integration, evaluate 
( ) ( )
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Solution: Let 
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y
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=
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The region of integration is given by  

0, 1 and , 1/x x y x y x= = = =  
      i.e., 0, 1 and , 1x x y x xy= = = =      …… (1) 

The region of integration is OAB as shown in the figure. This region OAB divided into two 

parts  

by drawing a line parallel to x-axis at the point of intersection A(1, 1). The point of intersection 

is given by solving the equation (1).   

To change the order of integration, For the region OCD, we take a strip parallel to x-axis. This 

strip moves on 0 andx x y= = from 0 to 1y y= = . For the region CAB, we take a strip parallel 

to x-axis. This strip moves on 0 and 1/x x y= = from 1 toy y= → . 
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Triple Integrals:  
Let ( , , )f x y z  be a function defined over a three dimensional finite region V. Divide 

the region V into n elementary volumes 1 2, ,....... nV V V   . Let ( , , )r r rx y z be any point within 

the rth sub-division rV . The limit of the sum ( )
1

, , ,r r r r

r

f x y z V


=

  as n→ and 0rV → is 

known as triple integral of ( , , )f x y z over the region V . 

Symbolically, it is denoted by ( , , ) .
V

f x y z dV   

Evaluation of Triple Integral: 
 

Problem 1: Evaluate ( )2 2 2

0 0 0

a b c

x y z dxdydz+ +     

Solution: Since the limits are constants. So, the order of integration is immaterial.  

Integrating first w.r.to x keeping y and z are  constants, we have 
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Now Integrating first w.r.to y keeping z is constant, we have 
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Finally, Integrating first w.r.to z, we get 
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Problem 2: Evaluate 
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Solution: Given integral I
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Alternative Method  

Given integral I
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Problem 3: Evaluate 
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Problem 4: Evaluate 
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Problem 7: Evaluate 
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Solution: Given integral I 
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Problem 8: Evaluate 
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2
1 1

1 2

0

0 0

1 2
2 1

0

1
2 2

1 1
1 sin 0 .

2 2 2 2 2 2 8

x

y

x x

x

y dx x dx

x
x x

 

   

−

=

= =

−

=

= = −

   
= − + = + =  

   

 
 

Problem 9: Evaluate the triple integral 2xy z dxdydz  take through the positive octant of the 

sphere 2 2 2 2x y z a+ + =          

Solution: Equation of the sphere 2 2 2 2x y z a+ + =  

The limits of the integration are  

2 2 2 2 20, , 0, and 0,z z a x y y y a x x x a= = − − = = − = =  

Given integral  I =
2 2 2 2 2

2

0 0 0

a a x a x y

x y z
xy z dzdydx

− − −

= = =    



 

 

                          

2 2 2 2 2

2 2 2

2 2

2 2

2 2

2

0 0 0

2
2

0 0
0

2 2 2 2

0 0

2 2 2 4

0 0

2

1

2

1
( )

2

a a x a x y

x y z

a x y
a a x

x y
z

a a x

x y

a a x

x y

xy z dz dydx

z
xy dydx

x y a x y dydx

x y a x y dydx

− − −

= = =

− −
−

= =
=

−

= =

−

= =

 
=  

 

 
=  

 

 = − − 

 = − − 

  

 

 

 
 

    

2 2 5/2

0

2 2 5/2

0

1 1 1
( )

2 3 5

1 2
( )

2 15

a

x

a

x

x a x dx

x a x dx

=

=

  
= − −  

  

= −




 

                         

2 2 5/2

0

2 2 7/2 7

0

1
2 ( )

15

1 ( )

15 7 / 2 105

a

x

a

x

x a x dx

a x a

=

=

−
= − −

 − −
= = 

 


 

 

CHANGE OF VARIABLES IN A TRIPLE INTEGRAL: 

Let the variables , ,x y z  be changed to new variables , ,u v w by the transformation. 

1 2 3( , , ), y ( , , ), z ( , , )x u v w u v w u v w  = = =   

Where 1 2 3( , , ), ( , , ), ( , , )u v w u v w u v w    are continuous and continuous first order derivatives in 

some region V   in the  uvw-plane which corresponds to the region V in the xyz -plane. Then  

1 2 3( , , ) ( , , )
V V

f x y z dxdydz f J dudvdw  


=    

 Where ( )
( , , )

0
( , , )

x y z
J

u v w


= = 


is the Jacobian transformation of , ,x y z w.r.to , ,u v w . 

(a) To change rectangular coordinates to spherical coordinates: 

 We have sin cos , sin sin , cosx r y r z r    = = =   

and  
( , , )

( , , z)

x x x

r

x y z y y y
J

r r

z z z

r

 

  

 

  

  

   
= =
   

  

  

 

         2

sin cos cos cos sin sin

sin sin cos sin sin cos sin

cos sin 0

r r

r r r

r

     

      

 

−

= =

−

 

  Thus 
2( , , ) ( sin cos , sin sin , cos ) sin

V V

f x y z dxdydz f r r r r drd d       


=   



 

 

(b) To change rectangular coordinates to cylindrical coordinates: 

 We have cos , sin ,x r y r z z = = =   

and  

cos sin 0
( , , )

sin cos 0
( , , z)

0 0 1

r
x y z

J r r
r

 

 


−


= = =


 

  Thus ( , , ) ( cos , sin , z)
V V

f x y z dxdydz f r r rdrd dz  


=   

Problem 1: Evaluate the triple integral 2 2 2( )x y z dxdydz+ +  taken over the volume 

enclosed by the sphere 2 2 2 2x y z a+ + =   by transforming into spherical polar coordinates.         

Solution: Equation of the sphere 2 2 2 2x y z a+ + =  

Introducing spherical polar coordinates  

sin cos , sin sin , cosx r y r z r    = = =   

we have 2 sindxdydz r drd d  =  

 and 2 2 2 2x y z a+ + =  
2 2 2 2 2 2 2 2 2

2 2

sin cos sin sin cosr r r a

r a r a

     + + =

 =  =
 

The limits of the integration are  

0, , 0, 2 , 0,r r a     = = = = = =  

Given integral  I 
2

2 2

0 0 0
sin

a

r
a r drd d

 

 
  

= = =
=     

 

 

 

2
2 4

0 0 0

22 4

00 0

2 4

0 0

2 4

0 0

2 4

00

2 4

0

5
2 4 2

0
0

7

sin 1.

sin

sin .2 .

2 sin

2 cos

2 1 1

4 4
5

4

5

a

r

a

r

a

r

a

r

a

r

a

r

a
a

r
r

a r d d dr

a r d dr

a r d dr

a r d dr

a r dr

a r dr

r
a r dr a

a

 

 

 















  

  

  

  

 



 



= = =

== =

= =

= =

==

=

=
=

 =
  

=

=

=

= −

= +

 
= =  

 

=

  

 

 

 







 

Problem 2: Evaluate 
2 2 2 2 2

2 2 2 20 0 0

a a x a x y

x y z

dxdydz

a x y z

− − −

= = = − − −
    taken over the positive octant of 

the sphere 2 2 2 2x y z a+ + =  by changing to spherical polar coordinates.         

Solution: By changing to spherical polar coordinates  

Putting sin cos , sin sin , cosx r y r z r    = = =   



 

 

we have 2 sindxdydz r drd d  =  

 and 2 2 2 2x y z r+ + =  
2 2 2 2 2 2 2 2 2

2 2

sin cos sin sin cosr r r a

r a r a

     + + =

 =  =
 

The limits of the integration are  

0, / 2, 0, / 2, 0,r r a     = = = = = =  

Given integral  I 
/2 /2

2

20 0 0

1
sin

1

a

r
r drd d

r

 

 
  

= = =
=

−
  

 

     

2
/2 /2

20 0 0

2
/2 /2

20 0 0

1 (1 )
sin

1

1 (1 )
sin

1

a

r

a

r

r
drd d

r

r
dr d d

r

 

 

 

 

  

  

= = =

= = =

− −
=

−

 − −
=  

− 

  

  
 

     

/2 /2
2

20 0 0

1
sin 1

1

a

r
r dr d d d

r

 

 
   

= = =

  
= − −  

 −  
  

 

2
/2 /2

1 2 2 1

0 0

0

sin sin sin
2 2

r a

r

r r a r
a r d

a a

 

 
 

=

− −

= =

=

     
= − − +     

     
 

 

 

 

 

2
/2 /2

0 0

2
/2 /2

0 0

2
/2 /2

00

2
/2

0

2
/2

0

2 2

sin
2 2 2

1 sin
2 2

1 cos
2 2

1 0 1
2 2

1
2 2

1
4 2

a
d d

a
d d

a
d

a
d

a

a

 

 

 

 

 











 
  


  


 









= =

= =

==

=

=

 
= − 

 

 
= − 

 

 
= − − 

 

 
= − + 

 

 
= − 

 

 
= − 

 

 

 




 

Problem 3: By changing to spherical polar coordinates, find the volume the sphere 
2 2 2 2x y z a+ + =  

Solution: The region of integration is  2 2 2 2( , , ) : 0x y z x y z a + +    

By changing to spherical polar coordinates  

Putting sin cos , sin sin , cosx r y r z r    = = =   

we have 2 sindxdydz r drd d  =  

 and 2 2 2 2x y z r+ + =  



 

 

2 2 2 2 2 2 2 2 2

2 2

sin cos sin sin cosr r r a

r a r a

     + + =

 =  =
 

Using this transformation, The limits of the integration are  

0, , 0, 2 , 0,r r a     = = = = = =  

Given integral  I 
2

2

0 0 0
sin

a

r
r drd d

 

 
  

= = =
=   

 

    

( )( )( )

   

2
2

0 0 0

3
2

0 0

0

3 3

sin 1.

cos
3

4
(1 1)(2 0)

3 3

a

r

a

r

r dr d d

r

a a

 

 

 

 

  

 




= = =

= =

=

=

 
= − 
 

= + − =

  

 

Problem 4: By changing to cylindrical polar coordinates, find the volume the cylinder with 

base radius a  and hight .h  
Solution: The region of integration is bounded by  2 2 2 ,0x y a z h+      

By changing to cylindrical polar coordinates  

Putting cos , sin ,x r y r z z = = =   

we have dxdydz rdrd d =  

Using this transformation, The limits of the integration are  

0, , 0, , 0,r r a z z h  = = = = = =  

Given integral  I 
2

0 0 0

a h

r z
r drd d




 

= = =
=   

 

                          

( )( )( )

   

2

0 0 0 0

2
2 2

0 0

0

1. 1.

2

a h h

r z z

a

h

z

r

r dr d d

r
z a h









 

 

= = = =

= =

=

=

 
= = 
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT -5 
Beta and Gamma functions 

 
Beta and Gamma functions and their properties, relation between beta and gamma functions,  
evaluation of definite integrals using beta and gamma functions.

  

 

GAMMA FUNCTION: 

Definition: If n is a positive number, Then the definite integral 
1

0

, 0,x ne x dx n



− −   is called the Gamma 

function and is denoted by ( )n . i.e., 
1

0

( ) .x nn e x dx



− − =   

 Gamma function is also called Eulerian integral of second kind. 

 

PROPERTIES OF GAMMA FUNCTION:  

(i)    (1) 1 =  

Proof: By the definition of Gamma function, we have  

0

0 0 0

(1) .1 (0 1) 1
1

x
x x e

e x dx e dx

  −
− −  

  = = = = − − = 
− 

   

(ii)     ( 1) ( )n n n + = 
 

By the definition of Gamma function, we have 



 

 

1

0

( ) x nn e x dx



− − =      …………..(1) 

Changing n  to  1n+ in (1)  

1

0 00

1

0

( 1)
1 1

0

( )

x x
x n n n

x n

e e
n e x dx x nx dx

n e x dx

n n

 − −
− −



− −

 
 + = = − 

− − 

= +

= 

 



 

For Problem,

 

5 3
1

2 2

   
 =  +   
   

   
3 1

. 1
2 2

3 1 1 3
.

2 2 2 4


 
=  + 

 

 
=  = 

 
 

This is called recurrence formula for

 

( )n .  

Let us discuss the following cases when  

(a) n  is positive integer 

(b)    n is positive fraction 

      (c)    n is negative fraction 

Case (a):     When n is positive integer 

 
( 1) ( )

( 1) ( 1)

n n n

n n n

  + = 

= −  −

 

( 1)( 2) ( 2)

( 1)( 2)......3.2.1. (1)

( 1)( 2)......3.2.1.1 Since (1) 1

( 1) !

n n n n

n n n

n n n

n n

= − −  −

= − − 

= − −  =

  + =

 
For Problem,   (8) 7.6.5.4.3.2.1 7! = =

 

Case (b):   When n is positive fraction 

( ) ( 1) ( 1)

( 1)( 2) ( 2)

( 1)( 2)( 3) ( 3) and so on.

n n n

n n n

n n n n

  = −  −

= − −  −

= − − −  −
 

For Problem,   
7 7 5 3 1

1 1 1
2 2 2 2 2

       
 = − − −        
       

 

                              
5 3 1 1 15

. .
2 2 2 2 8


 

=  = 
 

  

Case (c):   When n is negative fraction 

  We have ( 1) ( )n n n + = 
 

( 1)
( )

1
( 1)

n
n

n

n
n

 +
 =

=  +
 

On using (1), we have  



 

 

1 ( 2)

( 1)

1 1 ( 3)
. .
( 1) ( 2)

n

n n

n

n n n

 +
=

+

 +
=

+ +

 

1 1 ( 1)
. ........
( 1) ( )

n k

n n n k

 + +
=

+ +
 

( 1)

( 1)........( )

n k

n n n k

 + +
=

+ +  

Problem (1):

    

1
1

1 12
2 2

12 2

2



− 
 + −     = = −  = −   −     

Problem (2):

    

1
1

1 45
5

15 5

5

− 
 + −     = = −    −     

 

 

 

Note:  1.  
 

( )n  is defined when 0n     

           2.    ( )n  is defined when ‘ n ’is a negative fraction. 

           3.    ( )n  is undefined when 0n =  and ‘ n ’ is a negative integer. 

OTHER FORMS OF GAMMA FUNCTION: 

 (i)   Prove that 1

0

( )kx n

n

n
e x dx

k



− − 
=

 
 Put

 
y kx=

  

 
So that dy kdx=

 
Also 0; 0 and ;x y x y= = → →

 

1 1

0 0

1

0

1

0

( )

( )

kx n y n

n y n

kx n n

e x dx e ky kdy

k e y dy

e x dx k n

 

− − − −



− −



− −

=

=

 = 

 





 

(ii)   Prove that 
1/

0

1
( )

nyn e dy
n



− = 
 

By the definition of Gamma function, we have 

1

0

( ) x nn e x dx



− − =      …………..(1) 

Put  
ny x=  

So that 1ndy nx dx−=
 



 

 

Also 0; 0 and ;x y x y= = → →
 

1/ 1/

0 0

1
( )

n ny ydy
n e e dy

n n

 

− − = =   

Hence 
1/

0

1
( )

nyn e dy
n



− =   

(iii)   Prove that
 

11

0

1
( ) log

n

n dy
y

−

 
 =  

 
  

We have 
1

0

( ) x nn e x dx



− − =      …………..(1) 

 Put 
1

logxe y x
y

−  
=  =  

 
 

So that 
xe dx dy−− =  

Also when 0; 1 and ; 0x y x y= = → →  

Substituting, 

10

1

1
( ) log

n

n dy
y

−

 
 = −  

 
  

        

11

0

1
( ) log

n

n dy
y

−

 
  =  

 


 

(iv)  Prove that 
2 2 1

0

( ) 2 y nn e y dy



− − = 
 

We have 
1

0

( ) x nn e x dx



− − =      …………..(1) 

Put 
2x y=  

So that 2dx ydy=  

Also 0; 0 and ;x y x y= = → →
 

Substituting, 
2 2( 1)

0

( ) 2 2y nn e y ydy



− − = 
 

           
2 2 1

0

( ) 2 y nn e y ydy



− −  =   

SOLVED PROBLEMS: 

Problem (1):  Prove that 
2

0

1 1
.

2 2

xe dx



−  
=  

 
 Hence show that 

1

2


 
 = 
 

. 

Solution:  We have 1

0

( ) t nn e t dt



− − = 
  

Put  
1

2
n =

  

 

1

2

0

1

2

te t dt


−

− 
  = 

 
            ………………………   (1)

 

Let 
2t x=

  



 

 

2dt xdx =

 Also 0; 0 and ;x y x y= = → →
 

2

2

0

0

1 1
. .2

2

2

x

x

e xdx
x

e dx



−



−

 
  = 

 

=



  

Hence

 

2

0

1 1

2 2

xe dx



−  
=  

 
                     …………………………   (2) 

Deduction: 

By changing x  to y , we have 

2

0

1 1

2 2

ye dy



−  
=  

 
       …………………………  (3) 

Multiplying (2) and (3), weget   

2 2

2

0 0

1 1

2 2

x ye dx e dy

 

− −  
 =   
  

   

              
( )2 2

0 0

x y
e dxdy

 
− +

=     By property of multiple integrals    

        
( )2 2

2

0 0

1
4

2

x y
e dxdy

 
− +  

  =  
  

   

The region of integration is the first quadrant of the xy − plane. 

Change Cartesian coordinates to polar coordinates  

by putting cos , sinx r y r = =   

and dxdy rdrd=  

From this region, r varies from 0 to   while  varies from 0 to .
2


  

      

( )

2 2

2 2

2 2 2

0 0 0 0

2 2

0
0 0 0

1
4 4

2

4
( ) 2

2

r r

r r

e rdrd d e rdr

d d e d e

 

 

 

 

 

 

 

− −

= =




− −

= =

  
  = =  

  

= = −
−

   

  

 

      ( )  
2

/2

0

0

2 1 2d e







 −

=

= − − =  

2

1
. .,

2
i e 

  
 =  
  

 

Hence
1

,
2


 

 = 
 

. 

Problem 2: Evaluate the following integrals 

(i)    
2 2

0

a xe dx



−

     (ii)   
3

0

xxe dx



−

    (iii) 
22

0

xx e dx



−

    



 

 

(iv)  
3

0

xe dx



−

   (v)  
24

0

xx e dx



−

    (vi) 
4

0

xe dx



−

  

(i)  Solution: Given integral, 
2 2

0

I a xe dx



−=   

  Put 2 2 y
a x y x

a
=  =  

  So that 
1

2
dx dy

a y
=

 

And the limits are same. 

 

  

1

2

0 0

1 11 1 1
2 2

0 0

1 1
I

22

1 1

2 2

1 1
.

2 2 2

y y

y y

e dy e y dy
aa y

e y dy e y dy
a a

a a



 
−

− −

  
− + − − 

− − 

 = =

= =

 
=  = 

 

 

   

(ii)  Solution:Given integral, 
3

0

I xxe dx



−=   

  Put 

1

3 3x y x y=  =  so that 

2

3
1

3
dx y dy

−

=  

  

1 2 1

6 3 2

0 0

1
1

2

0

1 1
I

3 3

1 1 1
.

3 3 2 3

y y

y

y e y dy e y dy

e y dy


 
− −

− −


−

−

 = =

 
= =  = 

 

 



 

(iii)  Solution: Given integral, 
22

0

I xx e dx



−=   

  Put 2x y x y=  =  

  So that 
1

2
dx dy

y
=  

  

2

1

2

0 0

1 31 1 1
2 2

0 0

2

0

1 1
I

22

1 1

2 2

1 3 1 1 1

2 2 2 2 2

4

y y

y y

x

y e dy e y dy
y

e y dy e y dy

x e dx


 

− −

  
+ − − − − 



−

 = =

= =

   
=  =    

   

 =

 

 



 



 

 

(iv) Solution: Given integral, 
3

0

I xe dx



−=   

  Put 

1

3 3x y x y=  =  so that 

2

3
1

3
dx y dy

−

=  

  

2 1
1

3 3

0 0

1 1
I

3 3

1 1
.

3 3

y ye y dy e y dy

 
− −

− − = =

 
=  

 

 
 

(v) Solution: Given integral, 
24

0

I xx e dx



−=   

  Put 2x y x y=  =  

  So that 
1

2
dx dy

y
=  
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